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Biometric Recognition Systems allow individuals to be automatically authenticated or 

identified by using their unique characteristics. Finger vein (FV), widely used for this 

purpose, has a crucial place among biometric systems because of its advantages, which are 

user-friendliness, ability to detect living tissue, high reliability, low system cost, and less 

area requirement in installation. It has a wide usage area, especially in places where personal 

safety is at the forefront. In this study, we examine the effect of the Horizontal and Vertical 

Total Proportion (HVTP) feature extraction algorithm on the success rate when the fusion 

technique is applied. Homomorphic Filter (HF) and Perona-Malik Anisotropic Diffusion 

(PMAD) are used to remove the noise and light scattering issue in the FV databases, and 

Gray Level Run Length Matrices (GLRLM), Gray Level Co-occurrence Matrices (GLCM), 

Segmentation-based Fractal Texture Analysis (SFTA), Horizontal Total Proportion (HTP), 

and Vertical Total Proportion (VTP) methods are applied to describe texture features. The 

fusion of multiple features instead of using only one type of feature can improve the 

accuracy of FV recognition systems. The novelty of the study is the fusion of HTP and VTP 

with the GLRLM, GLCM, and SFTA features by using Yang finger vein databases 

(Database_1) and MMCBNU_6000 (Database_2). Experimental results reveal that the HTP 

and VTP significantly improved the classification success in these FV image databases. The 

best success rate achieved in the Ensemble classifier is 99.7% using Database_1 and 97.6% 

using Database_2. 
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1. INTRODUCTION

In today's world, where security is becoming more 

important, personal authentication methods are also updating 

themselves to close existing security gaps with the developing 

technology. Although some Biometric Recognition methods, 

such as fingerprint [1-3], palmprint [4, 5], retina [6-8], iris [8, 

9], and face recognition [10, 11], used for this purpose, are 

used for tracking, entry-exit access permission control, and 

security purposes, they have some disadvantages compared to 

FV recognition. Among them, fingerprint and palmprint 

recognition systems create a security vulnerability because of 

unable to control whether the tissue is alive or not, being on 

the exterior surface of the body, and copied easily. Although 

the recognition success is high in methods such as retina and 

iris recognition, it may result in people don’t want to use it due 

to the difficulties they have in keeping their eyes on a light 

source and the high installation costs. Therefore, it is not 

suitable for general use and is preferred in areas where security 

is high-level. Face recognition methods are not preferred by 

most institutions and organizations where security is at the 

forefront. Because in biometric systems where only face 

recognition is used, security can be easily circumvented by 

using the vulnerabilities of face recognition. These systems 

also have some disadvantages related to noise, sustainability 

problems, and security gaps. They also include concerns such 

as violations of rights and freedoms that may occur as a result 

of obtaining and processing face data without our consent by 

using cameras [12-14]. Vein recognition systems are preferred 

instead. FV recognition systems are used as an additional 

security measure by banks and large-scale financial sectors in 

various countries worldwide, due to their user-friendliness, 

ability to detect living tissue, high reliability, low system cost, 

and less area requirement in installation [15] compared to 

other biometric recognition systems [12, 16-19]. At the same 

time, it was mentioned in a study by Kumar, A. and Y. Zhou 

that despite being genetically identical, FV images are distinct 

among identical twins, and the FV meshwork is unique for 

every finger [20].  

The theoretical base for FV recognition originated from the 

experience that hemoglobin in vessels can absorb specific 

near-infrared (NIR) rays within the range of 740-960 nm, 

which are capable of passing through human skin. As a result, 

regions of the tissue with high vein density appear dark due to 

the lower reflection of infrared rays in those areas. These veins 

can be visible using NIR sensitive Charge Couple Device 

(CCD) cameras [21]. Although FV systems possess unique

features, discerning the vascular region presents some

challenges due to the light scattering within the tissue. This

light scattering problem reduces the veins' visibility and, hence,

the success of the classification [22]. Therefore, the HF and

PMAD were used to get rid of light scattering and noise,

respectively, and our image was prepared to extract GLRLM,

GLCM, and SFTA features. After that Niblack segmentation

and morphological operations are used to extract the HTP and

VTP features. The fusion of multiple features instead of using

only one type of feature can improve the accuracy of FV

recognition systems. In this study, the fusion of HVTP features
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with the GLRLM, GLCM, and SFTA features is examined by 

using Database_1 and Database_2. The best result achieved in 

the Ensemble classifier is 99.7% using Database_1 and 97.6% 

using Database_2. 

This paper is structured as follows: Section 2 provides a 

review of the literature on FV recognition, while Section 3 

outlines the flowchart of our proposed algorithm and the 

research methodology that we proposed. Section 4 contains 

details about the materials and methods used in the study. In 

Section 5, the results of our research are presented, and 

comparisons are interpreted with similar studies found in the 

literature. Finally, Section 6 concludes the study by 

summarizing the key findings. 

 

 

2. RELATED WORKS 

 

The aspects of the research conducted in finger vein 

recognition processes that are examined in our study can be 

divided into two categories. The first category encompasses 

studies aimed at enhancing the quality of obtained finger vein 

images. The second category encompasses studies that 

concentrate on increasing the success rate through the 

development of new feature vectors and the application of 

fusion techniques. 

Numerous studies have been conducted to enhance the 

quality of images, with respect to the poor quality of FV 

images. Fu et al. combined Fuzzy and Retinex theory to 

enhance the contrast between the vein patterns and their 

surrounding areas in vascular images obtained by NIR 

sensitive cameras. The optimal fuzzy transformation was 

utilized to improve the overall contrast of the image. To 

address the limitation of the optimal fuzzy transformation in 

preserving image details, this method was applied to enhance 

the contrast between the finger vein patterns and the 

surrounding areas [23]. In the study of Gao et al., a filter is 

utilized in the image to increase the high frequency, and the 

histogram equalization method is used to boost contrast [24]. 

Oh and Hwang [25] proposed a novel morphology-based HF 

technique to improve the contrast of the features in medical 

images. This approach involves breaking down an image into 

morphological sub-bands, which are enhanced using a HF. In 

order to optimize the image enhancement, they utilized a 

differential evolution algorithm to determine the most suitable 

gain and structuring element for each sub-band [25]. In their 

study, Yang et al. proposed an image restoration technique that 

utilizes scattering removal to enhance finger vein images. To 

describe the degradation of finger vein images, the authors 

used a biological optical model based on light scattering in 

living tissues. This method enhances the contrast of finger vein 

images and improves the accuracy of finger vein image 

matching [26]. In the studies of Yang and Shi, an approach for 

enhancing the venous region and segmenting FV images using 

a Directional Filter method based on the Gabor Filter is 

proposed. Their approach also includes a matting-based 

segmentation method that can accurately extract the finger 

vein networks while accounting for variations in vein intensity 

and diameter [27]. Shin et al. presented a fuzzy-based fusion 

technique to improve the FV visibility by using the Gabor 

Filter in four directions and the Retinex Filter. A fuzzy-based 

method is used to decide optimal weights for combining the 

two filtered images produced after Gabor and Retinex filtering. 

The input features for the fuzzy rule and membership function 

are derived from local windows, and specifically, the means 

and standard deviations (SD) of the images within those 

windows are used. This method eliminates the need for 

additional training data in image enhancement [28].  

The success rate of the studies in the Biometric Recognition 

Systems field by using the FV shows the effectiveness of 

biometric recognition processes using FV systems. Many 

methods have been employed to extract illustrative features 

from the finger vein databases and utilization of fusion 

techniques. A new feature extraction method, called principal 

component local conservation projections, based on a 

combination of principal component analysis and locality 

preserving projections (PCLPP) techniques, was proposed in 

2022 by Feng et al. The experiments revealed that the accuracy 

of classification using the feature vector extracted by the 

PCLPP technique of finger vein recognition outperforms both 

Principal Component Analysis (PCA) and Locality Preserving 

Projections (LPP). Additionally, PCLPP showed improved 

recognition rates across various categories compared to PCA 

and LPP. Lastly, the results indicated that PCLPP is less 

affected by noise compared to PCA and LPP. The highest 

recognition rate of the PCLPP technique is 92.33% using 600 

classes of finger vein data [29]. Zhang et al. [30] proposed an 

Adaptive Gabor Convolutional Neural Network (AGCNN) 

with receptive field properties to design Gabor convolutional 

layer in 2022. In the study, it is claimed that AGCNN 

possesses both characteristics of the Gabor Filter and those of 

a neural network. The study performed on the 

MMCBNU_6000 dataset revealed that the highest 

classification accuracy using the CNN-RAW model is 91.72%. 

In the study performed by Lu et al. [31] in 2021, a new region 

of interest extraction method was proposed depending on the 

characteristics of the FV image and compared with some 

representative methods. The equal error rates calculation of the 

proposed method on the MMCBNU_6000 dataset is 5.49% by 

using maximum curvature, and 3.33% by using repeated line 

tracking feature extraction method. A curvature algorithm is 

proposed to extract the feature by calculating the eigenvalues 

of the image’s Hessian matrix, Yong in 2020 [32]. In 2019, a 

new method for feature extraction was proposed by Yang et al. 

It is known as polarized depth-weighted binary direction 

coding, and it involves three components: polarized direction 

extraction, extended normalized angular binary coding, and 

self-adaptive depth-dependent weighting [33]. On the other 

hand, Ma and Zhang proposed a new technique involving the 

extraction of interested regions and oriented elements, based 

on finger vein patterns. The study employs a region of interest 

based on rotation rectification to mitigate the effects of 

rotation and translation during the acquisition of finger vein 

images. To extract the direction feature, the texture and stable 

orientation properties of finger vein images are utilized. This 

is accomplished by computing the gradient magnitude and 

orientation of points along the finger vein lines in the fuzzy 

segmentation region. The use of the extracted feature proves 

effective in addressing the challenge of geometric deformation 

[34]. JosephP and Ezhilmaran [35] conducted a study in 2018, 

which examined the effectiveness of affine invariant attributes 

in FV images through the use of fuzzy image retrieval. To 

minimize the computational time of the affine invariant 

features, the database size is reduced through fuzzy-based 

image retrieval. According to the study, the experimental 

results demonstrate improved performance and significantly 

lower error rates compared to conventional feature matching 

algorithms [35]. In 2017, Babu et al. [36] investigated two new 

score-level combinations, holistic and non-linear fusion, and 
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check their effectiveness against more popular score-level 

fusion approaches. In 2016, Sikarwar and Manmohan [37] 

analyzed various techniques of local directional patterns to 

enhance the reliability of finger vein recognition. The local 

directional pattern was utilized to compute the edge response 

in eight directions and to assess each pixel position. The 

accuracy was evaluated using finger vein image samples, 

yielding a success rate of 86.1635%. Matsuda et al. [38] 

proposed a method for FV Authentication based on Feature 

Point Matching. The efficiency of this method evaluated the 

robustness against irregular shading and deformation. Matsuda 

et al. compared the accuracies of the study with some 

conventional methods based on template matching. Khellat-

Kihel et al. [39] proposed an identification system using a 

multimodal-fusion technique by adopting several techniques 

at different levels. This multimodal-fusion technique utilizes 

the fusion of finger vein, finger-knuckle print, and fingerprint. 

The system employs a combination of methods at different 

levels for the multimodal-fusion, including feature-level 

fusion and decision-level fusion. An optimization method is 

introduced to improve the feature level fusion, which involves 

reducing the feature space by applying various methods. In 

2015, Ma et al. [40] proposed a new FV and fingerprint 

authentication system based on multi-route detection. This 

study introduces a new biometric identity authentication 

system that combines fingerprint and finger vein recognition 

using a multi-route approach. The system first designs separate 

classifiers for fingerprint and finger vein images, then fuses 

the feature vectors extracted from the first stage to form a third 

classifier. The last recognition outcome is obtained by 

aggregating the results of the three classifiers at the decision 

level. The conclusion of the research shows that the algorithm 

surpasses the limitations of single-modal biometrics and 

enhances the overall recognition performance. Kaur and 

Mishra emphasized improving the effectiveness of the finger 

vein networks by merging the repeated line tracking, Gabor 

Filter, and segmentation with Neural Networks [41]. Rosdi et 

al. [42] used a feature extraction algorithm called local line 

binary pattern as a new texture descriptor. Unlike the local 

binary pattern that uses a square shape as the neighborhood 

configuration, the local line binary pattern uses a straight line 

configuration. In the study of Yang et al., a novel approach is 

proposed that combines Gabor wavelets and circular Gabor 

filter. This method highlights the finger-vein networks and 

removes non-vascular regions. The process begins with the 

application of Gabor wavelets to improve the vascular regions 

in the image, followed by image restoration by a combination 

rule. Lastly, the extraction of finger veins is accomplished 

using a circular Gabor filter [43]. Yang and Li's study 

addressed the challenges of finger vein localization and feature 

extraction. The physical characteristics of human fingers are 

utilized to locate the Region of Interest (ROI) in the finger vein 

images based on inter-phalangeal joint information and 

eliminate non-informative vein content. Then, the vein images 

are characterized using a series of energy features obtained 

through the application of steerable filters and classified using 

the Nearest Neighbor Classification method [44]. Despite the 

extensive research conducted in the literature, there is still a 

need for further efforts to obtain more discriminative features 

and new fusion techniques should be applied to achieve better 

results. 

In this study, the effect of the HVTP feature, which was 

proposed as a novel feature extraction method in the study of 

Titrek and Baykan [45], on the success rate after using the 

fusion technique with GLRLM, GLCM, and SFTA feature 

extraction is investigated. HF and PMAD are employed to 

address the noise and light scattering issues in our FV image 

databases. Texture features are described using GLRLM, 

GLCM, SFTA, HTP, and VTP methods. The fusion of 

multiple features, as opposed to relying on a single feature, is 

expected to enhance the accuracy of FV recognition systems. 

The study's contribution lies in the fusion of HTP and VTP 

with GLRLM, GLCM, and SFTA features.  

 

 

3. PROPOSED STUDY 

 

In the present study, the success rates of textural features 

such as GLRLM, GLCM, and SFTA, which are extracted from 

FV images enhanced with HF and PMAD, as a result of fusion 

with the HVTP features are concentrated. HVTP is a novel 

feature extraction algorithm proposed by Titrek and Baykan 

[45]. The finger vein recognition system is proposed in Figure 

1. Niblack Segmentation algorithm is applied to the 

preprocessed images to obtain the HVTP features, and then 

morphological operations are performed in the postprocessing 

step to increase the vessel visibility. With the skeletonization 

algorithm, the vessel structure in the image is revealed and the 

HVTP features are obtained. 

The most important step after extracting the features is the 

selection of the classifier. A proper classifier should be 

selected to obtain a successful result from the system. The 

classification is applied with Ensemble, K-Nearest Neighbors 

(KNN), Support Vector Machine (SVM), Decision Trees, and 

Discriminant Analysis methods, and the results of Ensemble 

and KNN classifier had the highest success rate, are given.

 

 
 

Figure 1. Flowchart of FV identification algorithm 
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One of the reasons for the low quality of the images 

obtained in biometric studies is the light scattering that occurs 

in the images obtained from the tissue. HF and PMAD are 

applied to the image to get rid of light scattering and noise. 

The preprocessing result obtained is shown in Figure 2. After 

the preprocessing step, the features are obtained from the 

image by using the GLRLM, GLCM, and SFTA feature 

extraction algorithms and moved to the classification step.  

 

 
(a) 

 
(b) 

 

Figure 2. Result of preprocessing before GLRLM, GLCM, 

and SFTA is applied. (a) Input image (b) Preprocessing result 

 

In this study, the HVTP features are made extractable by 

applying the Niblack Segmentation algorithm to the image 

obtained after the preprocessing step, so the vascular region 

and the non-vascular tissue are separated. The image is 

enhanced using morphological operators, and then the 

skeletonization technique is used. The skeleton of the vascular 

area is created, shown in Figure 3. HVTP features are obtained 

from this skeletonize image. After the HVTP features are 

extracted from the resulting image, these features make a 

fusion with the GLRLM, GLCM, and SFTA features are done, 

and then proceed to the classification step. The extracted 

feature set is classified by Ensemble, KNN, SVM, Decision 

Trees, and Discriminant Analysis classification methods, and 

success rates are obtained. Finally, the most distinctive 

attributes of the GLRLM + HVTP, GLCM + HVTP, and 

SFTA + HVTP feature sets are chosen by the Relieff algorithm 

[46]. 

 

 
(a) 

 
(b) 

 
(c) 

 

Figure 3. Result of postprocessing before HVTP is applied. 

(a) Preprocessing result, (b) Result of Niblack segmentation, 

(c) Morphological process result 

 

 

4. MATERIALS AND METHODS 

 

4.1 Finger vein image databases 

 

Experiments are carried out on two different available 

databases for this study. First of them is the database used in 

[47] which will be referred to as Database_1 in this study. And 

the second one is the MMCBNU_6000 finger vein database 

which will be referred to as Database_2 [48].  

Yang and Zhang [47] from Tianjin Key Lab for Advanced 

Signal Processing were asked to submit a sample of the FV 

image databases they used in their study. The samples’ 

resolutions in the finger vein database, which consists of 15 

index finger data of 64 individuals, are generally 170x80 

pixels and stored in JPG format. Database_1 consists of 960 

images total and FV images in this database were captured 

using a NIR sensitive CCD camera over a 760 nm wavelength 

NIR light source [44]. Figure 4 shows some FV images from 

Database_1. 

 

 
 

Figure 4. Original images in Database_1 for separate classes 

 

Database_2, also known as MMCBNU_6000, is a finger 

vein image database that contains images from 100 people. 

The images were collected by the Division of Electronic and 

Information Engineering at Chonbuk National University. 

Each person was requested to provide images of the index 

finger, middle finger, and ring finger from both the left and 

right hands. Thus, obtained 60 FV images by taking ten 

pictures from each of the six fingers of every volunteer. Hence, 

a total of 6000 FV images were obtained from 100 volunteers. 

The samples' resolutions in the finger vein database are 

480x640. The extracted ROI images were normalized to 

60x128 pixels and stored in BMP format [48]. The images 

taken from six separate fingers of both hands were accepted as 

different classes and increased the number of classes from 100 

to 600. Figure 5 shows some FV images taken from six 

different fingers of a volunteer. 

 

 
 

Figure 5. Original ROI images in different classes of each 

finger of a volunteer in Database_2 

 

4.2 Homomorphic filter 

 

The visibility of FV is significantly challenged by image 

distortion resulting from light scattering in the tissue. To 

address this issue, HF is applied to enhance the vein region 

visibility by removing the light scattering present in the image. 

HF works by eliminating local imbalances in the image 

exposure. The distribution of light in an image is determined 

by multiplying the reflectance of objects with the illumination 

of the scene, and this theory forms the basis of the HF. 

 

𝐼𝑚𝑔 (𝑖, 𝑗) = 𝐿𝑖𝑔ℎ𝑡𝑆𝑜𝑢𝑟𝑐𝑒(𝑖, 𝑗) ∙ 𝑅𝑒𝑓𝑂𝑏𝑗𝑒𝑐𝑡(𝑖, 𝑗) (1)  

 

Img(i,j) is the resulting image while LightSource(i,j) is the 

intensity of the illuminating Light source. RefObject(i,j) is the 

reflectance of the object scaled between 0 and 1. It is assumed 
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that the illumination in the image possesses low pass 

characteristics [49]. That's why a high pass filter is needed 

after taking a Fourier Transform of the image. This process is 

followed by the inverse Fourier transform and the 

contributions of the light source are effectively separated from 

the image based on the quality of the filter choice. The 

application of the HF to the finger vein image eliminates light 

scattering from the image. Figure 6 shows a sample result of a 

HF. 

 

 
 

Figure 6. Result of HF 

 

4.3 Perona-Malik anisotropic diffusion 

 

To achieve more successful segmentation of the veinous 

area in the image, which is free from light scattering, it is 

necessary to remove the noise in the image. This can be 

accomplished by applying a smoothing process to the image. 

The process of smoothing an image can be explained as the 

outcome of a diffusion process that does not compromise the 

important data content, which is based on Fick's law [50]. 

PMAD is a space-variant smoothing filter that employs non-

linear anisotropic diffusion based on the content of the data. It 

is designed to reduce high frequency components while 

preserving important parts of the data. The filter achieves this 

by adjusting the diffusivity signal according to the content of 

the data. The diffusivity will change according to the selected 

diffusion coefficient (DC) between 0 and 1. When the DC is 

set to 1, the output obtained from PMAD will be the same as 

the Linear Diffusion filter [51]. However, as the process nears 

the significant parts of the data, the DC approaches to zero. 

The DC is calculated in Eq. (2) by utilizing the magnitude of 

the first derivative. 

 

2( )DC g u
x


=


 (2)  

 

Through the use of Eq. (2), the PMAD equation [52] is 

obtained in Eq. (3) where u is the input data. 

 

( )
u

DC
t x

 
=

 
 (3)  

 

The result is obtained in Eq. (4) where the λ is a contrast 

parameter that distinguishes between areas of forward 

diffusion and those of backward diffusion. 

 

2

2

1
( )

( )
(1 ( ))

g u
x

u
x




=



+

 

(4)  

 

Figure 2 depicts the resultant image obtained through the 

application of the PMAD to the output image of the HF. 

 

4.4 Niblack segmentation 

 

The FV images often exhibit light scattering and contrast 

issues, therefore, the use of a multi thresholding method is 

required. One of the locally adaptive multi thresholding 

algorithms is Niblack's Segmentation [53]. Threshold values 

are calculated at each pixel depending on the local mean and 

local SD of the neighboring pixels' intensity values by using 

Eq. (5). 

 

 𝑇(𝑖, 𝑗) = 𝑚(𝑖, 𝑗) + 𝑘 ∙ 𝜎(𝑖, 𝑗) (5)  

 

The algorithm uses a fixed-size window to calculate the 

mean of the sum of pixels (m) and the SD (σ) of the window. 

A constant value k is chosen by the user to adjust the threshold 

value. If the k is chosen as 0 then the threshold value is 

determined only by the local mean. The window dimension 

should be chosen to balance between preserving image details 

and reducing noise. An output image of Niblack’s 

Segmentation is shown in Figure 3. 

 

4.5 Feature extraction methods 

 

Textural features are a crucial component to characterize the 

spatial relationship between each pixel and its neighboring 

pixels. This technique characterizes images to determine 

changes in functional characteristics. In the present study, the 

feature sets were generated by using the gray level run length 

matrices, the gray level co-occurrence matrices, the 

segmentation-based fractal texture analysis, and the 

Horizontal and Vertical Total Proportion. 

 

4.5.1 Gray level run length matrices method 

GLRLM is a method of trying to obtain information about 

the texture feature of an image. This method is based on 

counting the number of pairs of gray level values and the 

length of runs in the ROI area with their directions. A gray 

level run can be expressed as a set of pixels with the same gray 

value distributed as successively and collinearly in the ROI 

along with some defined directions to the system. Thus, it is 

tried to obtain information about the texture feature of an 

image. The length of the gray level run refers to the number of 

pixels counted within a specific ROI [54, 55]. This value is 

also associated with each run, providing further information 

about the properties of the image. For a given image, gray level 

run length matrice P(i, j | θ) gives the number of occurrences 

for the pixel gray level ‘i’ in the direction ‘θ’ repeated 

consecutively for ‘j’ times. GLRLM is computed for each 

image in four directions, θ=0º, 45º, 90º, 135º. From each of 

the matrices, we have considered 11 statistical features derived 

in the study of Belur et al. [56-58]. Therefore, 4x11 feature 

vectors are created in total for every direction. 

Five run length statistical features are derived by Galloway 

[58] using GLRLM P(i, j | θ) as follows. The equations use 

abbreviations for the terms Run Emphasis (RE), Gray Level 

(GL), and Gray Level Emphasis (GLE). 

 
1

2
0 1

1 ( ,  |  ) 
  = 

GL RLN N

i jr

P i j
Short RE

n j

−

= =

    (6)  

 
1

2

0 1

1
  = ( ,  |  )

GL RLN N

i jr

Long RE P i j j
n


−

= =

    (7)  
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2
1

0 1

1
  = ( ,  |  )

GL RLN N

i jr

GL Nonuniformity P i j
n


−

= =

 
  
 

   (8)  

 
2

1

1 0

1
   = ( ,  |  )

GLRL NN

j ir

Run Length Nonuniformity P i j
n


−

= =

 
  
 

   (9)  

 

  = r

p

n
Run Percentage

n
 (10)  

 

where, 𝑁𝐺𝐿 is the number of gray levels, 𝑁𝑅𝐿 is the maximum 

run length, 𝑛𝑟 is the total number of runs, and 𝑛𝑝 is the total 

number of pixels in the image. The two more features of run 

length statistics based on the idea to highlight further the effect 

of gray level information derived by Chu et al. [57] are as 

follows. 

 
1

2
0 1

1 ( ,  |  ) 
   = 

GL RLN N

i jr

P i j
Low GL RE

n i

−

= =

    (11)  

 
1

2

0 1

1
   = ( ,  |  )

GL RLN N

i jr

High GL RE P i j i
n


−

= =

    (12)  

 

Four more run length statistical features based on increasing 

the effect of gray level and run length information on the 

features are derived by Dasarathy and Holder [56] and 

presented as follows. 

 
1

2 2
0 1

1 ( ,  |  ) 
    = 

GL RLN N

i jr

P i j
Short Run Low GLE

n i j

−

= =

 
 

   (13)  

 
1 2

2
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1 ( ,  |  )  
    = 

GL RLN N

i jr
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Short Run High GLE
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−
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    (14)  

 
1 2

2
0 1

1 ( ,  |  )  
    = 

GL RLN N

i jr

P i j j
Long Run Low GLE
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−
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    (15)  

 
1

2 2

0 1

1
    = ( ,  |  )

GL RLN N

i jr

Long Run High GLE P i j i j
n


−
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     (16)  

 

4.5.2 Gray level co-occurrence matrices method 

Statistical features extracted from the relationship between 

the intensity values of the pixels are one of the methods used 

in recognizing and distinguishing objects. The features 

extracted by Haralick and Shanmugam [59] are applied to FV 

recognition systems, and their distinctiveness is examined in 

this study. These features make quadratic statistical inferences 

about the properties of the image by calculating the spatial 

relationship of the pixels. In general, the relationship between 

the structure of an image and the objects is assumed to be 

hidden in the spatial relationship of the gray tones in the image 

to each other. This texture-context information, expressed as 

P(i, j | d, θ) in our grayscale image, is assumed to be 

determined as the distance d at an angle θ for the i and j, which 

are two neighboring resolution pixel values. Matrice obtained 

from the grayscale image gives a function of the distance and 

angular relationship between neighbor resolution cells.  

In the present study, 20 GLCM features based on the 

second-order statistical probability derived in the studies [59-

62] are used. Let P(i, j) be the (i, j)th entry in a normalized 

gray level spatial dependence matrices and 𝑁𝑔 be the number 

of distinct gray levels in the quantized image. The equations 

use abbreviations for the terms Inverse Difference (ID), 

Information Measures of Correlation (IMC), and Maximal 

Correlation Coefficient (MCC). 

Suppose that, 

  

𝑃𝑥+𝑦(𝑘) = ∑ ∑ P(i, j), | 𝑖 + 𝑗 = 𝑘 {𝑘 = 2,3, … ,2𝑁𝑔}
𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1
,  

𝑃𝑥−𝑦(𝑘) = ∑ ∑ P(i, j), ||𝑖 ⎼ 𝑗| = 𝑘 {𝑘 = 0,1, … , 𝑁𝑔 ⎼ 1}

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

, 

𝑃𝑥(𝑖) = ∑ P(i, j)
𝑁𝑔

𝑗=1
 and 𝑃𝑦(𝑗) = ∑ P(i, j)

𝑁𝑔

𝑖=1
. 
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where, 𝜇𝑥, 𝜇𝑦 , 𝜎𝑥, and 𝜎𝑦 are the means and SD of 𝑃𝑥 and 𝑃𝑦. 
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4.5.3 Segmentation-based fractal texture analysis method 

To implement the SFTA algorithm, a gray level image and 

the number of threshold levels to be used are required. There 

are two main steps in the implementation of the SFTA 

algorithm. In the first step, the multi-threshold levels are 

determined by applying the OTSU multilevel thresholding 

algorithm to the gray level image with the total number of 

threshold levels. The found n thresholds are stored in the 

vector 𝑇 = 𝑡1, 𝑡2, 𝑡3, … , 𝑡𝑛. These thresholds are added in pairs 

to the vector 𝑇𝐴 = (𝑀𝑖𝑛𝐺𝑟𝑎𝑦𝑉𝑎𝑙𝑢𝑒 , 𝑡1), (𝑡1, 𝑡2) … (𝑡𝑛−1, 𝑡𝑛). After 

𝑇𝐴 is completed, in vector 𝑇𝐵 , all the threshold levels are stored 

as 𝑇𝐵 = (𝑡1, 𝑀𝑎𝑥𝐺𝑟𝑎𝑦𝑉𝑎𝑙), (𝑡2, 𝑀𝑎𝑥𝐺𝑟𝑎𝑦𝑉𝑎𝑙), … , (𝑡𝑛, 𝑀𝑎𝑥𝐺𝑟𝑎𝑦𝑉𝑎𝑙). 

These threshold pairs are applied separately to the gray image 

using the Two Threshold Binary Decomposition method, and 

the gray level image is converted into binary images. 
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 (37)  

 

Thus, our input image is converted into many different sub-

binary images. 𝐼𝑏: 𝑏𝑖𝑛𝑎𝑟𝑦 𝑖𝑚𝑎𝑔𝑒,  𝐼𝑔: 𝑔𝑟𝑎𝑦 𝑖𝑚𝑎𝑔𝑒,  𝑡𝑙𝑜𝑤𝑒𝑟  

and 𝑡𝑢𝑝𝑝𝑒𝑟 values represent threshold pairs. In the second step, 

the features are extracted by using these binary images. 
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𝑁8[(𝑥, 𝑦)] represents the eight pixels connected to (𝑥, 𝑦), 

and ∆(𝑥, 𝑦) represents the binary image boundary. Edge pixels 

in each of the resulting images are obtained, and the number 

of pixels is counted. By using the edge pixel coordinates, the 

average gray level values in the gray level images are 

calculated. The Fractal dimension information is obtained by 

using the box-counting method for each binary sub-image, and 

the feature vector is created [63]. 

 

4.5.4 Horizontal and vertical total proportion features 

HTP and VTP are two methods that gather statistical 

information from FV images by using the intersection 

coordinates of the horizontal and vertical axes. The underlying 

principle of these methods is to calculate the proportion of 

distances between veins intersecting a horizontal or vertical 

plane in order to distinguish between different classes [45]. 

These features are extracted from the skeletonized FV images. 

Assuming (𝐴𝑥 , 𝐴𝑦) is the center of gravity of the FV image: 

The coordinates of the FV points, intersecting the horizontal 

and vertical lines, are determined as in Figure 7. In the 

horizontal plane, the intersection points are denoted as 𝑋1, 𝑋2, 
and 𝑋3, with the maximum subscript number indicating the 

number of intersections (# of INTs) [45]. 

 

 
 

Figure 7. Definition of HTP and VTP features 

 

HTP value is obtained by applying the formula in Eq. (39). 

 

1 2

2 3

( ...)*(#   )
X X

HTP of INTs
X X

= + +  (39)  

 

The points where the veins intersect in the vertical plane are 

represented by 𝑌1,  𝑌2,  𝑌3,  𝑌4, and 𝑌5. The maximum subscript 

number indicates the total number of intersections in the 

vertical plane. 

VTP value is obtained by applying the formula in Eq. (40). 

 

1 2

2 3

( ...)*(#   )
Y Y

VTP of INTs
Y Y

= + +  (40)  
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The features we obtained from the combination of the HTP 

and the VTP are called Horizontal and Vertical Total 

Proportion.  

 

 

5. EXPERIMENTAL RESULTS 

 

In this study, two finger vein databases were utilized. The 

first database, Database_1, consists of 15 index finger images 

from 64 individuals, yielding a total of 960 FV images that 

were obtained through the use of a NIR sensitive CCD camera 

and NIR light source [44]. The second database, Database_2, 

was constructed by creating six classes based on the utilization 

of six different fingers from each individual. Each class 

comprises 10 images, resulting in a total of 60 images captured 

from a single individual. With data from 100 individuals used, 

the database encompasses 600 classes and a cumulative total 

of 6000 FV images [48].  

The classification was applied with Ensemble, KNN, SVM, 

Decision Trees, and Discriminant Analysis methods, and the 

results of Ensemble and KNN classifiers, which had the 

highest success rate, were given. The Ensemble classifier 

employed RUSBoost, AdaBoost, Bagged Tree (BT), and 

Subspace Discriminant (SD) methods, and SD achieved the 

highest success rate. The discriminant was determined as the 

learner type. The number of learners was set to 30. Subspace 

dimension changes according to the total number of features 

used. KNN classification was performed by selecting the 

values of 1, 2, 3, ..., and 10 individually for the number of 

neighbors (k), and the highest success rate was obtained in the 

case of k=1, which was called Fine KNN (f-KNN). Euclidean 

distance was used as the distance metric. In the SVM classifier, 

the classification process was performed by choosing Linear, 

Quadratic, Cubic, and Gaussian separately as Kernel functions. 

In the Decision Tree classification algorithm, the maximum 

number of the split was selected separately as 4, 20, and 100, 

but successful results could not be obtained. Linear and 

quadratic discriminant were used in the Discriminant Analysis 

method, and diagonal covariance was chosen for the 

regularization process. In addition, the reliability of the 

obtained success rates was increased by using the cross 

validation technique. The n-fold cross validation technique 

was used for n=3 and n=5. 

 

5.1 Experimental results of feature extraction methods 

 

GLRLM, GLCM, and SFTA features were extracted using 

the images, preprocessed by HF and PMAD methods, as 

shown in the flow diagram in Figure 1. In the GLRLM method, 

a total of 44 features were extracted using 11 features 

examined in four directions. 20 features extracted from the 

GLCM method were analyzed separately in two and four 

directions. As a result of examining in two directions, 40 

features were extracted, and 80 features were obtained by 

examining in four directions. 39 features were obtained 

through the SFTA feature extraction method. The extracted 

features were sent to the classifier and classified using the n-

fold cross validation technique, and success rates were 

obtained. According to Table 1, for Database_1, in the study 

using the GLRLM feature extraction algorithm, the highest 

success rate was achieved as 99.5% in both Ensemble and 

KNN classifiers with the 5-fold cross validation technique. 

The results achieved with Database_2 were also presented in 

Table 1. The study, which employed the GLRLM feature 

extraction algorithm, achieved the highest success rate through 

the use of the Ensemble classifier for Database_2. This was 

accomplished through the implementation of a 5-fold cross 

validation technique, yielding a success rate of 91.8%.  

 

Table 1. GLRLM results for databases (%) 

 
n-Fold  Classifiers  Database_1  Database_2 

3 
 Ensemble (SD)  99.2  91.3 

 KNN (f-KNN)  99.4  82.9 

5 
 Ensemble (SD)  99.5  91.8 

 KNN (f-KNN)  99.5  84.9 

 

The results of the classification study conducted on 

Database 1 and Database 2 using the GLCM and cross-

validation techniques with 3-fold and 5-fold are presented in 

Table 2. The feature vector was extracted by applying the 

GLCM feature extraction method in two and four directions. 

The study, utilizing the GLCM algorithm, achieved the highest 

accuracy with the Ensemble classifier on Database_1. This 

was accomplished through the implementation of a 5-fold 

cross validation technique in two directions, yielding a success 

rate of 99.3%. The highest success rate for Database_2 was 

attained through the use of the GLCM feature extraction 

algorithm in four directions and the Ensemble classifier. The 

application of a 5-fold cross validation technique on 

Database_2 resulted in a success rate of 91.1%. 

 

Table 2. GLCM results for databases (%) 

 
GLCM in two directions 

n-Fold  Classifiers  Database_1  Database_2 

3 
 Ensemble (SD)  99.2  83.2 

 KNN (f-KNN)  97.8  58.1 

5 
 Ensemble (SD)  99.3  84.1 

 KNN (f-KNN)  98.0  60.4 

GLCM in four directions 

3 
 Ensemble (SD)  99.1  91.0 

 KNN (f-KNN)  97.5  63.9 

5 
 Ensemble (SD)  99.2  91.1 

 KNN (f-KNN)  97.5  65.6 

 

The results of the study on both databases using the SFTA 

with 3-fold and 5-fold cross validation techniques are 

presented in Table 3. The study on Database_1 using the SFTA 

feature extraction algorithm resulted in the highest success rate 

of 99.0% achieved by the Ensemble classifier through the use 

of the 5-fold cross validation technique. According to the 

results, for Database_2, the highest success rate was obtained 

for the 5-fold cross validation technique and achieved 84.8% 

in the Ensemble classifier. 

 

Table 3. SFTA results for databases (%) 

 
n-Fold  Classifiers  Database_1  Database_2 

3 
 Ensemble (SD)  98.9  83.7 

 KNN (f-KNN)  98.4  77.0 

5 
 Ensemble (SD)  99.0  84.8 

 KNN (f-KNN)  98.8  79.1 
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5.2 Experimental results of the fusion of HVTP with 

GLRLM, GLCM, and SFTA 

 

To obtain the HVTP features, the Niblack segmentation 

algorithm was applied to the preprocessed images first, and 

then the image was enhanced using morphological operators. 

HTP and VTP features were calculated from the skeletonized 

image, and the HVTP features were obtained. The new feature 

set was obtained after the fusion of the HVTP with the 

GLRLM, GLCM, and SFTA features. The n-fold cross 

validation technique was applied, and success rates were 

obtained. The best scores are marked as bold in the tables.  

Success rates were calculated by sending the feature set 

extracted from the GLRLM algorithm and the feature set 

obtained as a result of the fusion of the HVTP and GLRLM 

algorithms separately to different classifiers. The results of the 

classification study on Database_1 and Database_2 using 3-

fold and 5-fold cross validation techniques are shown in Table 

4. In the algorithm using the fusion of the HVTP and GLRLM 

feature extraction methods, the Ensemble classifier results 

improved to 99.7% for both 3-fold and 5-fold cross validation 

techniques in Database_1. The results indicate that the success 

rate of 99.2% obtained through the joint use of Fourier 

descriptors and the HVTP attribute in the study [45] has been 

increased to 99.7% for the same database. In the algorithm 

using the fusion of the HVTP and GLRLM feature extraction 

method, the Ensemble classifier results increased from 91.8% 

to 93.3% for the 5-fold cross validation techniques in 

Database_2, and the highest success rate was achieved. Table 

4 shows that the HVTP feature extraction algorithm makes a 

positive contribution to the success rate of the Ensemble 

classifier. In both databases, the success rate in the Ensemble 

classifier was increased while using HVTP with the GLRLM 

feature extraction algorithm but did not show the same effect 

in the KNN classifier.  

The results were computed by sending the feature set 

extracted from the GLCM algorithm and the feature set 

obtained as a result of the fusion of the HVTP and GLCM 

algorithms separately to different classifiers. The feature 

vector was extracted by examining the GLCM feature 

extraction algorithm in two and four directions for both 

databases. The results of the classification study on 

Database_1 and Database_2 by using 3-fold and 5-fold cross 

validation techniques are shown in Table 5. In the case of the 

fusion of the HVTP and two directional GLCM feature 

extraction algorithms, the highest success rate for Database_1 

led to a rise from 99.2% to 99.5% in the Ensemble classifier 

with the 3-fold cross-validation. Additionally, with the fusion 

of the HVTP and four directional GLCM feature extraction 

algorithms, the success rate for Database_2 was increased 

from 91.1% to 91.8% in the Ensemble classifier by using the 

5-fold cross-validation technique. The results in Table 5 

demonstrate the positive effect of the HVTP feature extraction 

algorithm on the success rates across all attempts in both 

Ensemble and KNN classifiers for both databases. 

The results of the study on Database_1 and Database_2 

using HVTP and SFTA with 3-fold and 5-fold cross validation 

techniques are shown in Table 6. In the algorithm using the 

fusion of the HVTP and SFTA feature extraction methods, the 

Ensemble classifier results improved from 99.0% to 99.2% for 

the 5-fold cross validation technique in Database_1. 

According to the results for Database_2, the success rate was 

improved from 84.8% to 86.0% for the 5-fold cross validation 

techniques by using the Ensemble classifier. It is seen in Table 

6 that the HVTP feature extraction algorithm makes positive 

contributions to the success rates for all tries in Ensemble and 

KNN classifiers. 

 

Table 4. Fusion results of HVTP and GLRLM for databases 

 
Database_1 

n-Fold 
 

Classifiers 
 Success (%)  

  GLRLM  HVTP + GLRLM 

3 
 Ensemble (SD)  99.2  99.7 

 KNN (f-KNN)  99.4  99.2 

5 
 Ensemble (SD)  99.5  99.7 

 KNN (f-KNN)  99.5  99.3 

Database_2 

3 
 Ensemble (SD)  91.3  92.9 

 KNN (f-KNN)  82.9  81.6 

5 
 Ensemble (SD)  91.8  93.3 

 KNN (f-KNN)  84.9  83.8 

 

Table 5. Fusion results of HVTP and GLCM for databases (%) 

 
GLCM in two directions 

n-Fold 
 

Classifiers 
 Database_1  Database_2 

  GLCM  HVTP + GLCM  GLCM  HVTP + GLCM 

3 
 Ensemble (SD)  99.2  99.5  83.2  84.7 

 KNN (f-KNN)  97.8  98.0  58.1  64.8 

5 
 Ensemble (SD)  99.3  99.4  84.1  84.7 

 KNN (f-KNN)  98.0  97.9  60.4  66.7 

GLCM in four directions 

3 
 Ensemble (SD)  99.1  99.3  91.0  91.1 

 KNN (f-KNN)  97.5  97.8  63.9  67.0 

5 
 Ensemble (SD)  99.2  99.4  91.1  91.8 

 KNN (f-KNN)  97.5  97.7  65.6  68.9 
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Table 6. Fusion results of HVTP and SFTA for databases 

 
Database_1 

n-Fold 
 

Classifiers 
 Success (%) 

  SFTA  HVTP + SFTA 

3 
 Ensemble (SD)  98.9  99.1 

 KNN (f-KNN)  98.4  98.4 

5 
 Ensemble (SD)  99.0  99.2 

 KNN (f-KNN)  98.8  98.4 

Database_2 

3 
 Ensemble (SD)  83.7  84.9 

 KNN (f-KNN)  77.0  80.0 

5 
 Ensemble (SD)  84.8  86.0 

 KNN (f-KNN)  79.1  81.6 

 

Table 7. Fusion results of HVTP and others for databases (%) 

 

Methods 
 Classifiers for Database_1  Classifiers for Database_2 

 Ensemble (SD)  KNN (f-KNN)  Ensemble (SD)  KNN (f-KNN) 

GLCM + GLRLM  99.4  98.9  96.0  83.2 

GLCM + GLRLM + HVTP  99.6  99.0  96.1  84.0 

GLCM + SFTA  99.3  98.8  95.3  89.1 

GLCM + SFTA + HVTP  99.4  98.8  95.4  89.4 

GLRLM + SFTA  99.5  99.0  97.1  93.0 

GLRLM + SFTA + HVTP  99.6  99.2  97.2  93.1 

GLCM + GLRLM + SFTA  99.4  99.1  97.5  91.8 

GLCM + GLRLM + SFTA + HVTP  99.5  99.0  97.6  92.2 

 

As a result of the fusion of the feature extraction algorithms 

in pairs, triplets, and quarts in Table 7, the effect of the HVTP 

feature extraction algorithm continued to be examined. When 

the HVTP was used as the fusion with the GLRLM, GLCM in 

four directions, and SFTA feature extraction algorithms, the 

success rates for both databases were increased in the 

Ensemble and KNN classifiers. As illustrated in Table 7 about 

Database_1, the feature vector obtained by the fusion of 

GLCM, GLRLM, and HVTP was classified using the 

Ensemble classifier and 5-fold cross-validation technique, and 

a success of 99.6% was obtained. Similarly, the same success 

rate was obtained for the same database by the fusion of 

GLRLM, SFTA, and HVTP under equivalent conditions. The 

highest success rate for Database_2 was obtained from the 

Ensemble classifier with 97.6%, when the 5-fold cross 

validation technique was used as a result of the fusion of 

GLCM, GLRLM, SFTA, and HVTP feature extraction 

algorithms. This is the best result obtained for Database_2 in 

this study. According to the results in Table 7, The HVTP 

feature extraction algorithm increased the success rate when 

the Ensemble classifier was used for both databases, while it 

increased the success rates for some feature extraction 

methods in the KNN classifier. 
 

5.3 Experimental results of the feature selection method 
 

Selection of the most distinctive and relevant features from 

a feature vector is important to learn the effect of features on 

the classification step and to achieve high performance and 

efficient computation. The process of reducing the number of 

features to retain the most informative ones is known as feature 

reduction. One of the well-known algorithms for feature 

reduction is the Relief Algorithm. This algorithm aims to 

select features that have a significant impact on class 

prediction. Using the Relief algorithm, it has been observed 

that the HTP or VTP features have a high distinctiveness 

among other features. And the success rates were examined by 

reducing the feature. The top 10 most distinctive features were 

extracted for each of the GLRLM+HVTP, GLCM+HVTP, and 

SFTA+HVTP feature groups using the Relieff algorithm, and 

classification was performed using the 5-fold cross validation 

technique. 10 attributes extracted from each feature group, 

using the Relieff algorithm, were combined with the fusion 

technique, and a feature set with 30 elements was obtained. 

The best success rates obtained as a result of the Ensemble 

classifier for the 5-fold cross validation technique are shown 

in Table 8. When the first 10 distinguishing features were used, 

the success rates for Database_1 ranged from 95.7% to 98.9%, 

while these features did not have sufficient distinctiveness for 

Database_2. The best success rate in the classification process 

using the top 30 most distinctive features was 99.3% for 

Database_1 and 91.0% for Database_2 with the Ensemble 

classifier. Other results are detailed in Table 8.  

 

Table 8. Classification results by using top 10 / 30 most distinctive features for databases (%) 

 

Methods with the first 10 features selected  Classifiers  Database_1  Database_2 

HVTP + GLRLM  Ensemble (BT)  98.9  69.3 

HVTP + GLCM  Ensemble (BT)  95.7  58.4 

HVTP + SFTA  Ensemble (BT)  97.1  66.1 

Methods with the first 30 features selected     

HVTP + GLRLM + GLCM + SFTA  Ensemble (SD)  99.3  91.0 
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5.4 Comparison with other studies 

The results obtained from the use of Database_1, as 

displayed in Table 4, indicate that the highest success rate of 

99.7% was achieved by the Ensemble classifier for the 3-fold 

and 5-fold cross validation technique using the fusion of the 

HVTP and GLRLM feature extraction algorithms. This result 

surpasses the success rate of 99.2% obtained through the 

classification of the General Fourier Descriptor and HVTP 

features, as described in study [45] using the KNN classifier.  

The results of the conventional studies in the literature 

related to Database_2 are shown in Table 9. The success rate 

achieved in the present study surpasses those from other 

relevant studies in the literature for Database_2. 

 Table 9. Conventional model results for Database_2 (%) 

Model Success (%) 

CNN-ROI [30] 91.51 

CNN-RAW [30] 91.72 

AGCNN-ROI [30] 91.06 

AGCNN-RAW [30] 86.38 

Maximum Curvature [31] EER: 5.49 

Repeated Line Tracking [31] EER: 3.33 

Reduced Field of View [64] 97.10 

Our study (HVTP, GLRLM, GLCM, SFTA) 97.60 

6. CONCLUSION

The research conducted in this study on finger vein 

recognition processes can be divided into two categories. The 

first category focuses on enhancing the quality of finger vein 

images to be used, while the second category focuses on 

improving the success rate through the creation of novel 

feature vectors or the implementation of fusion techniques. In 

this study, the first category involved the use of a HF and 

PMAD to enhance the finger vein images in the databases. The 

main focus of this study was on the second category, which 

aimed to evaluate the impact of the HVTP feature extraction 

method on the success rate when used in fusion with GLRLM, 

GLCM, and SFTA features. The resulting feature vectors were 

classified in Ensemble and KNN classifiers, where the best 

success was obtained. Results from the study on Database_1 

showed that the highest success rate of 99.7% was achieved 

through the fusion of HVTP with GLRLM features. On the 

other hand, the highest success rate of 97.6% was recorded in 

the study on Database_2, which was obtained through the 

fusion of HVTP with GLCM, GLRLM, and SFTA features. 

Experimental results demonstrated that HVTP features 

significantly improve the classification success in the case of 

using the fusion technique with GLRLM, GLCM, and SFTA. 
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