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This paper offers a deep learning approximation to realize channel estimation and signal 

detection that creates the main communication structure skeleton for the orthogonal 

frequency-division multiplexing (OFDM) system known as an efficient modulation type on 

5G. This letter offers an application of deep learning to handle the wireless OFDM channels' 

end-to-end conduct. First, channel state information (CSI) is predicted explicitly that differs 

from existing OFDM receivers, then detected the transmitted symbols utilizing the predicted 

CSI. In the end, CSI is predicted by the suggested deep learning approximation indirectly 

and transmitted symbols are directly recovered. The structure of the designed receiver occurs 

of a layer of DNN and soft decisions, which resolves the issues channel estimation error, 

time delay, and limitation of decoding between users in classic detection techniques. In the 

simulation results, it is observed that the receiver has powerful stability on the power 

distribution of user, not only convenient for the linear channel, but also for nonlinear channel 

when enhancement the number of users, also detection can be well on the receiver. 

Generally, the efficiency of the modulation system decreases with the features of the 

multipath channel utilized for transmission. Channel estimation and detection of symbols 

utilize to reduce the impacts of the channel, which needs high computation and bandwidth 

conventionally. This paper is used deep neural networks (DNN) for detecting the signal, in 

this way much effort in detecting the channel is prevented. The proposed method saves 

priceless bandwidth via used CP in OFDM with a big increase in SNR. 
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1. INTRODUCTION

Orthogonal Frequency Division Multiplexing has been a 

great focus of interest in designing to generate waveforms for 

the next-generation 5G wireless network [1]. The main 

components of 5G radio which are New Radio (NR) and Long 

Term Evolution (LTE) prefer Cyclic Prefix OFDM (CP-

OFDM) to do modulation best fitted. 5G prefers the OFDM 

modulation technique as it obtains low complexity on 

transmitter and receiver, higher spectral efficiency in MIMO, 

lower power expense, and better capacity in frequency 

localization.  

In communication systems, frequency selective fading of 

channels may outcome in very desperate BERs. OFDM 

utilizes orthogonal subcarriers transporting data modulated 

with any digital modulation methods available. Due to 

separate subcarriers, the frequency selective fading converts to 

flat fading so there is a reduction of desperate impacts. As each 

subcarrier has exact multiples of the principal constituent this 

situation makes them orthogonal to one other. Channel delay 

dispersions cause Inter Symbol Interference (ISI) and non-

orthogonal received signals cause Inter-Carrier Interference 

(ICI) and these are relieved by the supplement of a CP. Guard 

intervals are revealed adding unused subcarriers. 

As signals are transmitted, usually deteriorated by the 

effects of the channel and these effects reduces by using 

channel equalization methods. 

As a popular modulation scheme, orthogonal frequency-

division multiplexing (OFDM) has embraced widely to 

overcome fading of frequency selectivity in wireless channel 

communications. In OFDM system, known as channel state 

information (CSI) is an important value for consistent 

detection and decoding. The pilots can estimate CSI before the 

detection of the transmitted data normally, and transmitted 

symbols can rescue at the receiver using the estimated CSI [2-

6]. 

The traditional estimation of channel techniques, Minimum 

Mean-Square Error (MMSE) and Least Squares (LS) have 

been used and made optimized for lots of different situations 

[7]. The LS estimation method utilizes no previous statistics 

of the channel, so its yield may be deficient. The MMSE 

estimation method generally obtains greatly better success of 

detection via using the channels statistics of second-order. 

This work introduces a deep learning approximation to the 

estimation of channels and detection of symbol for an OFDM 

system. There is numerous applications area on artificial 

neural networks (ANNs) and deep learning, especially, 

channel equalization [8], and channel decoding [9] has applies 

based on CSI [10] successfully in communication applications. 

ANNs set the coefficients with respect to the pilot data, but 

since the number of parameters increases a lot in deep neural 

networks (DNNs), these methods cannot be implemented 
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straightly and conclude a great number to train data and an 

extended training time [11-14]. Without calculation of the 

channel matrix, the store and universalization features of deep 

learning are verified productive in signal estimation [3]. 

In this work, it is explicit that the suggested method clarifies 

the impact of multipath upon Bit Error Rate (BER), also 

obvious that helps to obtain high-truth digital systems. Since 

wireless communication resources are limited, efficient use of 

bandwidth is the main goal of communication technology, thus 

in this signal detection method, even with no cyclic prefix, the 

BER is not much impressed which assists to save valued 

bandwidth. Obtained results from the end of this work, the 

deep learning approximation confirms has more sturdy 

features than LS and MMSE where trained pilot symbols are 

reduced, and the CP has been removed. 

The main lines of this paper plan as follows. The deep 

learning structure and OFDM structure are given in Section II. 

Applications includes conclusion of the simulation for 

detection of signal in the OFDM structure is presented in 

Section III. Section IV finalizes the paper. 

 

 

2. MATERIALS AND METHOD 

 

Deep learning and OFDM structure are determined in this 

section.  

 

2.1 Deep learning structure 

 

DNNs need a huge count of data and need to train before 

they are implemented offline. DNNs utilize a huge count of 

data and need to train before they are implemented offline. 

Therefore, there are two phases of distributing the DNN; the 

first phase supposes training as offline and the other phase 

supposes online distribution of the training net [11]. As we 

need a big number of data on the training, a channel that 

known model is anticipated to be utilized. Models of 

developed channels can define the realistic channels 

efficiently when full statistics of channels are given. To 

simulate and generate a big number of data with changing 

statistics of the channel is made easy by using the developed 

channel models.  

 

 
 

Figure 1. Deep learning structure 

 

The pilot in OFDM symbols and the data in OFDM symbol 

came to DNN as inputs. The pilot and data symbols together 

are discretized into imaginary parts and real parts and applied 

network as input and so the count of input neurons can 

reproduce to be 256 neurons when we use 64 subcarriers. The 

output layer of DNN estimates and recovers the received data 

as bits and the Sigmoid activation function is used in this layer. 

As given Table 1 DNN parameters are batch size, number of 

class, max epochs, number of hidden units and input size. 

 

Table 1. Training parameters of DNN 

 

Parameter 
batch 

size 

number 

of class 
epoch 

number of 

hidden 

input 

size 

Value 1000 4 100 16 256 

 

Deep learning applications have been successful in a large 

variety of fields via an important success developed, including 

opinion on computers, the processing of inherent language, 

speech identification and so on. Generally, DNNs that present 

deepness sample of ANNs raise the hidden layers' number to 

develop the ability to identify. In the network each layer is 

formed of multiple neurons, which is a nonlinear function of a 

summation of the neurons on the previous phase and illustrated 

in Figure 1. 

Sigmoid and Relu functions can specify as the nonlinear 

function, determined as fk(x)=1/(1+e−x), and fl(x)=max(0,x). 

So, through a series of non-linear transforms of input data (I) 

is formed the network output w is stated as Eq. (1) 

mathematically [3]. 

 
( 1) ( 2) (1)( , ) (... ( ))D Dz f D Q f f f D− −= =  (1) 

 

In Eq. (1), layers the number is D, and the neural networks’ 

weights are stood by Q. The weights on the neurons are 

defined as the parameters of the model, and on a training set, 

the optimal weights are usually obtained using acknowledged 

wanted outputs [15]. 

 

2.2 OFDM structure 

 

In the transmitter block, the bit flow is corresponded to a 

matrix of dimension Nt × Nf, if the count of antennas on the 

transmitter side is assumed Nt and the count of subcarriers is 

assumed Nf. Figure 2 shows a block of an OFDM system 

under nonlinear distortion. In the process of data transmission 

first, any modulation is performed, then Inverse Fast Fourier 

Transform (IFFT) is implemented, and then a CP is added, and 

finally, the RF is amplified and sent the data. The transmitted 

signal has non-linearity distorted owing to the amplifier. The 

matrix includes the QAM (Quadrature Amplitude Modulation) 

or PSK (Phase-Shift Keying) symbols, all row indicates an 

antenna mark, and all column shows a subcarrier. Then each 

row modulates with OFDM utilizing traditional techniques 

[16]. 

 

 
 

Figure 2. Block diagram of OFDM 
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In Figure 2, the OFDM structure, the transmission channel 

is regarded to keep non-changed for two successive OFDM 

symbols, one of these includes generally pilots, while the 

others contain the data, and these two symbols are jointly 

described as a frame. The pilot location should maintain 

stability along all steps of the training and propagation to 

realize estimation of channel effectively. When the signal has 

been carried throughly the channel and accepted by the 

receiver antenna, the transmitted symbol is transformed into a 

parallel data flow thus the CP is extracted and FFT operation 

is applied [10]. 

The receiver side makes the inverse processes of the 

transmit side. First, receiver removes the cyclic prefix and then 

transformation of FFT and demodulation processes are 

implemented, and finally, an original bit stream is obtained.  

Considering multi path channel defined with complicated 

random factors {h(m)}(m=0….,M−1),  the received signal 

y(m) clarifies in Eq. (2). 

 

( ) ( ) ( ) ( )y m x m h m w m=  +  (2) 

 

Eq. (2) shows the convolution as circular between x(m) is 

described transmitted signal and h(m) is defined channel 

response and w(m) is introduced the AWGN (Additive White 

Gaussian Noise) is added to this. 

 

( ) ( ) ( ) ( )Y k X k H k W k= +
 (3) 

 

The receiving signal on the frequency area is given with Eq. 

(3) following extracting the CP and enforcing the DFT process 

and the DFT of y(m), x(m), h(m) and w(m) are Y, X, H, and 

W. The receiving data symbols formed a pilot build, a data 

build is assumed as input in our work, and the transmitted data 

is recovered by the purposed DNN method.  

Equation 3 can write as vector form in Eq. (4). 

 

Y X H W
− − −

= +  (4) 

 

When X is assumed a matrix of input, 𝑌
−

 is assumed output 

matrix, cost function in LS Channel Estimation can be written 

as Eq. (5). 

 
2

C Y X H
− −

= −  (5) 

 
^

1( )H H

LSH X X X Y−=  (6) 

 

The solution of LS estimators is given in Equation 6 and 

because of invertible X, Equation 6 can rewrite as Eq. (7) as a 

conclusion Eq. (8) is obtained. 

 
^

1 1( )H H

LSH X X X Y− −=  (7) 

 
^

1

LSH X Y−=  (8) 

 

LS estimators have the advantage of their simplicity and 

make calculations with very low complexity with no 

information about statistics of the channel. 

The mean value of coefficients of channel can define as 

E{H(k)}=0 and variance can determine as 𝐸{|𝐻(𝑘)|2} = 𝐿𝜎ℎ
2. 

Also, the mean and variance of AWGN channel can write as 

E{W(k)}=0 and 𝐸{|𝑊(𝑘)|2} = 𝑁𝜎𝑛
2 respectively. 

L assumes number of multi-paths and N assumes number of 

subcarriers. Channel and noise variances are given by 𝜎ℎ and 

𝜎𝑛 respectively. MMSE estimators are defined in Eq. (9). 

 
^

1

( ) ( ) ( ) ( )( ) ( )MMSE H k Y k Y k Y kH k R R Y k−=  (9) 

 

Cross covariance of H(k) and Y(k) are illustrated with 

𝑅𝐻(𝑘)𝑌(𝑘) and given in Eqns. (10) and (11).  

 

 * 2 *

( ) ( ) ( ) ( ) ( )H k Y k hR E H k Y k L X k= =  (10) 

 

 *

( ) ( )

2
2 * 2

( ) ( )

( )

Y k Y k

h n

R E Y k Y k

L X k N 

=

=
 (11) 

 
^

2 *

22 2

( )

1
( ) ( )

( )

MMSE

h

h n

H k

L X k Y k
L X k N


 

=
+

 (12) 

 

MMSE channel estimation equation is given in Eq. (12) by 

using Eqns. (10) and (11). 

There are two stages as shown in Figure 3 to do an efficient 

DNN application on both symbol detection and channel 

estimation. For the offline training phase, we train the model 

with the received OFDM symbols, which are created with 

diverse data sequences, and for different channel cases. For the 

online spreading phase, the DNN approximation creates the 

output, which rescues the transmitting data with no estimate of 

the wireless channel clearly. 

 

 
 

Figure 3. Online deployment and Offline training of OFDM 

block diagram 

 

Many channel models have improved that define the real 

channels greatly considering statistics of channel. The training 

data is acquired using these channel models by simulation. In 

all steps of the simulation, first, we generate a random data 

sequence for the transmitted signals and compose the 

matching OFDM skeleton with a pilot symbol series. Then we 

simulate the available random channel related to the models of 

the channel. OFDM signal that is received includes the valid 
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distortion of the channel and the noise of channel based on the 

OFDM skeleton. The training data is collected from the 

receiver symbol and the actually transmitter symbol. The 

receiver symbol from the pilot build and one data build is 

admitted as the input of the pattern of deep learning. To make 

smaller the gap among the neural network output and the 

transmitting symbol, the model of deep learning is trained [17-

21]. 

 

 

3. APPLICATIONS 

 

Several experiments were implemented to indicate the deep 

learning methods' performance in both estimation of the 

channel and detection of the symbol in OFDM communication 

systems. Based on simulated data a DNN model has been 

trained and a comparison has been realized with the 

conventional methods, related to BER (Bit-Error Rate) and 

different SNR (Signal-to-Noise Ratio). 

Applications are realized using 64 subcarriers and the CP of 

lengths 16 and 8 in the purposed OFDM system and QPSK is 

selected as the modulation technique. This paper presents a 

comparison between the proposed method via the LS and 

MMSE estimation techniques for estimating of the channel 

and detecting of the channel, when 64 and 8 pilots are utilized 

to make estimation to channel in each cycle. 

 

 
 

Figure 4. Accuracy of trained model and loss of trained 

model 

 

Firstly, trained of DNN process is operated and accuracy 

and loss of the trained model diagrams are illustrated in Figure 

4. In Figure 5, when compared to the performance of methods, 

the LS estimator shows a very poor output since there is no 

past statistics knowledge of the channel to detect. 

 

 
 

Figure 5. SER to SNR for DL, LS and MMSE including 64 

and 8 pilots 

Conversely, the MMSE approximation indicates the top 

success because the statistics of the second order of the 

channels utilized for symbol detection are accepted to known. 

It is seen that the proposed deep learning approximation shows 

a considerable preferable success than the LS technique and 

can compare to the MMSE technique. In Figure 5 for used 8 

pilots, the obtained BER curves of using the LS and MMSE 

techniques arrive at a satiate when SNR exceeds 10 dB while 

in the deep learning technique BER reduces with increasing 

SNR. This situation shows that the DNN has sturdy features to 

the count of pilots utilized in the estimation of the channel. 

DNN has excellent performance because the features of the 

radio channels knows based upon the trained data formed from 

the pattern. We need CP to make turning the convolution 

method linear to circular of the somatic channel and reduce ISI. 

However, using CP leads to expenses extra time and energy to 

transmit data. The BER curves are illustrated in Figure 6 for 

an OFDM system without CP and it is clear that neither 

MMSE nor LS techniques can efficiently predict the channel. 

 

 
 

Figure 6. SER curves for with CP and without CP 

 

However, the deep learning technique operates quite well 

which shows the DNNs bring to light and learn features of the 

wireless channel in the training cycle. 

 

 

4. CONCLUSIONS 

 

In this work, a DNN structure is trained utilizing simulated 

data, and a comparison is carried out with the conventional 

techniques in regard to BER for different SNR. Also impact of 

pilot symbol number, impact of CP and impact of robustness 

are examined.  In the BER graphs that used 8 pilots on LS and 

MMSE techniques a saturation is traced when SNR value has 

more than 10 dB, the deep learning based technique still 

demonstrates the capability to decrease the BER via improving 

SNR this shows that the DNN demonstrates robustness to 

number of pilot symbol utilized for an estimate of the channel. 

DNN has excellent performance because the features of the 

radio channels knows based upon the trained data formed from 

the pattern. In OFDM system without CP, it is clear that 

neither MMSE nor LS techniques can efficiently predict the 

channel however, the deep learning technique operates quite 

well. 

In this paper, the deep learning approximation is verified to 

be sturdy features than LS and MMSE, which trained pilot 

symbols are reduced, the CP has been removed. This paper has 

presented DNNs for symbol detection and channel estimation 

in an OFDM system. As seen in the results of simulation, the 

deep learning technique has great advance considering radio 

channels have made difficult interference and distortion. It is 
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also concluded that DNNs can recall and examine the confused 

features of wireless channels. Having a good generalization 

capability of the DNN model is important for real-world 

applications because while the circumstances of online spread 

are not precisely compliant with the used models of channel in 

the training step, DNN can still operate efficiently. Results of 

simulation show that the purposed DNN has superior capable 

to decrease in the overhead of pilot symbols and adding CP, in 

spite of the traditional techniques could not.  In future work, 

samples of the real radio channels can be gathered to train 

again or sensitive the model to obtain superior success. 
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