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Skin cancer has become one of the most common diseases due to the depletion of the ozone 

layer and the decrease in its protection. Detection and classification of skin cancer in the 

early stages of its development allows patients to receive appropriate treatment quickly. In 

this article, a modified CNN framework based on transfer learning is proposed for the 

classification of skin lesions from skin dermoscopy images. In the proposed framework, pre-

trained CNN architectures are used. VGG16, ResNet50, DeneNet121, MobileNet, and 

Xception models were pre-trained using ImageNet images and training weights. In the study 

training and tests were performed on the HAM10000 skin lesions data set. The classification 

accuracy of the modified DenseNet121, VGGNet16, ResNet50, MobileNet, and Xception 

models were calculated as 94.29%, 93.28%, 87.10%, 83.10%, and 80.05% respectively. It 

was observed that the accuracy success of the proposed transfer learning framework in skin 

lesion type classification surpasses classical deep learning architectures. 
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1. INTRODUCTION

According to the studies conducted by the World Health 

Organization (WHO), the amount of ultraviolet radiation 

exposure by living things has increased due to the thinning of 

the ozone layer. As a result, there has been an increase in skin 

cancer cases [1]. Malignancy and melanoma lesions are the 

most common forms of skin cancer [2, 3]. These two types of 

lesions account for the majority of skin cancer deaths 

worldwide [4, 5]. Skin cancers detected at an early stage by 

clinical experts can be treated with surgery, radiology, and 

immunotherapy methods. And in the case of detection at an 

early stage, the survival rate of the patients is over 95%. This 

rate is below 15% in cases detected in advanced stages [6]. 

Early detection of skin cancer appears to increase the chances 

of survival [7, 8]. A non-invasive dermoscopy imaging 

method is used to improve melanoma diagnostic accuracy [9]. 

It has been shown that the lesion detection accuracy of experts 

is approximately 75% by the dermoscopy imaging method 

[10]. Manual interpretation of dermoscopy images is time-

consuming and detection success depends on dermatologist 

experience and clinical education level [11]. Due to the stated 

problems, there is a need for computer-aided applications that 

can classify skin lesions with high accuracy and much faster 

[12-14]. In the last five years, researchers have been working 

on the computer-assisted diagnosis of skin cancers, especially 

using image processing, machine learning (ML), and deep 

learning (DL) techniques [15, 16]. The skin lesions studies 

have accelerated since opening large medical databases (ISIC 

2019 and HAM10000 etc.) to researchers through 

competitions. Recent research reports show that computer-

aided systems have a higher lesion type classification success 

than dermatologists, and reveal the importance of studies on 

this subject [17-19]. 

1.1 Related works 

Although the use of basic machine learning algorithms was 

common in the first studies on the classification of skin lesions, 

researchers have turned to deep learning-based architectures in 

recent years. Studies in this field can be examined under two 

headings according to the data set used. While most of the 

researchers used widely accepted standard large-scale data sets 

(DERMOFIT, PH2, ISIC, HAM10000, etc.), a minority of 

researchers carry out skin lesion detection and classification 

studies on dermoscopy images that are collected individually. 

The use of standard datasets provides the opportunity to 

objectively compare the success of the methods developed by 

the researchers with the studies of other researchers using the 

same dataset. In this section, information is presented about 

the data set used by the researchers, the methods they 

developed, and the results they obtained. 

A total of 5846 clinical images were collected from 3551 

patients by Jinnai et al. [3]. The dataset contains images of six 

different skin lesions. They developed FRCNN method. The 

accuracy of this method was 86.2% for the six-class problem 

and 91.5% for the two-class (benign or malignant) problem. 

The classification performance of FRCNN was compared with 

the opinions of 20 dermatologists. As a result, FRCNN 

classification accuracy has been reported to be higher than that 

of dermatologists [3]. Kawahara et al. [20] was used pre-

trained CNN architecture and achieved 85.8 percent average 

classification accuracy for five lesion groups in the Dermafit 

Image Library. They reported that the proposed method 

reduced the secondary training time and improved the 

accuracy of pre-training [20]. Liao et al. [21] used transfer 

learning method in VGG19 and GoogleNet architectures to 

increase educational success. The layers first weights were 

calculated with the ImageNet dataset. Using the Dermnet 

dataset, he determined the weights of the network again with 
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a secondary training. He tested the architecture he developed 

on the Dermnet dataset on the skin lesions dataset he received 

from the New York State Department of Health. It showed that 

the VGG19 model achieved 73.1% classification accuracy and 

the GoogleNet model reached 91% accuracy [21]. Pacheco et 

al. [22] used the ResNet50, ResNet101, GoogleNet, 

MobileNet, and VGG16/19 models for the classification of six 

different skin lesions. In their studies, they created a new 

dataset via a camera instead of using dermoscopy images. they 

reported that they achieved a classification accuracy of 78.8%, 

75.7%, 77.9%, 76.2%, 74.6%, and 75.0%, respectively, with 

the ResNet50, ResNet101, GoogleNet, MobileNet, VGG16/19 

methods [22]. Hekler et al. [23] explored the potential benefit 

of combining expert knowledge and AI-powered applications 

for skin cancer classification. They analyzed the performance 

of the CNN architecture, which they developed with the 

transfer learning method, first alone and then together with an 

expert dermatologist. The classification accuracy achieved by 

the Expert alone evaluating the skin lesion is 66%. The 

classification accuracy of the CNN architecture alone is 

86.1%. The classification accuracy obtained by the synthesis 

of expert and CNN architectural results were shown to be 89% 

[23]. Esteva et al. [24] used a pre-trained Inception V3 model. 

After training on 129,450 clinical images for 2032 skin 

diseases, they achieved 72% classification accuracy. CNN 

produced performance on par with 21 skin specialists in skin 

lesion classification [24]. Saba et al. [1] developed a three-step 

methodological approach to detect skin cancer using a 

convolutional neural network (DCNN). In the first step, they 

applied HSV color conversion and contrast enhancement to 

the images. In the second step, lesion margin extraction was 

performed. In the last stage, transfer learning was carried out 

using the Inception V3 model. They have tested the proposed 

method tested on PH2, ISBI 2016, and ISBI 2017 datasets. The 

proposed method reached 98.4% accuracy in the PH2 dataset, 

95.1% in the ISBI dataset, and 94.8% in the ISBI 2017 dataset 

[1]. Lopez et al. [25] adopted the transfer learning method 

based on the VGGNet architecture for the detection of skin 

cancer. Tested the success of the model on ISB 2016 skin 

cancer lesion images. They stated that network success 

reached 78.66% sensitivity [25]. Kassani et al. [26] first 

applied pre-processing methods to the image dataset. They 

improved the image quality with light correction, contrast 

enhancement, and decoration methods. They then performed 

the classification of seven types of skin lesions using the 

ResNet50, AlexNet, Xception, VGGNet16, and VGGNet19 

architectures. They stated that ResNet50 was the most 

successful architecture with an accuracy rate of 92.08%. The 

accuracy performance of AlexNet, Xception, VGGNet16 and 

VGGNet19 architectures was reported as 84%, 90%, 89% and 

90%, respectively [26]. Abbas et al. [27] developed a deep 

learning (COE-Deep) architecture to detect melanocytic and 

non-melanocytic (MnM) skin lesions. They used the 

convolutional neural network (CNN) model for feature 

extraction and reported an average network test success of 

90% sensitivity, 93% specificity, 91.5% accuracy, and 

AUC=0.92 in ISIC dataset [27]. Deif et al. [28] proposed four 

different CNN architectures for the classification of skin 

lesions. These are VGG16, VGG19, MobileNet, and 

InceptionV3. They used the HAM10000 dataset for training, 

verification, and testing of the system. They reported that the 

accuracy rates of the VGG16, VGG19, MobileNet, and 

InceptionV3 architectures were 87.42%, 85.02%, 88.22%, and 

89.81%, respectively [28]. Brinker et al. [29] used the 

ResNet50 model for skin lesions classification problems. They 

trained the proposed CNN model with 12,378 dermoscopy 

images. They compared the performance of the CNN 

architecture with the results of 157 dermatologists from 12 

university hospitals in Germany. The mean sensitivity and 

specificity of dermatologists in lesion classification were 

74.1% and 60%, respectively, while the mean sensitivity and 

specificity of CNN were reported as 87.5% and specificity of 

60% [29]. Alqudah et al. [30] used GoogleNet and AlexNet 

architectures to classify skin lesions into three categories 

(benign, melanoma, and seborrheic keratosis). The researchers 

used transfer learning and gradient descent adaptive 

momentum learning rate (ADAM) methods for training. They 

tested the network success using the ISIC database under two 

scenarios: segmented and non-segmented. They reported 

overall accuracy as 92.2% for the segmented dataset and 

89.8% for the non-segmented dataset [30]. Thurnhofer-Hemsi 

and Domínguez [31] a hierarchical deep learning framework 

is adopted for skin cancer detection. DensNet201, GoogleNet, 

Inception-ResNetV2, Inception V3, and MobileNet V2 

architectures were trained with the transfer learning method. 

HAM10000 dataset was used as a dermoscopy image data set. 

In addition, they used data enhancement techniques to increase 

performance. DensNet201, GoogleNet, Inception-ResNetV2, 

Inception V3, and MobileNet V2 methods success rate was 

expressed as 94.5%, 83.9%, 86.05%, 86.62% 88.6% and 

88.34%, respectively. The results demonstrated that the 

DenseNet201 network is the most suitable for this task [31]. 

Le et al. [32] proposed an end-to-end deep learning model 

without preprocessing steps or feature selection. They used a 

modified ResNet50 deep learning model to classify skin lesion 

images in the HAM10000 dataset. They achieved 93% average 

accuracy [32]. Chaturvedi et al. [33] designed a fast-

performance web application integrated with the MobileNet 

model for the classification skin lesions. They achieved 83.1% 

accuracy for HAM10000 data set [33]. MobileNet deep 

learning model developed by Mohamed et al. [34] for skin 

lesion classification reached 92.7% accuracy on the 

HAM10000 dataset [34]. Gupta et al. [35] used EfficientNet 

B1 model for the classification of skin cancer into 7 categories. 

They tested model performance on the HAM10000 dataset. 

They classified skin lesion images with a validation accuracy 

of 94.1%, top3 accuracy of 99.0%, and top5 accuracy of 

99.9%. The weighted average of precision, recall, and f1-score 

of the method was found to be 0.94, 0.94, and 0.94 

respectively [35]. Liu et al. [36] suggested a relation-driven 

semi-supervised framework for skin lesions classification. 

They obtained 92.54% accuracy and 60.68% F1 score with 

their method [36]. Al-Masni et al. [37] used an integrated 

diagnostic framework for the multiple (seven) class skin 

lesions classification. The integrated diagnostic system was 

tested on ISIC 2018 database. The classification performance 

was 88.05%, 89.28%, 87.74%, and 88.70% of by Inception-

v3, ResNet-50, Inception-ResNet-v2, and DenseNet-201 

models, respectively [37]. Sae-Lim et al. [38] proposed the 

modified MobileNet model for skin lesion classification. For 

the evaluation of their model, used the HAM 10000 dataset. 

The comparison results showed that their modified model had 

achieved higher accuracy, specificity, sensitivity, and F1–

score than the traditional MobileNet [38]. Bassi and Gomekar 

[39] proposed deep-learning models for the classification of

skin lesions. They used the HAM10000 dataset for testing.

They reported the best accuracy of 82.8% and an average F-

score of 70% [39]. Sherif et al. [40] used a CNN method for
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the classification of skin lesions. The proposed models are 

trained and evaluated on ISIC 2018 Challenge database. They 

achieved an accuracy of 96.67% for the validation set [40]. 

Nugroho et al. [41] used a convolutional neural network 

(CNN) for the identification of cancer. They tested their model 

on HAM10000 skin cancer dataset. The training and testing 

accuracy of their proposed model was 80% and 78%, 

respectively [41]. Kassem et al. [42] proposed transfer 

learning method to detect skin lesions. They used pre-trained 

GoogleNet model. They reached 94.92% accuracy, 79.8% 

sensitivity, 97% specificity and 80.36% precision on the ISIC 

2019 Challenge database [42]. 

 

1.2 Problem statement and contributions 

 

Classification of multiclass skin lesions by image-based 

methods is a very difficult problem. The main reason for this 

is that different skin lesions show similarity to each other in 

color, the same type of lesions can occur in different forms, 

and the lesion appearance is variable due to differences in the 

skin color of individuals. In addition to these variables, surface 

illumination problems, veins in the skin, hair, acne, etc. The 

presence of tissues also affects the segmentation of the lesion. 

And it can reduce the accuracy of feature extraction [43]. 

Therefore, it is extremely important to perform effective 

preprocessing steps on the lesion image data. The success of 

the preprocessing steps significantly affects the classification 

success. 

Although CNN architectures, which are widely used in the 

classification of skin lesions, achieve high performance on 

large data sets, the success rate decreases as the dataset size 

gets smaller. Therefore, by adopting the transfer learning 

method, the calculated weights of the pre-trained CNN 

architecture can be given as input to the secondary training 

process (training with skin lesion spatial data). This approach 

will be beneficial in increasing the classification success [43, 

44]. Therefore, in this study, modified VGG16, ResNet50 and 

MobileNet, DenseNet12 and Xception network models were 

pre-trained with the ImageNet dataset. With the trained 

network model framework, the HAM10000 skin lesion visual 

dataset was classified faster and with higher accuracy. 

The main contribution and prominent aspects of this study 

are as follows: 

➢ A deep learning framework based on the transfer learning 

principle was established for the detection/classification 

of seven types of skin lesions. Lesions to be detected are 

Melanocytic nevus (nv), Melanoma (mel), Basal cell 

carcinoma (bcc), Actinic keratosis (akiec), Vascular 

lesions (vasc), Benign keratosis-like lesions (bkl), 

Dermatofibroma (df). 

➢ Five different architectures modified architectures 

VGG16, MobileNet, ResNet50, DenseNet121, and 

Xception were used for transfer learning. 

➢ Gaussian noise is applied to the input to mitigate 

overfitting.  

➢ The batch normalization method was used in the proposed 

diagnostic frame. In this way, significantly reduces the 

number of training cycles required to build standardized 

and deep networks. 

➢ Six different performance evaluation metrics were 

calculated and the success of the proposed diagnostic 

framework was tested and compared. 

 

The organization of current study is three main parts. In 

Section 2 the proposed method, information on transfer 

learning, modified network architectures and feature layers, 

and performance metrics are included. In Section 3 

classification results for the five proposed methods, confusion 

matrix, and performance table are presented. In addition, the 

results of previous studies and the performance of the 

proposed method are compared in this section. In the last 

section, all the important results of the study are summarized 

with data. 

 

 

2. MATERIAL AND METHOD 

 

This section introduces the proposed transfer learning 

framework for the classification of skin lesions in dermoscopy 

images. The five well-known CNN architectures: VGG16, 

ResNet50, DenseNet121, and Xception were pre-trained using 

the ImageNet dataset in the first step, then fine-tuned with 

dermoscopy images. The proposed transfer learning 

framework is shown in the block diagram of Figure 1. 

 

 
 

Figure 1. Proposed transfer learning framework for skin 

lesion classification 

 

2.1 Data pre-processing and augmentation 

 

In this study, the Skin Cancer MNIST: HAM10000 dataset, 

which was presented to the researchers as part of the 

competition on the Kaggle platform, was used [45]. In the 

HAM10000 metadata format, each of the images is mainly 

sized at (600×450x3) [44]. This study collected lesions from 

seven categories in two groups: Benign: Melanocytic Nevi 

(nv), Vascular Lesions (vasc), Dermatofibroma (df), and 

benign keratosis (bkl) Malignant: melanoma(mel), basal cell 

carcinoma (bcc), actinic keratoses (akiec) (Figure 2). 

In order to make all images as the same size, and remove 

various types of noise, the preprocessing phase is important. 

For this reason, to lessen the computational cost of our 

proposed architecture, we resized and rescaled the image size 

from 224x224x3. To achieve better efficiency and accuracy 

with CNN requires large datasets. In addition, CNN will 

smooth the output with tiny datasets as overfitting will occur. 

But also, overfitting means that the network performs very 

well on training data, but performs poorly on the test data. Due 

to the fact that dermoscopy images are rotationally stable, 

images of skin lesions can easily be analyzed from various 

angles without any diagnostic changes [46]. 
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Figure 2. Skin lesions 

The data augmentation techniques were implemented in the 

proposed system to increase the dataset and minimize 

overfitting issues. Some geometric transformation methods 

were used for datasets and the number of samples was 

increased using basic image processing techniques for data 

magnification. The main methods used to reproduce data are 

color processing, transform (flip, scale, and rotate), translation 

and noise perturbation, etc. The methods and parameter values 

used in data augmentation are presented in Table 1 in detail. 

Table 1. Hyper parameters used in data augmentation 

Hyper parameter Value 

rotation range 45 degree 

Width shift range 0.1 

Height shift range 0.1 

Shear range 0.01 

Zoom range [0.9, 1.25] 

Brightness range [0.7, 1.3] 

Horizontal flip True 

Fill mode 'reflect' 

Data format 'channels_last' 

2.2 Transfer learning 

Large quantities of information are required for the training 

of a CNN from scratch, but in some situations, a large dataset 

is very difficult to organize. Contrary to an ideal scenario, this 

is not the case for most actual applications. 

Additionally, it is a complicated challenge to obtain 

matching training and test data. This led to the development of 

the idea of transfer learning. In its respective datasets, the base 

network is initially trained for a given job and then transferred 

to the target role established by the target dataset [47]. Two 

key steps can be used to select the pre-trained model, the size 

of the issue and the similarity. The pre-trained model is chosen 

based on a related problem that is applicable to the objective. 

If the target data set is smaller (i.e., less than 10,000 images) 

than the source database set, then the probability of overfitting 

is high. Likewise, if the target data is larger and corresponds 

to the source data sets, there would be a small overfit risk and 

only the previously trained model needs to be refined.  

Table 2 summarizes the proposed framework for transfer 

learning. As a transfer learning model, five different CNN 

models were used separately. Gaussian noise added to input to 

mitigate overfitting. As it is a regularization layer, it is only 

active at training time. In the transfer learning base model, the 

convolution layers remained constant and their weights were 

transferred. The batch normalization layer was used after the 

transfer learning model. Normalization batch technology is a 

very deep neural network training technique that standardizes 

the inputs for each mini-batch in a layer. This stabilizes the 

learning process and significantly decreases the number of 

training cycles required to form deep networks [48]. 

Subsequently, two consecutive dropouts and dense layers were 

generated by a new transfer learning system. 

CNN is a special form of neural network (NN) which is 

designed to learn images' visual features. Currently, the deeper 

learning approach is the most effective for image classification 

[49]. 

Table 2. Proposed transfer learning frame 

Layer Name Layer Type 

Input Layer Image_RGB (224x224x3) 

Noise Layer gaussian_noise=0.05 

Based Pre-

Trained Model 

Dense121, VGG16, MobileNet, Reenet50, 

Xception 

Normalization 

method 
batch_normalization 

Dropout Layer 1 layers.Dropout(0.5)(base_layer) 

Flatten Layer 1 layers.Flatten()(dropout_layer_1) 

Dense Layer 1 
layers.Dense(256, 

activation="relu")(flat_layer) 

Dropout Layer 2 layers.Dropout(0.5)(dense_1) 

Dense Layer 2 
layers.Dense(256, 

activation="relu")(dropout_layer_2) 

Output Layer 
outputs = layers.Dense(7, 

activation="sigmoid")(dense_2) 

While numerous CNN architectures have been used to 

detect skin cancer and benign of skin lesions, large quantities 

of data are difficult to obtain for the training of a CNN. 

Transfer learning [34] is known to solve this problem with the 

partial reuse of a model which has been trained for a special 

resource task. Separate CNN architectures are originally used 

to isolate the functionality and for classification tasks, they are 

merged into a fully-linked layer. Multiple properties derived 

from a single identifier can be found in combined properties 

such as circularity, roundness, compactness, etc., that the form 

descriptor can reflect. The five most known and newest CNN 

networks are DenseNet 121 [31], VGGNet16 [50] and 

ResNet50 [51], MobileNet [52], and Xception [53], for the 

classification of skin lesions. The following architectures have 

been prepared for different general image descriptors, 

followed by a feature removal using transfer learning theory 

from dermoscopy images. Below is an overview of the basic 

structure of each used CNN architecture. 

VGGNet: VGGNet parallels AlexNet with the exception of 

additional layers of convolution. VGGNet contains 13 

convolutions, smoothing, pooling, and three fully connected 

layers, total of 16 layers, which are completely related. The 

mesh uses a filter scale of 3 to 3 windows and a 2 to 2 mesh. 

It also involves batch normalization, non-linear ReLU 

activations, and layer pooling after two or three turns. It 

extracts 25,088 image characteristics for the classifier.  

DenseNet 121: DenseNet falls under the classical network 

group. By using a composite function operation, an output of 

the previous layer is an entry of the second layer. It consists of 

a convolution layer, a batch-standardization layer, and a non-

linear activation layer. These ties make the network directly 

linked with L(L+1)/2. L is the architectural number of layers. 

There are many variants of DenseNet, such as DenseNet-121, 

DenseNet-160, DenseNet-201, etc. The numbers reflect the 

number of neural network layers. DenseNet121 consists of 
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five layers of invitation and pooling, and three layers of the 

transaction (6,12,24) (1x1 and 3x3 conv).  

Resnet: ResNet is a deep residual network which, in the 

ImageNet classification mission, achieves good results. 

Thanks to its deep structures, ResNet integrates many 

convolution filters that handle degradation problems and 

reduce the time required for training. ResNet-50/101: the 

residual layer functions in respect of layer inputs are 

reformulated by this model instead of using unreferenced 

functions learning. It is achieved by means of an approach that 

skips the relationships of non-linearity parts of certain layers 

and standards (ReLU). In this work, we use two ResNet 

versions, one containing 49 convolution layers and the other 

100. The classifier is returned by both extractors with 2,048 

image features. 

MobileNet: this CNN architecture consists of deeply 

separable convolutions, consisting of a profound confusion 

and point-specific convolution. Compared to networks using 

regular convolutions of the same depth, this technique greatly 

decreases the number of parameters. Two hyper parameters 

are also included in the model to monitor the scale. In this job, 

we use the complete MobileNet, leading to 22 layers of 

convolution. It also uses ReLU and batch standardization, 

much like the others.  

Xception: The Xception deep neural network which stands 

for extreme inception, was made by François Chollet [53]. 

Xception architecture has depth-wise separable convolutions. 

Xception has 36 convolutional layers to extract important 

features and is inspired by Inception Chollet wherein the 

Inception modules are replaced with depth-wise separable 

convolutions consisting of a depth-wise convolution [53]. 

 

2.3 Model hyperparameters optimization 

 

Pre-trained model’s hyperparameters were tried to be 

optimized using the grid search method to obtain the highest 

performance. Batch sizes in the range of 10-100 and epoch 

values in the range of 50-150 were examined to find the batch 

size and epoch value that would provide the best performance. 

In addition, the effects on performance were analyzed in seven 

different optimizers. In addition, the effect of a learning rate 

of [0.0001: 0.3], and a change in momentum values of 

[0.0:0.9] on network performance was examined. batch size 

64, 100 epochs, Adam optimizers, 0.0001 learning rate and 

0.00 momentum parameters, which were determined to give 

the most optimum results, were selected to be used in the 

study. 

 

2.4 Performance evaluation methods 

 

In cases where there is an imbalance between the classes in 

the data set, knowing the accuracy value alone does not 

constitute an objective approach in the evaluation of 

performance. For this reason, seven different metric values 

were calculated in this study. These criteria are precision, 

sensitivity, accuracy, specificity, F1-score, Matthews 

correlation coefficient, and Kappa [54]. Table 3 contains the 

formulas and brief explanations of these criteria. The TP in the 

table represents the true positive, that is, the number of 

correctly predicted samples. FN is the number of incorrectly 

guessed samples. TN (true negative) is the number of correctly 

predicted negative samples and FP (false positive) is the 

number of incorrectly predicted negative samples. Especially 

in the medical area, sensitivity, precision, and specificity 

values are important. Sensitivity refers to the probability of a 

positive test. Specificity is the calculation of successfully 

labeled non-skin lesion marks. Precision or a positive 

predictive value tests the correct percentage of classified 

marks. The number of skin lesions divided by the total number 

of skin lesions is shown with the proper classification accuracy 

(ACC). In addition, the confusion matrix for all models was 

calculated. A confusion matrix is a numerical table used to 

demonstrate the classification model output effects on the test 

data known from the goal labels. As a visual table, we use the 

confusion matrix to show how our methods predict our data. 

 

Table 3. Lookup table of performance evaluation metrics used in this study 
 

Performance Metric Acronym Equation Explanation 

Positive Predictive Value 
PPV 

Precision 

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

The ratio of positive samples that are predicted correctly out of all the 

samples predicted to be positive. 

Negative Predictive Value NPV 
𝑇𝑁

𝑇𝑁 + 𝐹𝑁
 

The ratio of negative samples that are predicted correctly out of all 

the samples that are predicted to be negative. 

True Positive Rate 
TPR 

Sensitivity 

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

The ratio of TP outcomes to the total number of actual positive 

samples. 

True Negative Rate 
TNR 

Specificity 

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

The ratio of TP outcomes to the total number of actual negative 

samples. 

Accuracy ACC 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

The ratio of TP outcomes to the total number of actual positive 

samples. 

Multi class Accuracy ACC 
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

The ratio of the number of correct predictions made by the method 

out of the total number of predictions made. 

F1-Score F1 2𝑥
𝑃𝑃𝑉 ∗ 𝑇𝑃𝑅

𝑃𝑃𝑉 + 𝑇𝑃𝑅
 The weighted average between the PPV and TPR scores. 

MCC-Matthews correlation 

coefficient 
MCC 

max([(𝑇𝑃 ∗ 𝑇𝑁) − 𝐹𝑃 ∗ 𝐹𝑁)/((𝑇𝑃 + 𝐹𝑃) ∗ 𝑃 ∗ 𝑁 ∗ (𝑇𝑁 + 𝐹𝑁))0.5]. [((𝑇𝑃 + 𝐹𝑃) ∗ 𝑃 ∗ 𝑁
∗ (𝑇𝑁 + 𝐹𝑁))0.5]) 

Cohen's kappa Kappa 

po = ACC 

pe = (P ∗ (TP + FP) + (FN + TN))/(TP + TN + FP + FN)2 

kappa = max([
po − pe

1 − pe
;
pe − po

1 − po
]) 

Receiver Operating 

Characteristic 
ROC The probability curve 

A line from (0.0) to (1.1) in coordinates of TPR and FPR. which 

shows TPR against FPR at different thresholds. 

The value of Area Under the 

ROC Curve 
AUC ∫𝑅𝑂𝐶(𝑡)𝑑𝑡

1

0

 The numerical index represents the area under the ROC curve. 
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3. EXPERIMENTAL RESULTS AND DISCUSSION 

 

3.1 Data set and exploratory data analysis 

 

The number of samples present for every type of skin lesion 

in the augmented dataset is presented in Table 4. For skin 

lesion class 80% of the images are used for training and 20% 

are used for test. 

 

Table 4. The number of samples for each type of skin lesion 

 
Class 

Name 
Clinical diagnosis Total Training Test 

Class 1 Melanocytic nevi (nv) 5030 4024 1006 

Class 2 Melanoma (mel) 880 704 176 

Class 3 
Basal cell carcinoma 

(bcc) 
390 312 78 

Class 4 
Actinic keratoses 

(akiec) 
235 188 47 

Class 5 Vascular lesions (vasc) 110 88 22 

Class 6 
Benign keratosis-like 

lesions (bkl) 
800 640 160 

Class 7 Dermatofibroma (df) 75 60 15 

 Total 7.520 5.985 1.504 

 

This dataset train-test split was made using tf.keras 

randomly split function. The study was carried out on a 

computer with Intel (R) Core (TM) i7-7700HQ CPU 16 GB 

RAM memory, operating speed of 2.81 Ghz. In addition, 

external GPU support provided by the Kaggle platform is used. 

In this study, all process was coded in the python programming 

language. And it used high-level tf.keras API aws and Tensor 

Flow 2.3.0 framework. 

 

3.2 Results and discussion 

 

Within the scope of the study. the transfer learning method 

was applied to the five most popular CNN models for the 

detection of skin lesions. The performance of the models was 

mutually analyzed and the results are presented in detail in this 

section. There is a confusion matrix for each model in Figure 

3 and a ROC curve in Figure 4. The AUC - ROC curve is a 

performance measurement for the classification problem at 

different threshold values. 

Table 5 shows ACC, sensitivity, specificity, precision, F-

score, kappa, and Matthews’ correlation coefficient values, 

which show the classification success of each model. For each 

model, the highest classification success was obtained for the 

class 3, 5, and 7 lesions category, while the lowest success was 

obtained in the classification of lesions belonging to the 

second and sixth classes. The average classification accuracy 

for all lesion classes via the VGGNet, ResNet50, 

DenseNet121, MobileNet, and Xception architectures was 

94.29%, 93.28%, 87.10%, 83.10%, 80.05% respectively. 

While DenseNet121 has the highest success, the Xception 

model has the lowest classification performance. 

 

  
 

(A) DenseNet121                                                (B) VGG16 

   
(C)  ResNet50                                      (D) MobileNet                                      (E) Xception 

 

Figure 3. Confusion matrices for each architecture 
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(A) DenseNet 121 (mean AUC=94.185%)        (B) VGG16 (mean AUC=93.357%) 

 
(C) ResNet50 (mean AUC=88.185%)        (D) MobileNet (mean AUC=83.74%)    (E) Xception (mean AUC=78.871%) 

 

Figure 4. ROC curves for each architecture 

 

Table 5. Performance measurements for each architecture 

 
 Class No Accuracy of Single Specificity Precision F-Score Kappa Matthews Correlation Coefficient 

D
en

se
N

et
1

2
1

 

Class 1 (nv) 0.9522 0.9771 0.8738 0.9113 0.7061 0.8970 

Class 2 (mel) 0.8983 0.9986 0.9909 0.9423 0.7286 0.9347 

Class 3 (bcc) 0.9743 0.9982 0.9891 0.9817 0.7175 0.9787 

Class 4 (akiec) 0.9574 0.9987 0.9924 0.9746 0.7206 0.9707 

Class 5 (vasc) 0.9545 0.9891 0.9362 0.9452 0.7143 0.9361 

Class 6 (bkl) 0.9125 0.9988 0.9927 0.9509 0.7280 0.9442 

Class 7 (df) 0.9333 0.9696 0.8364 0.8822 0.7040 0.8631 

Multiclass 0.9429 0.9901 0.9446 0.9412 0.7665 0.9321 

V
G

G
N

et
 

Class 1 (nv) 0.94831 0.97384 0.98656 0.96706 0.19089 0.90570 

Class 2 (mel) 0.87429 0.99699 0.97452 0.92169 0.78116 0.91369 

Class 3 (bcc) 0.96203 0.99368 0.89412 0.92683 0.89134 0.92330 

Class 4 (akiec) 0.95745 0.99725 0.91837 0.93750 0.93626 0.93566 

Class 5 (vasc) 0.90909 0.98987 0.57143 0.70175 0.96226 0.71587 

Class 6 (bkl) 0.88050 0.99851 0.98592 0.93023 0.80121 0.92432 

Class 7 (df) 0.9333 0.96438 0.22059 0.36145 0.94513 0.46123 

Multiclass 0.9328 0.9875 0.7913 0.8180 0.7256 0.8213 

R
es

N
et

5
0

 

Class 1 (nv) 0.89463 0.97992 0.98901 0.93946 0.13545 0.84195 

Class 2 (mel) 0.77273 0.99021 0.91275 0.83692 0.78792 0.82088 

Class 3 (bcc) 0.91026 0.97405 0.65741 0.76344 0.87802 0.75955 

Class 4 (akiec) 0.87234 0.99794 0.93182 0.90110 0.93968 0.89854 

Class 5 (vasc) 0.95455 0.99258 0.65625 0.77778 0.96422 0.78798 

Class 6 (bkl) 0.79375 0.99926 0.99219 0.88194 0.81063 0.87624 

Class 7 (df) 0.93333 0.92008 0.10526 0.18919 0.90245 0.29868 

Multiclass 0.8710 0.9791 0.7492 0.7557 0.4733 0.7548 

M
o

b
il

eN
et

 

Class 1 (nv) 0.83698 0.95171 0.97229 0.89957 0.07257 0.75085 

Class 2 (mel) 0.75000 0.98644 0.88000 0.80982 0.78784 0.79001 

Class 3 (bcc) 0.92208 0.98247 0.73958 0.82081 0.88606 0.81556 

Class 4 (akiec) 0.95745 0.97734 0.57692 0.72000 0.91761 0.73347 

Class 5 (vasc) 0.95455 0.98717 0.52500 0.67742 0.95895 0.70268 

Class 6 (bkl) 0.78125 0.99255 0.92593 0.84746 0.80678 0.83468 

Class 7 (df) 0.86667 0.91599 0.09420 0.16993 0.89916 0.26941 

Multiclass 0.8310 0.9705 0.6734 0.7064 0.3099 0.6995 
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X
ce

p
ti

o
n

 

Class 1 (nv) 0.83101 0.94882 0.96984 0.89507 0.06154 0.74363 

Class 2 (mel) 0.68182 0.97534 0.78431 0.72948 0.78951 0.69884 

Class 3 (bcc) 0.82955 0.97826 0.70192 0.76042 0.87515 0.74728 

Class 4 (akiec) 0.80851 0.97614 0.52055 0.63333 0.92177 0.63525 

Class 5 (vasc) 0.86364 0.98056 0.39583 0.54286 0.95411 0.57657 

Class 6 (bkl) 0.71875 0.98154 0.82143 0.76667 0.80671 0.74317 

Class 7 (df) 0.73333 0.91795 0.08209 0.14765 0.90263 0.22710 

Multiclass 0.8005 0.9655 0.6109 0.6394 0.1855 0.6245 

 

Table 6. Comparison of performance for skin lesion detection 

 
 Method Accuracy % Sensitivity % Specificity % 

(A) Published studies used HAM10000 dataset 

[28] Dilated InceptionV3 89 89 89 

[29] CNN - 84.5 86.5 

[31] DenseNet201 94.5 - - 

[32] Ensemble Model 93.00 86.00 82.00 

[33] MobileNet 92.70 87.00 81.00 

[34] MobileNet 92.70 87 81 

[35] EfficientNetB1 94.00 94 94 

[39] VGG16 82.80  64.57 

[41] From scratch 80.93 68.97 53.95 

(B) Skin Cancer Kaggle Challenge results used HAM 100000 Collected Dataset [45, 55] (not published as paper) 

Nils et al. 
Ensemble of multi-res EfficientNets with 

SEN154 2 
92.6 50.7 97.7 

Zhou et al. Ensemble of EfficienetB3-B4-Seresnext101 91.7 60.7 95.2 

Pachecoa et al. Ensemble classifiers 91.9 50.7 96.5 

Chouhan Densenet-121 91.0 47.3 96.7 

Dat et al. 
CNNs based on Inception-ResNet. XceptionNet 

And EfficientNet 
91.4 55.5 95.0 

Zhang Malanet based on DenseNet 89.7 66.6 91.6 

Xing et al. Class-centroid-based openset ensemble 91.9 55.7 95.1 

Subhranil et al. Long-tail distribution based classifiers 91.3 49.7 95.8 

Zadeh et al. 
Softmax ensemble and sigmoid ensemble 

classifier model 
92.0 51.9 95.6 

Cohen et al. Test time augmentation on ensemble models 92.4 46.9 96.3 

Sara et al. Xception. Inception-ResNet-V2. NasNetLarge 92.1 46.0 96.2 

Our Study 

DenseNet121 94.29 94.04 99.01 

VGG16 93.28 92.36 98.75 

Resnet50 87.10 85.79 97.91 

MobileNet 83.10 86.70 97.05 

Xception 80.05 78.09 96.55 

 

 

In Table 6 similar studies on the classification of skin 

lesions and the results obtained from the current study are 

compared in terms of accuracy, sensitivity, and specificity 

criteria. Table 6 is divided into two main sections. The first 

contains the published papers results of the studies using 

HAM10000 dataset. The second part includes the results of the 

researchers who participated in the "Skin Lesion Analysis 

Towards Melanoma Detection" competition held on the 

Kaggle platform and showed the best performance using the 

shared dataset. In this study, with DenseNet 121 and VGG16 

network architectures whose transfer learning basis was 

changed, accuracy levels of 94.29% and 93.28% were 

achieved, respectively. When the results of the study are 

compared with studies using the HAM10000 dataset directly, 

it is seen that the obtained accuracy rate is only 0.21% lower 

than the 94.5% accuracy rate obtained in [31] but considerably 

higher than other studies. Sensitivity and specificity values by 

DenseNet121 were obtained as 94.04% and 99.01% 

respectively, which is the highest value compared to the 

studies in the literature. 

 

 

 

 

4. CONCLUSIONS 

 

This paper uses the principle of transfer learning. We 

proposed a novel deep-learning framework for the 

classification of skin lesions. The principle of data 

augmentation was also suggested to maximize the 

performance of the CNN structure. Finally, the efficiency of 

the proposed system was contrasted with other current 

approaches and findings from the literature. Accuracy for 

DenseNet 121, VGGNet, ResNet50, MobileNet, and Xception 

was 94.29%, 93.28%, 87.10%, 83.10%, 80.05% respectively. 

The best classification results were obtained from 

DenseNet121 and the Xception model had the lowest 

classification results of all models. The proposed transfer 

learning system has been shown to provide excellent results in 

terms of accuracy without scratch training, which increases 

classification performance. It is thought that the proposed 

model approach will help physicians in the rapid and accurate 

detection of skin cancer lesions. 
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