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The tremendous success of transfer learning (TL) in natural imaging has also motivated the 

researchers in biomedical imaging. A lot of methods utilizing TL have been proposed, 

however, only a few have emphasized on its actual impact in biomedical tasks. In this article, 

we review the current landscape of TL in medical image analysis, and outlined the existing 

myths and related findings. We found that there exists substantial lack of medically 

specialized (domain-specific) pretrained transfer learning models, which can significantly 

benefit the biomedical imaging. Thus, to further explore our opinion experimentally, we 

identified three large datasets previously available from different medical areas and pre-

trained the standard CNN models on them, both separately and on aggregated dataset. These 

pre-trained models are then transferred for five different target medical tasks and their 

performance is compared. The comparison has shown promising benefits of domain-aware 

learning and aggregated generalized medical TL models along with associated challenges. 

We believe the outcomes of this work will encourage the community to rethink the existing 

de-facto ImageNet TL standard, and work for the domain-specific TL. 
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1. INTRODUCTION

Modern research practices in computer vision and pattern 

recognition have emphasized the capabilities of deep learning 

[1], especially Convolutional Neural Networks (CNN) [2], 

achieving state-of-the-art results and setting benchmarks. 

Though, the success of these models highly depends upon the 

quality and the amount of labelled data available for training. 

The applications with a small data regime face overfitting and 

underperformance for unseen data. A notable solution to 

mitigate this small dataset problem in CNNs is transfer 

learning (TL), i.e., knowledge transfer from one dataset to 

another. TL has successfully established its dominance in 

natural vision, thanks to the available fine-trained CNN 

models on million-sized well-annotated datasets like 

ImageNet [3] and MS COCO [4]. However, no such large-

sized datasets are available in medical imaging, so there is a 

lack of domain adapting pretrained models.  

The current standard practice in Medical Image Analysis 

(MIA) is the use of ImageNet pre-trained models for the target 

medical tasks. In this approach, the models pretrained on 

ImageNet are used instead of training from scratch (randomly 

initialized parameters). These models can either be applied as 

feature extractors or used as base models (pretrained weights 

rather than random initialization) for further fine-tuning on 

target datasets. Researchers have explored both approaches [5], 

among which the latter is more favored by the latest.  

Despite the broad applicability of ImageNet-trained models, 

little work exists studying its meticulous effects in medical 

imaging. Some recent works [6-9] have studied the impact of 

ImageNet-trained TL in MIA and concluded that it only 

benefits the early convergence. Additionally, the initial layers 

of the TL architectures are more responsible for knowledge 

reuse [7, 8]. Another conclusion was that the smaller and 

simpler architectures could perform comparably to ImageNet 

architectures in MIA [8]. Thus, the question arises is whether 

the ImageNet models are the right option for TL in MIA or 

does we require some specialized domain-aware medically 

trained models. Moreover, some commonly held beliefs 

related to TL in the natural domain have been challenged by 

the findings of the studies [10-14]. Therefore, in MIA, 

questions like the above become more critical since the natural 

and medical imaging domains have considerable differences. 

Rajpurkar et al. [15] have also addressed the same concern and 

proposed CheXNet (a model specialized for chest-related 

diagnosis from X-rays), demonstrating the superiority of 

domain knowledge. Similarly, Chen et al. [6] trained a 

biomedically dedicated in-domain transfer model named 

‘Med3D’, though their work was limited to 3D medical images. 

A recent work [16] has surveyed the articles on 

incorporating biomedical domain knowledge while training 

deep learning models and found domain adaptation as a 

promising futuristic research direction in MIA. The domain 

adaptation in MIA is a vast area of research which is not only 

limited to imaging data but all kinds of information that help 

the doctors in their excellence. The current article is concise 

on the need and importance of domain-aware TL for MIA 

which is a subpart of domain adaptation and could be an 

immediate action towards better performance of automated 

models. We have reviewed the latest work studying the impact 

of knowledge transfer in both natural and biomedical domains 

to generalize the opportunities and challenges better. We also 

performed additional TL experiments on biomedical datasets 

to assess domain-aware learning and its transfer. 
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The rest of the article is organized as follows. Section 2 

reviews the existing work studying the widespread impact of 

ImageNet TL. Next section describes the work analyzing TL’s 

effect on biomedical tasks. Then, section 4 summarizes some 

commonly held TL queries and related findings. The following 

section discusses our experimental results and findings. Lastly, 

section 6 outlines the challenges and future directions related 

to domain-aware and unified medical TL. 

2. TRANSFER LANDSCAPE OF IMAGENET: 

OUTCOMES VS. BELIEF

First and foremost work searching for the answers to an 

obvious question, “What makes ImageNet good for TL?” was 

done by Huh et al. [12]. They performed several experiments 

on three tasks: object detection, action classification, and 

scene classification, to study various related facts like the 

importance of the number of samples, classes, samples-per-

class vs. the number of classes, and the role of coarse-grained 

vs fine-grained classes. Though the question was still 

unanswered, they found that a substantial decrease in sample 

count (50% per class) and class count (only 127 out of 1000) 

shows a tiny effect on TL performance, which drive the 

community to rethink the rule “more data better performance”. 

However, the derived conclusions cannot be generalized yet, 

as much more investigation is required in the field. Or, it may 

be possible that the derived facts only hold for the studied 

target tasks, as the object detection-like tasks are entirely 

different from classification in which localization is the key 

concern rather than recognition. Likewise, He et al. [11] also 

hold a similar consent, as they too studied object detection and 

instance segmentation tasks. They aimed to compare the 

transfer models with randomly initialized (RI) models. They 

experimented on the MS COCO dataset, which is considered 

a sufficiently well-organized dataset. Based on their 

experiments, the key observations were i) the TL speed-up the 

convergence in early phase but did not guarantee better 

regularization, and ii) the TL does not show benefits to 

localization related tasks. Moreover, they also remarked that, 

the RI models can perform comparable of TL but need extra 

training iterations, and the ultimate goal of the community still 

hold to pursuit for learning universal representations. 

Some other studies have also challenged the de-facto 

ImageNet trained transfer. Geirhos et al. [10] have shown in 

their work that the ImageNet trained models are more inclined 

towards the textures of the images rather than the shapes; thus, 

these are less general than previously thought. Furthermore, 

they proposed a stylized version of ImageNet on which the 

models trained can also learn shapes. Similarly, Kornblith et 

al. [13] have also concluded that, although the ImageNet 

models generalize well over datasets, their weights are less 

general than assumed. They also showed that better 

architectural designs perform better on target tasks.  

Unlike others, Ngiam et al. [14] have investigated a 

different aspect of TL, i.e., choice of source data. They 

investigated another source dataset JFT [17] along with 

ImageNet for knowledge transfer to six target classification 

datasets. Like previous findings, they suggest that improved 

performance is not always necessary via extensive pretraining 

samples. However, domain adaptation, i.e., matching the 

source and target data distribution, is the main idea for better 

transfer which is also agreed by the outcomes of the studies 

[18, 19]. 

3. TRANSFER’S IMPACT IN BIOMEDICAL: 

IMAGENET VS. DOMAIN-SPECIFIC LEARNING 

Knowledge transfer is extremely popular in biomedical 

imaging because of smaller datasets (a few 100 to thousands). 

Researchers have utilized various transfer strategies and 

reported state-of-the-art results. Morid et al. [5] reviewed 102 

studies on TL (from ImageNet) in biomedical imaging and 

found that most studies with data samples <1000 have applied 

the feature extraction TL strategy while the studies with 

samples >1000 have applied the fine-tuning based TL 

approach. However, some recent studies investigating 

ImageNet transfer on biomedical datasets have propounded 

the community to reconsider it. 

The pioneering work [8] has attempted to acknowledge the 

open questions, “how much ImageNet features are reusable for 

medical imaging, and exactly where?”, “does there exist 

differences in the filters learned by TL and RI models?” and 

“how do model filters get affected with pretraining?”. Authors 

have highlighted various non-trivial differences between 

natural and medical imaging, on account of which they 

organized several experiments on two datasets (CheXpert and 

Retina) and found that i) shallow and simpler models can 

perform equivalent to standard ImageNet models, ii) feature 

reuse occurs only at initial layers, iii) larger models (both RI 

and TL) changes less in starting layers after fine-tuning, i.e., 

over-parameterization for MIA tasks, iii) converged smaller 

models show similar filters for both RI and TL, i.e., no feature 

reuse, iv) TL does offer feature independent benefits like 

convergence speed, even the scale of pretrained weights 

adapted for RI helps to converge faster. However, recently [9] 

has challenged some findings of Raghu et al. [8] and pointed 

out three profound limitations of the experiments: 1) Poor 

evaluation metric- As the datasets are highly imbalanced, the 

used metric AUC is not a good choice; 2) Unrepresentative 

target datasets- Both the datasets contain thousands of 

samples, while MIA datasets usually range from hundreds to 

few thousands; 3) Rigid TL methods- Alternative strategies 

like truncated models can also be explored. Peng et al. [9] 

measured AUROC and AURPC performance metrics for 

classification on two datasets (CheXpert and Covid), and 

found that TL mostly outperform RI for both shallow and deep 

models, mainly smaller datasets benefit more. They also found 

that the truncated TL models perform better than conventional 

and hybrid TL methods. However, their experimentation still 

holds the second limitation mentioned above, since, both the 

datasets are of chest X-rays. 

Neyshabur et al. [7] further investigated “what is being 

transferred in TL?” performing a series of TL comparisons 

(feature similarity, l2 distance, and loss basins) on both natural 

and medical datasets. They arranged the target domains into 

decreasing similarity (i.e., 

Real>Clipart>CheXpert>Quickdraw) with the source dataset 

(ImageNet) and found the highest TL performance boost for 

similar data (Real domain). Moreover, distant domains also 

get profited with TL along with convergence speed. These 

results show the importance of in-domain learning and 

additional low-level benefits to distant-domain. To further 

verify the low-level advantages of TL, the authors shuffled the 

different sized blocks (from full image to 1-pixel) of images to 

destroy its visual information. They observed that the 

performance falls with a decrease in block size, but the 

performance of TL is still better than RI even for the fully 

shuffled images. These results not only give an idea of how TL 
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is beneficial for distant domains, but also advocate rethinking 

the source domain. Following it, many researchers have tried 

to utilize previously available biomedical datasets as transfer 

datasets.  

Med3D [6] was among the initial medically trained models 

used as TL on diverse and different medical tasks. A recent 

work by Zoetmulder et al. [20] too advocated the optimality of 

domain and task-specific TL for brain MRI lesion 

segmentation. Similarly, Alzubaidi et al. have shown the 

dominance of same-domain TL over the conventional 

approach in their research [21-23], considering skin lesion and 

breast cancer histopathology images. Other than these, Xie et 

al. [16] have provided a comprehensive survey of more than 

200 papers (mainly ranging in 2017-2020), among which 163 

are purely based on domain knowledge incorporation. They 

partitioned the domain knowledge into two categories, i.e., 

knowledge incorporation from natural and medical datasets 

(TL models trained over ImageNet and other similar or 

dissimilar medical datasets) and knowledge incorporation 

from doctors (such as tags from health records, training and 

general diagnosis patterns of doctors, particular patterns or 

areas that the doctors focus while diagnosing, etc.). Further, 

they grouped the articles into four medical categories i) disease 

diagnosis, ii) lesion or abnormality detection, iii) organ or 

lesion segmentation, and iv) other medical applications (like 

image reconstruction, retrieval, and generation). The critical 

realization from their work is that domain adaptation is the 

path to be followed for the success of automated diagnosis. 

However, the identification, selection, representation and 

incorporation of the domain knowledge are challenging and 

demand a well-organized research in collaboration of the 

medical and data-science community. 

4. SUMMARY

The previous sections have reviewed the work analyzing 

TL’s impact in both natural and medical domains. Many 

imperative questions related to TL that required extensive 

experimentation and analytical work were addressed. Here we 

outline them with related findings. 1) Does TL have benefits 

over RI? Yes, TL is advantageous over RI. Benefits are more 

visible for smaller datasets. It boosts both the performance and 

convergence speed, though the localization-related tasks may 

have lesser gain. 2) What type of benefits are offered by TL? 

TL offers the guaranteed advantage to model’s convergence. 

TL models are much faster than RI models and requires few 

iterations to converge. Even the scale adaptation of pretrained 

weights has shown an advantage in the convergence of RI 

models. Another benefits are related to feature reuse which 

depends upon the target domains. Normally, the reuse is 

limited to initial layers, though, for similar target tasks it can 

be realized in later layers too. 3) Do ImageNet TL models 

improve the MIA performance? Yes, many researchers have 

shown that even for a far distant problem, TL is better than RI. 

However, some recent studies have shown the superiority of 

the domain-specific TL models, but MIA lacks in having 

medically-aware TL models. Therefore, in the absence of that, 

ImageNet-trained models are beneficial. 4) What is the impact 

of domain knowledge in DL? Will it benefit TL approaches in 

MIA? Domain knowledge has positively impacted the 

performance of DL methods in MIA. Researchers have 

reported the state-of-the-art results utilizing it. However, there 

exist specific challenges, regarding how and what type of 

domain knowledge can be utilized. It needs extra attention 

from the research community. In TL, existing analysis has 

shown a higher performance boost for similar datasets than 

distant ones. Moreover, TL models pretrained in the medical 

domain dominate over ImageNet trained models. Thus, we can 

infer that domain-aware TL will benefit MIA. 

Examining the overall status of TL in MIA, we found that, 

like ImageNet in natural vision, the medical domain also need 

unified datasets that can be used as source databases for TL. 

However, it is exceptionally challenging and laborious to 

create them, as it will involve the efforts of both data scientists 

and medical practitioners. Thus, other tranquil and 

approachable initiatives can be taken at the moment, e.g., the 

utilization of already available well-annotated medical image 

databases. Moreover, efforts can be made to explore their 

combined effect in transfer. These approaches further pose 

some new questions like; Does available medical datasets are 

advantageous over ImageNet in MIA? Is it possible to 

aggregate them? If yes, what will be its impact compared to 

ImageNet and in-domain datasets? In this direction, more tests 

are needed apart from existing analytical TL research. Thus, 

to fulfil the gap, we have organized some experiments which 

are described in the following section along with obtained 

results. 

5. EXPERIMENTAL ANALYSIS

In this section, first, we discuss the type and purpose of the 

experiments conducted. It also includes the details of CNN 

network used for analysis. Next, the description of the source, 

target, and aggregated datasets is given. Then, we show the 

results and their comparison inferring the insights and related 

challenges. Finally, the experimental limitations of the current 

work have been discussed.  

5.1 Methodology 

As summarized in the previous section, domain-aware 

learning can significantly benefit TL in MIA. Thus, to verify 

its generalized potential, we analyzed three areas of medical 

images consisting of diverse feature space, i.e., chest X-Rays, 

histopathology whole slide images, and eye fundus images. As 

the study aims to analyze domain-aware TL, we selected two 

types of datasets from each area. One is used as the source 

dataset to pretrain the transfer model, and the other is the target 

dataset for which the pretrained model transfers. More details 

about these datasets are discussed in the next section. Further, 

for every target task/dataset, five types of transfer are 

performed to precisely analyze their behavior, which is 

summarized below. 

• IN: Transfer of conventionally used ImageNet weights.

• Domain_RI: Weights transfer of randomly initialized

(RI) model pretrained on similar domain source dataset.

• Domain_IN: Weights transfer of ImageNet initialized

(IN) model pretrained on similar domain source dataset.

• All_RI: Weights transfer of randomly initialized (RI)

model pretrained on the dataset aggregating all source

datasets of considered three areas.

• All_IN: Weights transfer of ImageNet initialized (IN)

model pretrained on the dataset aggregating all source

datasets of considered three areas.

The above-listed transfer experiments are performed to 

verify the advantage of both the domain-specific learning and 
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unified medical-aware dataset. Among these, 2nd and 3rd are 

dedicated domain TL models, while 4th and 5th are generalized 

medical TL models. Further details of dataset’s aggregation 

method (for generalized TL models) are discussed in the next 

section. 

The base CNN model used in this study for analysis is the 

DenseNet-121. Besides fewer parameters, its architectural 

design has shown a significant advantage over other CNN 

models in both the natural and medical fields. Thus, we have 

selected this model for all experiments. Apart from its basic 

architecture, a customized head network is also attached on top 

of it, consisting of a combination of fully connected (FC), 

batch normalization (BN), and dropout layers. Figure 1 shows 

the procedure followed and the network used in this work. 
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Figure 1. Workflow and network detail 

5.2 Datasets description and processing 

This work uses three source datasets (one from each area) 

and five target datasets for experimentation. We have selected 

those dataset as a source dataset that are used in literature by 

other authors also, e.g., ‘ChestX-ray 14’ from chest X-ray 

images [15], ‘BreakHis’ from histopathology whole slide 

images [22, 23], and ‘EyePACS’ from eye fundus images [24]. 

Among five target datasets, two are chest X-ray datasets 

(‘NLM-ChinaCXRSet’ and ‘COVID-19 Radiography’), one is 

histological dataset of human colorectal cancer images 

(‘Kather_Texture_2016’), and two are diabetic retinopathy 

datasets of eye fundus images (‘Messidor’ and ‘DeepDRiD’). 

All these datasets are resized to 224×224 resolution in this 

work. Following sub-sections 5.2.1 and 5.2.2 describes these 

datasets and their corresponding preprocessing. 

Besides the datasets mentioned above, we also pretrained 

the models on an aggregated dataset (All_three) by collating 

the samples from all source datasets. Sub-section 5.2.3 

describes the details related to the dataset and followed 

aggregation procedure. 

5.2.1 Source datasets 

ChestX-ray14. ChestX-ray14 [25] is a multi-label frontal-

view chest X-ray dataset with fourteen common thorax disease 

categories. It consists of 112,120 X-rays (resolution of 

1024×1024 pixel) of 30,805 unique patients with fourteen 

disease labels otherwise labelled as ‘No finding’. X-rays in 

this dataset may have multiple labels from the fourteen 

categories mentioned in the study of Wang et al. [25]. This 

dataset outputs two pretrained domain-specific models named 

CXR_RI and CXR_IN.  

BreakHis. BreakHis [26] is a dataset of 9109 microscopic 

WSI images of breast tumor tissues collected from 82 patients. 

It consists of 5429 malignant and 2480 benign samples of 

700×460 resolution at 40X, 100X, 200X, and 400X 

magnifying factors. Figure 2 shows the samples from these 

magnifying factors in third row, respectively. In this work, we 

have pretrained the models on collated images from all 

magnifying levels to train a generalized classification model 

for all levels. Before training, the dataset has been resized to 

340×224 pixels without affecting the overall L/W ratio. 

However, only 224×224 sized randomly selected images have 

been used while training, which produces HWSI_RI and 

HWSI_IN transfer models. Following Figure 2 shows row-

wise sample images from ‘ChestX-ray 14’, ‘EyePACS’, and 

‘BreakHis’ datasets before and after processing.  

Figure 2. Sample images from three source datasets 

EyePACS. EyePACS is a dataset collected from diabetic 

retinopathy (DR) detection challenge on Kaggle [27] 

organized by California Healthcare Foundation and eyepacs. 

It contains 35126 and 53576 images in the training and test 

sets labelled with five DR grading levels ranging from 0-4. 

The dataset is highly imbalanced (i.e., 0 level has ~30 times 

more sample than 3 and 4 levels), which causes hindrance in 

training. Therefore, samples of 1-4 levels from the test set have 

also been added in training (i.e., 14043 more samples are 

added to the training set), and then 10% samples of the dataset 

are used for validation in this work. Class weights have been 

used further to balance the distribution while optimizing loss. 

The samples in this dataset do not have a uniform resolution; 

thus, the images have been center cropped to extract eye area 

with 224×224 size (from images resized to 340×224 size 

keeping aspect ratio). The transfer models pretrained on this 

dataset are named EFI_RI and EFI_IN in this work. 

5.2.2 Target datasets 

All the five target datasets used in this work are summarized 

in the below Table 1. 
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Table 1. Target datasets details 

Sr. No. Dataset Name Image Type Classes Samples Resolution 

1. 
NLM-ChinaCXRSet [28] 

(D1) 

CXR 

(Gray) 

Normal 

Tuberculosis 

326 

336 
Variable 

2. 
COVID-19 Radiography [29, 30] 

(D2) 

CXR 

(Gray) 

COVID 

Lung_Opacity 

Normal 

Viral_Pneumonia 

3616 

6012 

10192 

1345 

299×299 

3. 
Kather_Texture_2016 [31] 

(D3) 

HWSI 

(RGB) 

Tumor, Stroma, Complex, 

Lympho, Debris, Mucosa, 

Adipose, Empty 

Each class with 

625 samples 
150×150 

4. 
Messidor [32] 

(D4) 

EFI 

(RGB) 

Grade_0 

Grade_1 

Grade_2 

Grade_3 

541 

154 

247 

254 

Variable 

5. 
DeepDRiD [33] 

(D5) 

EFI 

(RGB) 

0-No DR

1-Mild NPDR

2-Moderate NPDR

3-Severe NPDR

4-Proliferate DR

714 

186 

326 

282 

92 

Variable 

5.2.3 Aggregated dataset 

To the best of our knowledge, in MIA, literature has most 

studies on ImageNet transfer and a few on similar domain. 

However, the combined effect of different medical domains 

could also be explored. Therefore, apart from similar domain 

transfer, we also examined the effect of the unified medical 

transfer model on target medical datasets. To train this model, 

the dataset is prepared by collecting the samples together from 

all considered (three) source datasets. Among these datasets, 

one is a multi-label dataset (ChestX-ray14), while the other 

two are single-label classification datasets. Thus, to bring them 

in a single orientation, all are considered multi-label datasets 

with a total of 22 (i.e., 15+2+5) labels. These labels are 

inputted as a one-hot encoding vector of length 22. Moreover, 

the data is inputted to the model with a data-generator at size 

224×224, where images of BreakHis dataset are selected 

randomly from a size of 340×224. After aggregation, the 

dataset contains 169198 images, partitioned into 90/10% for 

train/validation sets. 

5.3 Results and discussion 

We evaluate the five transfer models for every target dataset, 

one- natural pretrained, two- domain-specific, and two- 

medically generalized, to compare their applicability over 

each other. Moreover, two types of parameters initialization 

have also been considered to measure their impact on overall 

training and performance. The comparison has been made 

considering accuracy and cohen-kappa score as performance 

indicators. In literature, accuracy is the most used indicator for 

evaluation of classification tasks, but, for some tasks where the 

classes are in the form of grading, cohen-kappa score is 

preferred. Therefore, in this work we have used these two 

metrics accordingly. Figure 3 shows the training and 

validation accuracy curves of three datasets for a fixed number 

of epochs, a) NLM-ChinaCXRSet, b) COVID-19 

Radiography, and c) Kather_Texture_2016. All three datasets 

have shown high-performance gain with generalized medical 

transfer models (All_XX) compared to others. Their learning 

curves also showed an early and stabilized flow towards 

convergence. However, the natural trained model (IN) showed 

the least performance and an unstable convergence curve. 

Domain-specific models have shown mixed behavior. Though, 

both Domain_RI and Domain_IN have performed better than 

IN, Domain_RI showed higher accuracy than Domain_IN for 

a) and b) datasets, while for c) it is the opposite.

Table 2. Model’s performance at last epoch 

Dataset Accuracy (%) 

IN Dom 

RI 

Dom 

IN 

ALL 

RI 

ALL 

IN 

D1 
Training 95.6 98.6 96.8 99.1 99.5 

Validation 86.7 90.0 91.7 90.0 91.7 

D2 
Training 99.9 99.9 99.9 100 100 

Validation 96.5 95.9 96.0 96.2 96.6 

D3 
Training 98.7 98.1 98.2 99.6 99.6 

Validation 95.1 93.9 95.2 94.4 95.2 

Kappa Score (%) 

D4 
Training 77.5 97.5 95.5 97.8 98.6 

Validation 52.1 38.8 51.0 33.6 45.3 

D5 
Training 90.0 99.6 99.3 100 100 

Validation 36.1 47.3 46.0 31.6 46.2 

Likewise, Figure 4 shows the training and validation curve 

behavior of eye datasets, i.e., d) Messidor and e) DeepDRiD. 

The cohen_kappa score has been plotted for these two datasets 

as a metric measure due to high-class imbalance, and balanced 

class weights are also used while training. Both the datasets 

have shown similar performance behavior to a), b), and c) for 

training sets, though the IN model does not converge in the 

fixed number of epochs. On the other hand, for both datasets, 

all models’ validation curves do not show a high metric value 

and oscillate between short ranges. Despite the nearly equal 

performance, sharp ditches have been shown by the IN model 

for the d) dataset. However, for the e) dataset, All_IN and 

domain-specific models (EFI_IN and EFI_RI) have shown 

better metric values than the other two. Same can also be 

inferred from the metric values at last training epoch shown in 

Table 2.  
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Figure 3. Training and validation curves comparison of three datasets a) NLM-ChinaCXRSet b) COVID-19 Radiography c) 

Kather_Texture_2016 

Figure 4. Training and validation curves comparison of eye datasets d) Messidor e) DeepDriD 

Analyzing the convergence curves and metric results, we 

find that generalized medical models (All_RI and ALL_IN) 

have shown the best results for almost every dataset, and 4 out 

of 5 datasets have shown competing results by randomly 

initialized domain-specific models (Domain_RI). 

Additionally, these models provide early, stable, and smooth 

transition towards convergence, which IN lacks. Thus, the 

intuition of domain-aware and unified medical learning seem 

beneficial and promising, which can be further explored with 

careful data aggregation and model training. 
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5.4 Experimental limitations 

The main limitations of this work lie with the datasets 

aggregation and models training, e.g., the aggregated dataset 

has imbalanced data distribution, and class weights are also 

not used. As this study’s main motive is to show the 

proficiency of unified medical models and domain-aware 

learning, no extra efforts have been made toward perfect 

aggregation or collative training. However, a simplified 

approach is followed. Thus, this research direction needs 

further analysis which must include more datasets and 

heterogeneous training methods over diverse medical data. 

6. RESEARCH CHALLENGES AND FUTURE 

DIRECTIONS

Analyzing the available literature and experimental results, 

we summarize the challenges and future directives in the path 

of unified medical-aware TL. These are challenges related to 

unified medical dataset, challenges related to model training. 

▪ Challenges related to a unified medical dataset: The

main challenge lies with universal medical-aware TL models 

is the dataset construction. As the medical domain involves 

multiple modalities to examine and capture different body 

parts, there exist high spatial and intensity differences between 

them. Moreover, region of interest (ROI) for different domains 

are also diverse, e.g., small red spots and blood vessels in eye 

fundus images are indicative of diabetes, nucleus blasts and 

structural deformations in whole slide images are indicative of 

cancers, texture and colour patterns of skin lesion images are 

indicative of melanoma, etc. Thus, the ROIs ranged from small 

spots (1-5% image area) to large lesion areas (50-90% image 

area). Other than these, some medical applications involve 

colored images (skin, eye, and whole slide images) while 

others do not (X-rays, MRI, CT, mammograms, etc.). 

Additionally, if we consider segmentation datasets, they are 

too ambiguous [6]. Some domains have segmented 

annotations of only lesions but not surrounding organs, while 

others provide only organ segmentations. Further, all the 

organs are not annotated in an image. For example, the liver 

dataset has only the liver area’s annotation but not the 

surrounding pancreas, and the pancreas/lesion dataset has only 

the pancreas/lesion area annotated. Therefore, these diversities 

pose a significant challenge to the research community, and 

initiatives can be taken to find constructive paths. However, to 

avoid it, another option may be the separate enrichment of 

fully-annotated samples in all domains and having separate TL 

models for every domain, but the motive of the work is to 

utilize already available datasets and train ImageNet-like 

unified models. 

▪ Challenges related to model training: Another

challenge associated with unified TL models is finding reliable 

ways of model training over diverse datasets. The available 

annotated datasets from different areas vary in the number of 

samples available (like in the present study). Also, the datasets 

themselves contain unbalanced class distributions (e.g., 

EyePACS). Thus, aggregated unified dataset becomes highly 

imbalanced, driving the training towards overfitting. 

Moreover, a high difference in pixels representation and 

values also causes hindrance to learning. Different modalities 

and tasks have different intensity ranges, so the histograms 

show polarized groupings, i.e., confusing the feature learning 

process (the parameters learned for some parts of the dataset 

may not be helpful for other parts). Thus, a confined way of 

training and architectural design is required. Lastly, 

segmentation datasets are not fully annotated as discussed 

earlier. Therefore, some specific ways of training, like the 

study [6] trained a model (single_encoder –eight_decoder 

branch model) for eight different segmentation datasets, is 

needed. 

7. CONCLUSIONS

In this study, we investigated domain-aware transfer 

learning in medical image analysis. The main focus of the 

work was to explore its impact, so we reviewed various 

analytical studies on TL both in the natural and biomedical 

fields. We found that ImageNet transfer models are not much 

advantageous for medical tasks; instead, domain knowledge 

can provide significant benefits. Moreover, initiatives can be 

taken to train unified medical models like ImageNet in natural 

vision. To further verify our intuition, we organized some 

experiments and found that domain-aware learning is 

beneficial over traditional ImageNet transfer. Our exploration 

of unified/generalized medical transfer models showed even 

better results for all datasets. However, particular challenges 

need the attention of research community. In conclusion, until 

well organized and trained common medical-aware TL models 

are not available, the domain-specific TL is better choice than 

the natural domain IN models for MIA. 
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