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Open access in space remote sensing has allowed easy access to satellite imagery; however, 

access to high-resolution imagery is not given to everyone, but only to those who master 

space technology. Thus, this paper presents a new approach for improving the quality of 

Sentinel-2 satellite images by super-resolution exploiting deep learning techniques. In this 

context, this work proposes a generic solution that improves the spatial resolution from 10m 

to 2.5m (scaling factor 4) taking into account the constraints of volumetry and dependence 

between spectral bands imposed by the specificities of satellite images. This study proposes 

the FSRSI model which exploits the potential of deep convolutional networks (CNN) and 

integrates new state-of-the-art concepts including Network in Network, end-to-end 

learning, multi-scale fusion, neural network optimization, acceleration, and filter transfer. 

This model has also been improved by an efficient mosaicking technique for the Super-

Resolution of satellite images in addition to the consideration of inter-spectral dependence 

combined with the efficient choice of training data. This approach shows better performance 

than what has been proven in the field of spatial imagery. The experimental results showed 

that the adopted algorithm restores the details of satellite images quickly and efficiently; 

outperforming several state-of-the-art methods. These performances were observed 

following a benchmark with several neural networks and experimentation of applications 

to a carefully constructed dataset. The proposed solution showed promising results in terms 

of visual and perceptual quality with a better inference speed. 
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1. INTRODUCTION

The exploitation of satellite images by object recognition 

and change detection models requires a sufficient resolution to 

be reliable. To get a higher resolution, the acquisition sensor 

must be changed, which is not always possible when the sensor 

is airborne in orbit in space. Moreover, the finest resolutions 

are expensive in most cases [1], which requires an 

improvement of the quality of satellite images by Super-

Resolution. 

The Super-Resolution of satellite images must be done most 

reliably, especially when dealing with sensitive images such 

as object detection for military response (the target must be 

identified with precision, and the error is heavily paid). 

Thus, the particularities of satellite images are summarized 

in: 

Image depth: Indeed, depending on the characteristics of the 

sensor used, the information on the colors of the pixels of 

satellite images can be represented by several values 

associated with several or even hundreds of spectral bands. 

The satellite images can be 3 bands RGB, multispectral, or 

hyper-spectral. This particularity determines an adapted 

coding. 

Spectrum breadth: In a satellite image, the values that 

encode the information of a pixel (reflectance value) are 

associated with different bands of the electromagnetic 

spectrum that can belong to large different intervals and 

relative to wavelengths ranging from visible to infrared for 

optical remote sensing. Note that these intervals may overlap, 

thus evoking a dependence between the bands and thus an 

inter-spectral correlation. 

Definition and size of the image: Depending on the 

characteristics of the sensor and the altitude of the satellite, a 

satellite image is composed of pixels covering a more or less 

large area of the ground. The surface area of the captured areas 

gives rise to high-definition images (a large number of pixels) 

resulting in large images (can reach a gigabyte for a single 

scene). Their size cannot be compared to those of ordinary 

images. 

The potential format in mosaic: Satellite images can be 

constituted of mosaic format, otherwise for a specific image, a 

mosaic format can be created. They are composed of tiles 

(constituent tiles of the image) juxtaposed. The composition in 

tiles offers several features including a set of mosaic rules and 

a set of properties. 

To promote the exploitation of the potential of remote 

sensing, satellite images must be of better quality in terms of 

spatial resolution. These images must allow zooming without 

loss of image quality and therefore have a better spatial 

resolution and a better representation of the information on 

earth. However, the multispectral satellite image is essentially 

characterized by a low pixel resolution [2, 3]; thus, some main 

constraints form problems that prevent the achievement of this 

objective. They are summarized in the following: 
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Technological limitations: space imagery providers are 

constrained by the satellites they have. Only, the technologies 

used at the level of all these satellites, notably, the fixed spatial 

resolution of the acquisition sensors (spaceborne sensors), do 

not allow to get images of better quality (fine or high 

resolution). 

The high cost of acquiring very high-resolution images: 

Thanks to technology that is improving day by day, the most 

recent satellites have technological capabilities that allow 

them to provide images comparable to aerial photos. However, 

their acquisition cost remains very high given the finesse of 

the technology used.  

The compromise of access to low altitudes: The resolution 

of satellite images can also be improved with the altitude of 

the satellite. However, the lowest altitudes are unfortunately 

sometimes reserved for military use (they are inaccessible for 

civilian use [1]) and if it exceeds the Safe altitude band, it risks 

atmospheric friction, which reduces the lifespan of the satellite.  

Satellite images are mainly characterized by the great depth, 

definition, and size of the images as well as the heterogeneity 

of the magnitude of the spectrum. These characteristics pose 

problems of processing complexity and normalization to be 

solved during their super-resolution. 

Processing complexity: This complexity is translated in 

terms of storage constraints and computing power. It is linked 

to the volume and number of spectra used. Indeed, the depth 

of the input image and its size due to its definition increases 

the processing applied by the CNN filter [3] and the amount of 

information transmitted on the processing pipeline, which can 

influence the weights and the convergence rate of the network. 

In addition, they also pose a storage problem given that 

learning processes are designed for data that can be stored in 

internal memory throughout the processing. Thus, it requires a 

powerful infrastructure to run it. 

Normalization problem: It is related to the heterogeneity of 

the spectra magnitude. Processing images whose pixels are 

represented by values belonging to intervals of different 

lengths and very divergent (depending on the wavelength of 

each spectrum) requires a normalization to reduce the scale 

factor on the images and thus reduce the dimension of the 

problem. If this is the case, the convergence may not be 

optimal on the output. However, normalization may not make 

sense in such a case and may not lead to good results. 

In the literature, there are several approaches to the 

application of super-resolution of satellite images, it is noted 

that most studies have taken into account only the RGB bands 

and only a few studies have taken into consideration 

multispectral images. But, the most used techniques that have 

shown their effectiveness in this field are, for example, Liebel 

and Körner [4, 5] applied SRCNN with its basic architecture 

by direct application to bands without conversion. This 

method showed minimal improvement over bicubic 

interpolation. This approach used only three bands but it 

indicates the application of CNNs to satellite images. 

Youm et al. [6] worked on MC-SRCNN and based on 

SRCNN but this time added support for multispectral 

(multichannel) images. This approach adds an upstream step 

to the network, but it has the advantage of being an efficient 

solution for this type of processing. However, the observed 

improvement is marginal in terms of performance. 

Other works using 3 bands are also applied to Pleiades and 

Spot satellite images including Lanaras et al. [7], Tuna et al. 

(2018) [8], Tuna et al. [9], and Pouliot et al. [10] using SRCNN 

and VDSR [11]. These studies use only 8 bits, on the other 

hand Lim et al. [12] used a depth of 12/16 bits on the DSen2 

network. The same approach was used by Pouliot et al. [10] 

using different datasets between the ground truth and the 

super-resolved image, but this approach creates spectral and 

spatial distortions. 

Müller et al. [13] use the panchromatic band to increase the 

resolution of other bands by merging (pan-sharpening); this 

method is effective but is only valid for images that contain a 

panchromatic band of higher resolution than the other bands.  

Gudžius et al. [14] have worked on object segmentation on 

satellite images, so they use pixel frame sequencing, but this 

approach has the disadvantage of having a consequent noise 

on the edges which alters the learning. They suggest working 

with pixel frame selection, which is an improvement of the 

method of Chen et al. [15].  

Several approaches have been applied to satellite images to 

allow their super-resolution. Generally, only minimal 

improvements are obtained and most of the approaches 

eliminate bands containing important information in terms of 

remote sensing or use an 8-bitS encoding which alters the 

integrity of the information. This problem is mainly due to a 

misunderstanding of the specificities of satellite images as 

well as the resolution degradation method as indicated in the 

work of Kawulok et al. [16]. This study showed that bicubic 

interpolation is not an efficient method to apply subsampling 

to satellite images and that the quality of LR images influences 

the performance of the networks. The use of GANs for SR 

produces images with structural distortions, studies overcome 

this problem with the introduction of image metadata which 

generates a very important computation time, especially for 

multispectral images, thus [17] proposed a parallel structure-

texture integration (SPE) method for super-resolution, which 

produces sufficient results without consideration of 

computational performance. Moreover, Liu and Liu [18] have 

taken up the consideration of spatial and spectral dependence 

combined with spatial similarity features to extend the 

receptive field which allows having more features with a 

reduction of the number of trainable parameters. On the other 

hand, Cornebise et al. [19] have worked on high-resolution 

spot images at 1.5 and corresponding low-resolution images 

for the Sentinel-2 satellite at 10m. This process of Super-

Resolution multi-image is not always available and the 

matching methods are always complex and can be sometimes 

insufficient. Finally, Palsson et al. [20] proposed an LR-HSI 

and HR-MSI fusion algorithm that had better performance but 

requires having co-registered images of the same scene. 

This paper aims to improve the quality of satellite images 

by exploiting the potential of new deep-learning techniques to 

be a reference for the public. This work is motivated by the 

lack of a method to process low-resolution imagery by 

producing high-resolution images at a lower cost. This method 

solves the problem of the limited physical capabilities of the 

multispectral sensor [18] by maintaining both spectral 

resolutions combined with high spatial resolution. 

In this context, this study investigated innovative solutions 

in image processing through a systemic study of possible 

solutions based on neural networks (which have recently 

demonstrated a high capacity of Super-Resolution), to 

highlight the foundations and appropriate technical choices for 

the improvement of the resolution of images adapted to the 

spatial context. This approach has allowed us to implement an 

appropriate solution, moving from data preparation to training 

and testing operations on satellite images, so that this model 

has been evaluated in terms of accuracy and performance. The 
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proposed solution remains innovative and generic for 

multispectral image processing; especially satellite images. 

The main contributions of this research study are 

summarized in the following: 

• Presentation of a new efficient method for the Super-

resolution of multispectral satellite images;  

• Proposal of an optimal and fast architecture for the super-

resolution of satellite images;  

• Performance improvement by using spectral dependence 

and channel fusion; 

• Reduction of dimensionality by exploiting inter-spectral 

correlation; 

• Use of an efficient method for data augmentation of 

multispectral satellite images for better accuracy and 

speed; 

• Demonstration of the use of the proposed model for the 

problem of super-resolution of satellite images at the 

global scale. 

The obtained results allow deducing that this model is 

efficient for Satellite Image Super-resolution with a very good 

size/performance trade-off. It also outperforms the state-of-

the-art networks for Super-resolution and constituted the first 

efficient framework for end-to-end multispectral Satellite 

Image Super-resolution. The architecture adopts a better 

balance between accuracy and inference speed. 

The coming sections of this paper are organized as follows. 

The first section describes the basic concepts as well as the 

state of the art and the research work on which based the 

network design is based, with particular emphasis on the 

reasons for this choice. The second section is devoted to the 

methodology, followed by the technical choices and tools 

adopted for the implementation of the learning model as well 

as its global architecture. The third section presents the 

experimentation of the model, it describes the fundamental 

approach and the application of this model to satellite images 

with a demonstration of learning, testing, and validation. The 

fourth section summarizes the results obtained and the various 

improvements made to the model for better optimization. A 

discussion of the results and the performance of the model is 

also presented in the fifth section; before concluding. 

 

 

2. PRELIMINARY 

 

Spatial remote sensing is an emerging field that is attracting 

the interest of researchers in the community [1]. Its importance 

lies in its relevance to key areas of economic, social, or 

environmental dimensions. Indeed, the processing and 

exploitation of satellite images are of great importance for the 

promotion of agriculture, urban planning, management of 

natural and scarce resources such as water [21], prediction of 

the effects of climate change [22, 23], financial trading [24] 

and the evaluation of the socio-economic impact of COVID-

19 [25] as examples. 

A satellite image is a digital image of a part of the earth, 

taken from space by sensors and set up from waves transmitted 

by a satellite to a ground station. Visually it looks like a 

standard image but in reality, it contains more information in 

the form of spectral bands, represented by a series of bits. Each 

one has a characteristic reflectance value according to the 

wavelength taken at the corresponding location in the real 

image. 

 
 

Figure 1. Satellite image of the city of Rabat 

 

Figure 1 shows 3 images of the city of Rabat, each 

corresponding to a spectral band (green band, red band and 

PIR band), so we see that the reflectance values change 

depending on the wave interval considered. Thus, we can see 

on Figure 1 that the vegetation has low reflectance values on 

the red and green bands while it has stronger values in the 

infrared band, this is called the spectral signature. 

However, the particularity of satellite images is on their 

large size due to the amount of information contained in the 

image and the number of channels of the sensor in addition to 

the spatial resolution of the satellite. Since they orbit the planet, 

they are made up of several scenes (image blocks). These 

scenes are combined to reconstitute the whole images taken 

which will have a high number of pixels depending on the size 

of the scene. 

In the automatic processing of images, these are represented 

in the form of vectors containing information on each of the 

pixels of the image in question, in particular on their colors. In 

the case of digital color images taken with cameras, this 

information is coded by three color values relative to 3 spectral 

bands. It is thus coded in RGB (values of Red, Green, and Blue 

going from 0 to 255 in the gray level). Each value is 

determined by the wavelength of an electromagnetic spectrum. 

In addition, for standard photos, the more pixels have been, 

the higher the resolution of the images is, which is the same 

for satellite images. So, low resolution, medium resolution, 

high resolution (less than 10m), and very high resolution (less 

than 5m), are distinguished, but it depends on the field of 

application [1]. For satellite imagery, a common measure of 

the quality of the image of the earth taken from space is the 

GSD for Ground Sample Distance [18]. It is a metric that 

represents the actual distance between the centers of areas 

represented by two adjacent pixels. The GSD depends on the 

characteristics of the sensor and the altitude, so it is 

proportional to the orbital height of the satellite and the size of 

the pixels of the instrument, such that the further away the 

satellite is, the greater the GSD is, and therefore the less 

resolution is (less detail). 

 

GSD=P*H/F. (1) 

 

With GSD: Ground Sample Distance (cm/pixel); P: pixel 

size (micron); H: Flight Height (m); F: Focal length (mm) 

For this case, the MSI sensor of the Sentinel-2 satellite, 

which has a GSD of 10m, 20m, and 60m depending on the 

spectral band (see 4.3), and an orbital height of 786km is used, 

so the size of the smallest element we can designate is 10m. 

A high-resolution satellite image is an image with more 

details and conversely, an LR image is an image that lacks 

details. Moving from an LR image to an HR image, the details 

that are missing on the image which increases the spatial 

resolution of the image must be incorporated. Indeed, each 

time we increase the resolution, we see more details. This is 

highlighted in Figure 2 where we can see the visual effect of 

increasing the spatial resolution each time by a factor of 2. 
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Figure 2. Increase by a factor of 2 the spatial resolution of 

the image 

 

The proposed solution allows the super-resolution of 

images. This scientific term refers to the scaling of images that 

can lead to a high-resolution image (HR) from a low-

resolution version (LR) by applying a degradation function. 

 

LR=D (HR, f). (2) 

 

D is the degradation function and f is the scale factor. So, 

the Super-resolution is to learn the inverse function of Eq. (2) 

to reconstruct the image HR by applying the function of Eq. 

(3). 

 

HR=SR (LR, f). (3) 

 

The super-resolution thus allows gaining an image of better 

quality than the one that never existed or was lost. The details 

of the high-resolution image are filled in where the details are 

essentially unknown. 

 

 
 

Figure 3. Classification of image super-resolution method 

 

As you can see from the diagram in Figure 3, there are 

several approaches to super-resolution in the literature. Super-

resolution image is mainly divided into SISR (Single Image 

Super-Resolution) and MISR (Multiple Image Super-

Resolution) [26]. SISR provides a higher-quality image based 

on a single input image, while MISR provides a high-

resolution image from a set of merged images of the same 

image [27]. SISR is more widely used than MISR due to its 

performance, processing simplicity, and researcher support as 

well as the flexibility of use [28]. In this paper, the focus is on 

learning-based approaches within SISR, to exploit the proven 

potential of deep learning in this direction. 

We recall that the founding principle of super-resolution by 

learning generally consists in reducing a target image to create 

an image of lower resolution, then scaling the latter by 

prediction. The predictive model must improve the low-

resolution image to be as good (or better) than the target. To 

do this, the model (mathematical function) takes the low-

resolution image that lacks detail and adds the details and 

features to it. Figure 4 shows the example of scaling a satellite 

image of the city of Rabat by prediction. 

 

 
 

Figure 4. Super-resolution of a satellite image of the city of 

Rabat by deep learning 

 

This approach will analyze and train from several images 

that have been reduced to create the lower spatial resolution 

input to reconstruct the details lost in the low-resolution image. 

It is, thus, a question of making it possible to synthesize a high-

resolution image from its corresponding low-resolution image. 

This elicits incorporating imagery details from a higher 

resolution image into a deep neural network (DNN) and 

extracting the details to enhance geographically similar 

satellite imagery. However, applying directly the Super-

Resolution methods to satellite images can help in obtaining 

spectral distortions [18], which requires a thorough study. 

The study used benchmarks to decide the technical choice 

of the neural network adapted to the satellite imaging context. 

Indeed, there are many state-of-the-art solutions proposed in 

the rapidly growing field of super-resolution. 

According to this benchmark [29] that is realized, the CNN 

is the most natural choice for the tasks of Super-resolution but 

the function of loss MSE (pixel loss), is adapted only to 

smooth images and does not give better results for images with 

finer textures as the case of the satellite images. Also, the use 

of the GAN [30] remains a choice by generating a clearer 

visual image, but this type of network requires more resource 

which is not adapted to the target study. 

 

 

3. METHODOLOGY 

 

3.1 Adopted approach and method  

 

The adopted approach capitalizes all the work done in SISR 

by deep learning and the strength of traditional methods. This 

approach benefits from all the progress made today in deep 

learning. 

It is based on work done on satellite images; the design and 

architecture of some networks such as FSRCNN [31] and 

MFSRCNN [32] and this experience in satellite image 

processing. The latter cooperates with the best approaches to 

accelerate CNNs and increases the performance of network 

stability to get the best network allowing the Super-resolution 

of satellite images. 
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Figure 5. The global architecture of satellite image super-resolution network (FSRSI) 

 

Based on the analysis, it is clear that the progress made in 

neural networks allows increasing the speed as the case of 

FSRCNN [31] which is fast, but it is limited in the construction 

of images with high-frequency details in the satellite images. 

Thus, the necessary improvements are made to achieve the 

objective. 

Multi-scale fusion is efficient for the reconstruction of high-

frequency details [18], so this model is based on this concept, 

inspired by the MFSRCNN [32] model, which is based on 

multi-scale fusion to keep the maximum of information. For 

example, low-resolution satellite images are sampled and 

down-sampled simultaneously to obtain sub-arrays that are 

connected in parallel which reduces the loss of information 

and guarantees a faithful reconstruction.  

This model adopts an autonomous end-to-end learning 

pipeline [33], which allows for the Super-resolution of satellite 

images without pre-processing elsewhere in the network. 

additionally, its model uses small convolution kernels and 

more convolution layers. 

This model encompasses 5 levels of resolution, which 

allows for a more reliable match between the low-frequency 

and high-frequency details of LR and HR images. Thus, the 

architecture consists of 5 sub-arrays of different scale factors 

(resolution) that are merged at the end to integrate all the 

features of the image. Also, a procedure is proceeded by 

residual learning which helps a lot to obtain efficient learning. 

The network manages the 13 bands of the sensor for a global 

reconstruction and simultaneous processing of the channels. A 

good balance of layers to gain non-linearity by increasing the 

abstraction is adapted to have more accuracy by reducing the 

dimensionality of the network. 

Multiscale fusion allows an exchange between sub-

networks to extract more detailed features within the satellite 

images by exploring the layers simultaneously. This 

multiscale processing allows controlling the difference in 

GSD on the different spectral bands of the image. 

CNN capture features on normal images, but for satellite 

images, these features are different (since they are 

encapsulated as reflectivity), and even more important 

(depending on the spectral resolution), therefore; an 

experiment according to the study done by [10] on the 

contribution of the depth of the grating on the accuracy is 

conducted to find out a better balance on the depth of the 

grating. So, more filters are needed to obtain more information 

on the input image. 

Moreover, from an architectural and technical point of view, 

the target FSRSI network is a fully convolutional neural 

network that uses the NIN principle [34] and proceeds in 6 

main phases. The layout of these phases is shown in Figure 5 

which shows the global architecture of this model and its 

design as a pipeline. 

 

3.1.1 Image processing  

From the satellite image, we proceed to the mosaic 

operation (cf. 3.2) to get an image of 110X110 Pixel. Thus, 

Figure 6 summarizes the performed mosaicking operation. 

This operation is well explained in the following section (cf. 

3.3). 

 

 
 

Figure 6. Process of the image processing stage 

 

The spatial resolution for satellite images is an important 

characteristic. The Super-resolution must improve, so the 
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resolution degradation process must be done appropriately 

unlike ordinary images. Consequently, we proceed to a 

resolution degradation in a learnable way integrated into this 

model. Then, we proceed to the oversampling (by 

deconvolution) and under-sampling (by convolution) of the 

LR image to get images of different resolutions (28X28, 

55X55, 110X110, 220X220, 440X440) which constitute the 

entries of the 5 sub-networks. Thus, the enlargement of the 

images within the model is not done by interpolation but in a 

learnable way without losing the sense of detail as the 

interpolation is learned within the network according to the 

target image with learnable kernels as well (see 3.2.3). 

This pre-processing phase consists of improving the 

contrast of the image before proceeding to the super-resolution 

process; this pre-processing consists of determining the areas 

of importance in the image for each spectral band by analyzing 

the histogram of each channel. Figure 7 shows the use of this 

method on the dataset elaborated as a spectral band histogram. 

 

 
 

Figure 7. Histogram of band 4 of an input image 

 

Thus, the interesting part of the image is around the peak 

and the contrast can be improved by cutting the regions around 

the contrast. This operation is called the equalization of the 

diagram and it shows a considerable contribution to the 

performance of the reconstruction of satellite images [18]. 

Figure 8 shows the result obtained after this operation. 

 

 
 

Figure 8. Contrast enhancement of an input image 

 

3.1.2 Feature extraction 

The extraction of features is done directly on the original 

satellite image without interpolation by doing a convolution. 

Indeed, the number of convolution kernels is considerably 

increased in small size to have more features, and each kernel 

is sensitive to a specific spot contour, colors, edges, borders, ..., 

which allows extracting the maximum number of features. 

This phase is illustrated in Figure 9. As from the original input 

image, we proceed by convolution to resolve equal to or lower 

than the original, that is for resolutions of 110, 55, and 28 

pixels. However, we proceed by deconvolution to reach a 

higher resolution than the original, that is for resolutions of 

220 and 440. For the parameterization of the convolution 

(deconvolution), we adopt this annotation C (X, Y, Z) such 

that X is the size of the convolution filter, Y is the number of 

filters and Z is the number of input channels. 

 

 
 

Figure 9. Feature extraction from the input image 

 

3.1.3 Shrinking and non-linear transformation 

Since the feature vector of the LR satellite image is of very 

high dimension, we will have an important computational 

complexity. So, we apply 1X1 convolutions to reduce the 

computational cost and for better restoration. This constraint 

forces to the addition of a shrinkage layer with several filters 

of 40 which is less than the starting number of 196, which 

considerably reduces the number of parameters. 

We also use several layers of 3X3 and several mapping 

layers of 12 for a better compromise between the accuracy and 

complexity of mapping, which is illustrated in Figure 10, 

showing the reduction of the dimensionality. 

 

 
 

Figure 10. Shrinking process and non-linear transformation 

 

3.1.4 multi-scale fusion/integration 

Figure 11 shows the process of fusing the feature maps 

which is done by concatenation and improves the accuracy of 

the super-resolution reconstruction [35], so we proceed to 

merge all the features from multiple scales. The fusion is done 

by upsampling or downsampling depending on the scale to 

adapt the adjacent networks. This is a key phase for the fusion 

of the features of several resolutions in order to better learn the 

details of the satellite image such that each sub-network of 

resolution proceeds by upsampling to the direct higher 

resolution and downsampling to the direct lower resolution 

and sends the clean result of its resolution. The set of results 

obtained is concatenated by resolution. This way of doing 

things has considerably improved the performance of both 

high and low-frequency detail reconstruction according to this 

experiment. 

The deconvolution operation is done by transposed 

convolution. This layer aggregates the features with 

deconvolution filters for a scaling factor of 4. This layer 

efficiently trains the oversampling feature kernels. Figure 12 

shows this integration process which allows to the integration 

of the set of features learned on each sub-network for each 

resolution. This integration proceeds by convolution and 
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deconvolution in a reverse way to the feature extraction 

process which allows to the preparation of the network output. 

 

 
 

Figure 11. Multi-scale fusion process 

 

 
 

Figure 12. Multi-scale integration process 

 

3.1.5 Image reconstruction 

After the extraction of the features of the 5 sub-networks, 

we extend the dimension to the output and then we oversample 

the image to the size of 440X440 before restoring it to the size 

of 400X400 by exploiting the information of the padding 

carried out in mosaicking (cf. 3.2.2) to preserve the existing 

spatial hierarchy in the satellite image. Figure 13 shows this 

process, as we see, the concatenation of the features and the 

spreading at the output. 

 

 
 

Figure 13. Image reconstruction process 

 

3.1.6 Restoration of the satellite image 

At the end of the reconstruction of the index image (10, 10), 

that is to say, the last image of the same mosaic (last image of 

the batch), we must reconstruct the mosaic to have the same 

image at the output as the input image. This phase is detailed 

in Figure 14, which exploits the information of the mosaic that 

allows the reconstruction of the image transparently. 

 

 
 

Figure 14. Image recovery process 

The transfer of convolution filters takes good advantage of 

this multi-scale approach for fast convergence given the size 

of the data. The proposed model is based on several key factors 

for increasing the quality of satellite images. The separation 

between the convolution layers (which allow the extraction of 

features from the satellite images) and the deconvolution 

layers (which contain the scale factor information) combined 

with the principle of multi-scale aggregation are decisive for 

this model. 

 

3.2 Application to satellite images 

 

This section is devoted to the application of the adopted 

FSRSI model to the case of satellite images. This model takes 

into account the problems mentioned and the specificities of 

satellite images and ends with a fundamental approach of 

super-resolution adapted and a specific configuration and 

training. 

To overcome the problems mentioned in the introduction, 

this model is first tested on compressed satellite images before 

opting for a generic solution that can be adapted to the case of 

satellite images, using the adopted model. 

 

3.2.1 RGB satellite image compression approach 

The first solution is inspired by the literature [36]. It consists 

in simply using RGB compression of satellite images. 

Otherwise, the idea is to compress multispectral images in 

RGB format, keeping only the RGB bands and eliminating the 

others. In the latter case, the loss of information carried by the 

eliminated bands can make the resulting super-resolved image 

inadequate for further processing in which this information is 

important. 

On the other hand, compression can be carried out by image 

processing by analogy to the signal with Fourier transforms 

[37]. Indeed, several compression algorithms adapted to 

satellite images exist in the literature. They can be classified 

as lossless [38] or lossy [39] compression algorithms. This 

study proposes to opt for the lossless ones, given their 

performance, and to preserve the characteristics of the satellite 

images as much as possible. Compression would therefore be 

a simple solution that will allow proceeding later, by training 

similar to the case of ordinary RGB images. 

 

3.2.2 FSRSI approach without compression and spectral 

dependence 

To overcome all the problems related to the processing of 

multispectral and hyperspectral images without loss of 

information due to compression, this study proposes a new 

generic approach to adapt to the different types of these images 

including satellite images. This solution consists in adapting 

the data as well as improving the scalability of the model (its 

scaling) for a better reconstruction and to overcome the 

normalization problem. 

Indeed, to overcome the processing complexity problem 

due to the volumetry of the images because of their size and 

the multiplicity of bands, this study proposes to exploit the 

mosaic functionality to split them into scenes relative to the 

tiles that constitute them while preserving and taking into 

account the spatial dependencies between them. An additional 

phase has been added to the network to have a training dataset 

consisting of a sequence of images (scenes) in a grid that takes 

into account their spatial positions. 

This feature, we propose, is a data propagation tool on the 

CNN that allows to management and query of the data and 

119



 

metadata of the satellite images. It is a powerful model in the 

form of a catalog that provides the source of each pixel on the 

image, and a set of rules to treat the tiles in the same way as 

treat the original image. We also indexed this dataset for better 

management and to optimize the model. This method allows 

to the management of several resolutions to take care of all the 

spectral bands of the Sentinel-2 image. Thus, the mosaic 

manages each spectral band in a transparent way and without 

loss of any pixel since we do not make any modifications to 

the original image. But it is a virtual layer that is added and 

manages the processing, so we pass the image on the network 

through a mosaic that decomposes it into tiles, and at the 

output, we will have a super-resolved satellite image 

reconstructed by the same mosaic. 

The displacement within the mosaic is done in the same way 

as a filter within a CNN with 10 pixels. To stay in the logic of 

a global image, if the displacement is not done with a stride, it 

is like dividing the image into individual parts. In this case, we 

will call it padding in the same way as deep learning; except 

that for us. Padding is not done to add space around the input 

image but to preserve the spatial dimension and capture the 

information at the edges of the resulting images of the mosaic 

in a homogeneous way. 

The act of not using padding does not allow inspecting the 

edges of the input image with filters when extracting features 

by convolution. The experiment has shown that a padding of 

5% to 15% of the size of the resulting image of the mosaic 

should be used, to preserve the information on the edge and 

not to degrade the inference speed of the model. 

 

 
 

Figure 15. Impossible positions without considering the 

padding 

 

 
 

Figure 16. Inspection of image edges using mosaic padding 

 

Thus, the positions of the filter mentioned in red (Figure 15) 

can only be taken on the input image after considering the 

padding which allows capturing the information at the edges 

of the image, which gives the possibility to treat the whole 

satellite image as a single block. So, the padding avoids losing 

the spatial dimension which is crucial for georeferenced 

satellite images. 

The use of padding allows capturing of the positions on the 

edges of the image (Figure 16) and to detection of the features 

on the borders of the image in the same way as in the center of 

the image. 

There is no type of filling specified in deep learning that can 

be used because they are not adapted to this case but this study 

tries to adopt a specific filling according to the position of the 

image on the mosaic; thus, Figure 17 shows the padding 

constitution according to the spatial position of the satellite 

image. 

 

 
 

Figure 17. Constitution of the images with a stride of 10 

according to the position within the mosaic 

 

The mosaic allows choosing of a good spatial hierarchy to 

decompose the satellite image. Indeed, thanks to the 

distribution of the satellite image in mosaic format, the 

proposed model creates a spatial hierarchy in the same way 

that the network does for the creation of feature maps. 

Experience has shown that this way of doing things improves 

the network performance considerably while preserving the 

distribution of the satellite images on the edges. 

Satellite images are a very special case of images that 

comprise a variety of spectral bands belonging to different 

interval waves, and if not normalized they become ill-suited to 

CNN processing generating an internal covariance mismatch 

that relates to the changing distributions of the input data for 

each hidden layer, which increases the computation time and 

may lead to non-convergence, or the impossibility of learning 

the Super-Resolution function as a whole [32]. Indeed, to 

overcome this problem, which is directly related to the 

normalization problem, we propose to use batch normalization 

[40] which reduces the distribution of data to an interval [0-1], 

and not resort to a normalization of the values of the bands 

through the calculation of their average from the beginning 

and at the start of the training, but to proceed by a separate 

training of the bands giving rise to as many feature maps as 

there are bands and to capitalize at the end, on the set of maps 

to reconstruct the output image. This study also proposes to 

take into account the dependency (correlation) between the 

bands due to the overlaps that may exist between them within 

the images. To do this, an adaptation of the algorithms of the 

adopted model was necessary to develop this solution. 

Indeed, the exploitation of the spectral dependence allows 

to solve the spectral variance problem [41] and to eliminate the 

redundant information within the satellite image in a learnable 

and efficient way that reduces redundant parameters and 

accelerates the network. 
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3.2.3 FSRSI approach with spectral dependence 

In addition to the approach used in the previous section, this 

study also proposes to take into account the dependence 

(correlation) between the bands due to the overlaps that may 

exist between them within the images, to see the effect of 

taking into account this spectral dependence on the 

performance and processing time. To do this, a spectral 

correlation module was added to the network to develop this 

solution. This module works in collaboration with the feature 

fusion module as the spectral correlation is only a fusion of 

spectral features on several levels that are the sub-networks of 

different resolutions. this module of exploitation of spectral 

correlation uses 3D convolutions that are best suited to capture 

more features. 

Indeed, the exploitation of the spectral dependence allows 

to solve the problem of spectral variance [41] and to eliminate 

the redundant information in the satellite image in an efficient 

and learning way that reduces the redundant parameters and 

accelerates the network. 

 

3.3 Parameterization and optimization 

 

After the implementation of the model, it was necessary to 

proceed to the configuration of its learning to improve its 

performance. This parameterization consists of the 

redefinition of the hyperparameters or the change of the 

number of feature extraction layers, but also the consideration 

of certain techniques for its optimization. After several 

attempts to train the model with different configurations for 

the three previously proposed solutions, we ended up adopting 

the optimal configurations needed to give the best 

performance. Regarding the Adam optimizer [42] used for the 

optimization of the computation time and convergence rate 

(number of iterations before convergence), we point out that it 

starts with an initial learning rate (the speed at which the 

weights are adjusted) of 0.0001 for the convolution layers 

while it is 10-4 for the Deconvolution layers to minimize the 

losses and adjusts this rate when the loss does not decrease 

after 5 epochs of training. The training rate is reduced by a 

factor of 2 and terminated when the learning rate is less than 

0.00002. 

The depth of the considered convolution layers varies 

between 196 and 64 depending on the 1x1 and 3x3 

convolutions. The step size is 1 and the size of the convolution 

kernels is 3x3 for better reconstruction quality, and zero 

padding is used in the reconstruction step to keep the output 

image size and avoid truncation errors [43].  

The convolution for the no linear mapping layer is a 1×1 

convolution AS suggested also in Network in Network (NIN) 

[34]. In NIN, 1×1 convolution is suggested to introduce more 

nonlinearity to improve accuracy. It is also suggested in 

Google Net [36] to reduce the number of connections. The 1×1 

convolution is used as a dimension-reduction module to 

reduce the computation. By reducing the computational 

bottleneck, the depth and width can be increased. The 1×1 

convolution can help to reduce the model size, which can also 

somehow help to reduce the overfitting problem. 

The proposed model uses a MaxPooling of 2x2 and a batch 

size of 100 to process images of the same scene within the 

same learning epoch. Moreover, the initialization of the 

weights has been done by the Xavier method and the 

initialization of the convolution layers has been done by the 

normal distribution. 

Regarding the activation function, the model use PRelu, 

which is claimed to be better than Relu, it is a kind of Relu 

leakage where the network decides the value of the slope 

instead of a predefined slope of 0.01. It is defined by y=ax 

when x<0 and y=x when x>0 where a is a parameter to be 

determined by the network.  

The cost function is just the standard mean square error 

(MSE) (Eq. (4)), which WELL fits in the Super-resolution 

context [44]. 

 

min
𝛽

1

𝑛
 ∑ (‖𝐹(𝑌𝑠

𝑖 , 𝛽) − 𝑋𝑖‖)2
2𝑛

𝑖=1   (4) 

 

Based on the accumulated experience, one should have a 

larger number of filters to get slightly better results. But in fact, 

the number of layers is limited, it is not enough to prove it. 

They should also increase the layers. If there are more layers, 

larger filters can be replaced by several smaller filters. This is 

what we have done in the network to take advantage of NIN's 

capabilities. 

However; experience has shown that the efficiency of 

CNNs in Super-resolution is not directly related to depth as the 

case for classification which requires a good compromise 

between performance and computation time. For instance, we 

can increase the performance by adding more filters but for 

satellite image time, IT is of the essence (drastic increase in 

time). This experience has shown that we increase complexity 

for benefiting from little performance. This network works in 

5 parallel networks which benefits the optimization of the 

architecture. 

A sentinel image is a product in the form of tiles of 

100*100km with a spatial resolution of 10 to 60m and 13 

spectral bands. The size of an image is, therefore (104X104X13) 

pixels. So, a single layer of convolution trained on this image 

will take 2.3x1012 multiplications for a filter of 196.  

NM/P= Kernel width x Kernel height x Number of channels 

x Number of kernels x Number of vertical slides x Number of 

horizontal slides=3X3X13X196X104X104=2.3x1012. 

In this case, we can use spatially separated convolutions [44] 

which require only 20% of the necessary multiplications, 

however, this technique is not adapted to this satellite context 

where the spatial reference for the pixel is important during 

training. 

On the other hand, FSRSI uses convolutional layers 

separated in depth [45]. We will have 10E4*10E4 individual 

convolution; in total 9x1010. 

Considering the mosaic gives 112X112 individual 

convolution which is in total 110X110X13X3X1=145 for the 

convolution operation in depth and 110X110X196X13=3X107 

for the point convolution operation which gives in total 

322X105. 

This proves the use of separate depth convolutions in the 

neural network. 

So, Table 1 presents the implementation details and the 

parameterization (including hyper-parameters) of the model. 

This parameterization allows a better efficient convergence 

with a minimal error rate and avoids the degradation problem. 

The choice of this parameterization was made following 

several experiments and analyses of the influence of each 

parameter and its adaptability to the model to have this optimal 

configuration for the super-resolution of satellite images 

which offers a better compromise between the quality of the 

super-resolved image and the complexity of the model. 

These improvements allow the proposed network to benefit 

from better performance with an improvement in computation 

time and an adaptation for the processing of satellite images. 
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Thus, a better testing and training strategy is adopted for better 

speed and performance. 

 

Table 1. Parametrization of the model 

 
Parameters Value 

Layers 12 

Filters 196 

Min filters 64 

Training images 
3000 

24000 

Dropout rate 0.8 

Batch image size 100 

Batch num 240 

Filters decay gamma 1.5 

Self-ensemble 8 

Clipping norm 5 

Activation Function Prelu 

Loss function MSE 

Metrics PSNR/SSIM 

Convolutions 1X1/3X3 

Optimizer Adam 

Initial learning rate 0,0001 

learning rate for Deconvolution 

layers 
0,00001 

Reduction factor (learning rate) 2 

Limit learning rate 0,00002 

Step size 1 

Convolution kernels 3x3 

No linear mapping convolution 1X1 

Pooling  MaxPooling 2x2 

Initialization weights Xavier 

Initialization of the convolution normal distribution 

Convolution type 
separate depth 

convolutions 

 

3.4 Data-augmentation 

 

Since network performance increases with the amount of 

data, this model uses the increase in data to expand the dataset 

with new examples to increase the diversity in the training 

satellite images. We reinforce the instance-based data 

augmentation strategy through the work done by the study [46] 

to add the channel aspect by merging channels following this 

model which applies a spectral and spatial fusion method 

without forgetting the effect of spectral dependence. This 

approach consists of adding artificial bands with additional 

information. It is effective in increasing the PSNR, according 

to an experiment we have performed. 

So that the transformations below are applied by realistic 

transformations to the case of satellite images, this choice was 

made carefully after several experiments by measuring the 

contribution of the transformations to the performances and by 

realizing a better compromise between the spatial invariance 

introduced by the data augmentation and the spatial 

dependence imposed by the georeferencing of the satellite 

images. For the increase of the horizontal and vertical offset, 

we use a minimal transformation of 10 pixels with a filling 

from the pixels of the global satellite image. Figure 18 shows 

an example of visualization after the application of this 

transformation. 

In the case of satellite images, the shift has a direction that 

determines the shooting angle which should not influence the 

model; therefore, this study uses the vertical and horizontal 

shift to break the strong coupling with the shooting angle. 

Figure 19 shows an example of visualization after the 

application of this transformation. 

 
 

Figure 18. Data-augmentation of the horizontal and vertical 

shift (width_shift_range= [-10,10]) 

 

 
 

Figure 19. Data-augmentation of the flip 

(horizontal_flip=True; vertical_flip=True) 

 

For the angle of rotation and the same reasons mentioned 

before, the 90, 180, and 270 angles are adopted. Figure 20 

shows an example of visualization after the application of this 

transformation. 

 

 
 

Figure 20. Data-augmentation of the rotation 

(rotation_range=90;180;270) 

 

 
 

Figure 21. Data-augmentation of brightness 

(brightness_range= [0.2,1.2]) 
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The random increase in brightness is also interesting to 

break the coupling with the atmospheric conditions and the 

time of day when the image was taken, so the proposed method 

applies both lighting and shading. Figure 21 shows an example 

of visualization after the application of this transformation. 

Table 2 summarizes the parameters adopted for the data 

augmentation. 

 

Table 2. Parametrization of the data-augmentation 

 
Parameters Value 

Width shift range [-10,10] 

horizontal flip True 

vertical flip True 

rotation range 90;180;270 

brightness range [0.2,1.2] 

 

3.5 Degradation process 

 

The degradation method is important in the Super-

resolution process since it determines the way the images are 

reconstructed, and mastering it allows for the improvement of 

the deep learning model. Most of the models use high-

resolution images and apply a traditional input such as 

interpolation to reach the desired size according to the scale 

factor. Figure 22 shows visualizations to see the effect of each 

type of interpolation on the structure and quality of the 

reconstructed image. 

 

 
 

Figure 22. Effect of interpolation on an input image 

 

 
 

Figure 23. Visualization of the filters and their frequency 

responses 

Thus, we deduce that the use of interpolation deteriorates 

the fidelity of the satellite image and alters the information 

within this image. 

In addition, other methods use filters through convolution 

kernels, which led to testing some filters on input images to 

see their effects on the degradation method of the satellite 

images. Thus, the construction of a Gaussian kernel of the size 

of the input image with a deviation of 1 and a uniform kernel 

with a deviation of 5, allows to better understand this concept. 

Figure 23 visualizes the filters and the Fourier transform 

modules for their frequency responses. 

So, this study considers a degradation function (Eq. (5)). 

 

LR=D(C(HR), α) (5) 

 

D is the degradation function; C is the convolution operator 

and alpha is the degradation parameter. For the degradation, 

we consider a Gaussian blur and a disturbance in the form of 

additive Gaussian noise of variance α= σ2. 

Figure 24 gives a visualization of the degraded image 

considering the Gaussian filter. From this visualization, we 

deduce that the proposed method uses only the Gaussian fuzzy 

for the degradation. 

 

 
 

Figure 24. Visualization of the blur and the Gaussian noise 

 

This approach consists of using a learnable degradation 

method within the model which avoids all the problems 

mentioned before and which improves considerably the 

performances of the model with a real degradation adapted to 

the case of satellite images. Thus, the model uses a learnable 

interpolation that keeps the spatial and frequency structure of 

the details by adapted learning within the network according 

to the output image (according to the scale factor) with 

learnable convolution kernels (filters) which gives a better 

perceptual quality [47] and a flexible pipeline. 

 

 

4. EXPERIMENTATION OF THE MODEL 

 

4.1 Basic super-resolution approach adopted 

 

Indeed, the super-resolution of satellite images consists of 
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reducing the GSD of the image to increase its resolution. To 

achieve this objective, the fundamental approach that we adopt 

is to transform the super-resolution objective which is a poorly 

posed optimization problem into a well-posed inverse problem. 

The idea is to degrade HR images (to increase the GSD) and 

optimize the super-resolution algorithm so that it learns and 

generates HRS images (oversampled HR) and thus 

reconstructs the original images from the degraded images. 

Note that we must calculate performance metrics such as the 

maximum signal-to-noise ratio (PSNR) [48] and SSIM [48] to 

measure the difference between the original image and the 

reconstructed image, and thus evaluate the relevance of the 

model learning.  

 

4.2 Performance measurement metrics 

 

PSNR (Peak Signal to Noise Ratio) is a measure of the 

reconstruction quality of a digital image. It measures the 

reconstruction performance of the super-resolved image 

compared to the original image. 

The PSNR is inversely proportional to the logarithm of the 

mean square error (MSE) (Eq. (6)) [48] between the ground 

truth image and the super-resolved image. 

PSNR (Peak Signal to Noise Ratio) (Eq. (7)) measures the 

reconstruction quality of the super-resolved image compared 

to the original image. 

 

𝑀𝑆𝐸(𝑥, 𝑦) =  
1

𝑁𝑀
∑ ∑ (𝑥𝑖𝑗 −  𝑦𝑖𝑗)2𝑀

𝑗=1
𝑁
𝑖=1   (6) 

 

𝑃𝑆𝑁𝑅 (𝑥, 𝑦) = 10 . log10(
𝐿2

𝑀𝑆𝐸(𝑥,𝑦)
)  (7) 

 

MXN is the size of the image and L is the maximum 

possible value of the pixel (for RGB bands, it is 255). 

However, this measure does not take into account the visual 

reconstruction which can influence the reconstruction at high-

frequency details hence the need for SSIM. 

The structural similarity or SSIM [48] (Eq. (8)) measures 

the visual quality of the super-resolved image as a function of 

the structural similarity to the original image by assuming that 

the human eye is sensitive to changes in image structure. Thus, 

we apply the formula of Eq. (8) to the luminance on 2 windows 

x and y of size 8x8. the equation is composed of the scalar 

products of the terms A (Eq. (9)), B (Eq. 10), and C (Eq. (11)). 

 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) = 𝐴(𝑥, 𝑦). 𝐵(𝑥, 𝑦). 𝐶(𝑥, 𝑦)  (8) 

 

𝐴(𝑥, 𝑦) =
2𝜇𝑥𝜇𝑦+𝐸1

𝜇𝑥
2+𝜇𝑦

2+𝐸1
  (9) 

 

𝐵(𝑥, 𝑦) =
2𝜎𝑥𝜎𝑦+𝐸2

𝜎𝑥
2+𝜎𝑦

2+𝐸2
  (10) 

 

𝐶(𝑥, 𝑦) =
𝜎𝑥𝑦+𝐸3

𝜎𝑥𝜎𝑦+𝐸3
  (11) 

 

With x the ground truth image; y the super-resolved image; 

𝜇𝑥 the mean of x; 𝜇𝑦 the mean of y; 𝜎𝑥
2 the variance of x; 𝜎𝑦

2 

the variance of y; 𝜎𝑥𝑦 the covariance of x and y; 𝐸1 = (𝐾1𝐿)2; 

𝐸2 = (𝐾2𝐿)2 ; 𝐸3 =
𝐸2

2
; L the dynamic of the pixel values, 

which is 255 for the 8-bit coding; K1=0,01; K2=0,03. 

E1, E2 and E3 are intended to stabilize the ratio when the 

denominator is very low. 

However, we consider only a subset of these windows to 

reduce the complexity of the calculation. 

Thus, we need to establish a balance between the 

performance using these performance metrics and the 

perceptual quality of the satellite images which we apply in the 

approach adopted. 

 

4.3 Datasets 

 

To demonstrate the interest in the approach adopted, we use 

free high-resolution raw satellite images. These images are 

provided by the Sentinel-2 satellite of the European Space 

Agency as part of the Copernicus program for environmental 

monitoring, the latter is composed of a constellation of 2 

satellites on the same orbit, they are multi-spectral optical 

images with 13 spectral bands and a revisit capacity of 5 days 

[49]. Table 3 shows the characteristics of Sentinel's MSI 

sensor bands. 

 

Table 3. Spectral bands of the MSI sensor of the Sentinel-2 

 

Bands 
Wavelength 

(nm)  

Spatial 

resolution (m) 

Tape 1 - Coastal Spray 442.7 60 

Band 2 - Blue 492.4 10 

Band 3 - Green 559.8 10 

Band 4 - Red 664.6 10 

Band 5 - Red edge vegetation 704.1 20 

Band 6 - Red edge vegetation 740.5 20 

Band 7 - Red Edge 

Vegetation 
782.8 20 

Band 8 - PIR 832.8 10 

Band 8A - PIR "narrow 864.7 20 

Band 9 - Water vapor 945.1 60 

Band 10 - SWIR - Cirrus 1373.5 60 

Band 11 - SWIR 1613.7 20 

Band 12 - SWIR 2202.4 20 

 

The whole dataset includes 240 scenes (30 regions -shown 

in Figure 25- taken twice a day from 50 km2 over the 4 seasons 

of the year) - without Data Augmentation-; These images of 

Morocco are taken to cover all the regions to cover the 

mountainous, aquatic desert and forest areas as well as areas 

with urban concentration and others with more details, which 

are taken throughout the year to cover all seasons. We tried to 

provide a variety of images to benefit from the model 

performance, taking advantage of the spatial invariance. Table 

4 presents the characteristics of this dataset. 

 

Table 4. Description of the dataset used for training and 

testing 

 
Dataset Sentinel-2 

Original Size 30*4*2=240 

After Mosaic Size 24000 

Spatial Resolution 10m, 20m, 60m 

Avg. Pixels 10E4*10E4 

Avg. Pixels (After Mosaic) 100*100 

Format JPEG 2000 

Encoding 16 bits 

Spectral resolution 13 bands 

Wavelength 442.7-2202.4nm 

 

Morocco is a typical example of the application of Super-

resolution, this country includes both the Mediterranean, a 

continental, and a desert climate and an important mountain 

range and a forest cover. This climatic diversity gives a great 

possibility of generalization of the proposed model on satellite 
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images on the world level. 

This dataset was divided into 192 scenes for training and 48 

scenes for testing. 

 

 
 

Figure 25. Morocco coverage of the training set 

 

The images chosen are very appropriate for training given 

the criteria set for this study. In addition to the diversity within 

the data, this approach also involves taking clear images 

(cloud cover is less than 20%). 

The processing of images taken in the same location at each 

season will be considered as a time series at an interval of 3 

months. The approach adopted is to define the same conditions 

for each image taken at the same interval to follow the trends 

of the seasonal component in the satellite image, so we are 

facing a univariate time series. Thus, Figure 26 represents the 

time series of satellite images taken throughout the year over 

the 4 seasons. 

 

 
 

Figure 26. Time series of the number of images taken 

throughout the year by the administrative region of Morocco  

 

Figure 26 shows that there is a balance between regions for 

the number of images taken for the first 3 seasons including 

spring, summer, and autumn, however, for the winter this 

number varies depending on atmospheric conditions which 

sometimes makes the images unusable. 

In addition, we determine the autocorrelation within the 

images taken for each region to determine the repeatable 

images for each season. Thus, Figure 27 determines this 

process. 

Thus, thanks to this process, the realized approach 

eliminates the seasonal component and gives the model a great 

generalization capacity. 

For the compression solution, the model was adopted to 

exploit the quick looks of the images, that is a spatial and 

spectral subset of the original images. These images are 

produced in true color at a GSD of 320m, which gives images 

313X313 of RGB pixels. For each area, we take 100 images to 

cover different periods and different climatic conditions. The 

constructed dataset, therefore, contains 2400 images for 

training and 600 for testing to benefit from the Bigdata 

performance of the model. 

To demonstrate the generality of the model and the 

reproducibility of the results, a validation on satellite images 

from all over the world with different characteristics is 

necessary; thus, the model has been tested on 5 images 

representative of the 4 continents (Figure 28) which constitute 

the validation set of the model in the same way as the images 

taken from Morocco (20 scenes distributed over the 4 seasons). 

 

 
 

Figure 27. Autocorrelation of satellite images by season in 

the Tanger-Tetouan-Al Hoceima region 

 

 
 

Figure 28. Global coverage of the validation set 

 

4.4 Training details 

 

The model is realized with the Tensorflow framework [50] 

with Keras [51] in the backend, using a GPU (in the form of 2 

graphics cards Nvidia GeForce and Nvidia Quadro). The use 

of tensorboard [52] allowed to follow the training process of 

the model and visualize its performances. 

 

 
 

Figure 29. Visualization of the loss of the model over the 

epochs 

 

From Figure 29 we can see that the metric is not too 

sensitive to the variation of the weights over the epochs and 
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that it drops efficiently, such that it drops rapidly at the 

beginning but slowly at the end (for the test in particular), 

which proves the performance of the model. The experiment 

shows that the model can be further improved, but experience 

shows that increasing the number of epochs will result in a 

longer processing time with a very marginal improvement. 

Moreover, the visualization of the evolution of the training 

of the model allows to better understand it through different 

aspects (weight, bias, gradient). 

 

 
 

Figure 30. Visualization of the progression of aspects of the 

learning model 

 

The visualizations in Figure 30 allow seeing the set of 

aspects influencing the learning of the model. Thus, we can 

see the distribution of weights on the histogram to see the 

usefulness and contribution of each layer in learning and the 

efficiency of the model architecture. As a result, the model, we 

can see that it has well adapted to the weights during the 

learning process by significantly adjusting the biases, which 

has allowed it to have better performances. 

 

 

5. RESULTS AND DISCUSSION 

 

This section discusses the results obtained after the 

experimentation of the model, and the results of the 

experimentation while drawing up and discussing the results 

obtained. 

This approach goes beyond the traditional methods (which 

use several images of a scene) and interpolation methods and 

approaches the results obtained on non-satellite images. 

This network keeps a minimal blurring effect on the satellite 

image but the image is enlarged without noise with better 

features for edges and clearer details in addition to a better 

background, so this network displays a better PSNR and better 

image quality with a more realistic restoration.  

 

5.1 Experimental results of RGB satellite image 

compression approach 

 

Table 5. The overall result of the model for the dataset-based 

compression approach 

 

Datasets PSNR SSIM 

600 images (20 images par zone) 23,62 0,6590 

1800 (60 images per zone) 27,05 0,7726 

3000 (100 images per zone) 29,91 0,7956 

 

Table 5 presents the training and test results of the model 

applied to the dataset used (without consideration of the data 

augmentation) for compressed satellite images. 

Figure 31 illustrates by an example of an image, the result 

obtained during the test of the model. It represents an authentic 

image on the left and the corresponding super-resolved image 

on the right. 

 

 
  

Figure 31. The visual result of the compression solution 

 

The experimentation carried out shows that the perception 

(PSNR) and visual (SSIM) qualities ARE improved 

significantly, especially with a dataset of 100 images per area 

(beyond this value, we notice a minimal improvement of the 

model performances with an increase of the model 

complexity); the super-resolution of these satellite images has 

made it possible to make the image clearer by recovering 

interesting details for the visualization of relief and planimetry. 

However, this approach does not allow more zoom on the 

resulting image since the recovered details are less important. 

Since the work was done on compressed images with a loss of 

information. 

Thus, this solution is not adapted to the case of multispectral 

satellite images and does not allow more zoom, and ignores 

the important information relating to other spectral bands, 

which makes the resulting image unusable except for the 

visualization in true color. 

 

5.2 Summary of the experimentation of the FSRSI 

approach without compression and spectral dependence 

 

To train the model for multispectral satellite images, the 

Sentinel dataset based on 16-bit coded (unsigned) JPEG2000 

mosaics were used. In addition, it was also a question of 

performing a degradation (see degradation) of the resolution 

of the images before training and testing, and validation in the 

same way as for the compression case. 

The results of applying the solution to the Sentinel dataset 

without compression are presented. We note that in this case, 

we experimented with the solution without taking into account 

the dependencies between the bands to confirm or deny their 

impact on the result. Figure 32 shows a sample of the visual 

results of this solution on the elaborated dataset. From this 

figure, we notice a clear improvement in the visual quality of 

the satellite images after Super-Resolution. 
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Figure 32. The visual result of the solution without 

compression and dependence  

 

The obtained result demonstrated the performance of the 

model for the super-resolution of multispectral satellite images; 

indeed, the training and testing of the model resulted in a 

global average PSNR of 30.42db. (since the enhancement is 

not unformed on the image) and an SSIM of 0.89 which is 

relevant for the case of the satellite images for a factor of 4.  

Table 6 presents the performance of the approach without 

spectral dependence. 

 

Table 6. Results obtained after training and testing the model 

 
Metric Performance 

PSNR 30.42db  

SSIM 0.89  

 

 
 

Figure 33. Zoom on a boat in the port of Casablanca 

 

The analysis made on the images obtained has allowed 

deducing that the noise is higher in specific areas AND is less 

in other areas. In addition, Figure 33 shows a zoom (on a boat) 

of the test image before and after the model test. The visual 

and perceptual quality has been improved by the proposed 

model. We can see that the model has improved the visual and 

perceptual quality. The improvement of the perceptual quality 

concerned the areas or objects of heterogeneous structures 

(boats, constructions...). While for those of homogeneous 

structures (sea area for example), we note a clear improvement 

but with a little noise that does not alter the reality of satellite 

images.  

5.3 Summary of the experimentation of the FSRSI 

approach with spectral dependence 

 

To train the model for multispectral satellite images, we 

used the Sentinel dataset. The images cover non-overlapping 

areas of Morocco. Thus, we present this time, the results of 

applying this solution to the Sentinel dataset (13 bands 

multispectral images) without compression, but taking into 

account the dependencies between bands.  

The overlap between the intervals of the spectral bands 

constituting a satellite image gives rise to a dependence 

between the bands by an inter-spectral correlation, which led 

this study to push the research and exploit this correlation in 

the training of the model. 

A comparison of the results was also made of this 

experiment with those of the application without compression 

and dependency after reducing the bands of the trained and 

tested images to only 3 bands. The objective is to confirm or 

deny the impact of taking into account the dependencies 

between the bands. 

The training and testing of the model have allowed for 

obtaining even better performances and very satisfactory 

results with a global average PSNR of 32.18db and an SSIM 

of 0.9186. 

 

Table 7. Results obtained after training and testing the model 

with spectral dependence 

 
Metric Performance 

PSNR 30.42db  

SSIM 0.89  

 

Table 7 shows that the performance is improved by taking 

into account the spectral dependence, (+ 2.24 dB) with a net 

improvement of the convergence speed (the time is improved 

by a factor of 1.7). 

We notice a clear improvement in the visual and perceptual 

quality by using a multispectral Super-Resolution with 

spectral dependence. Taking into account the spectral 

dependencies between the bands has improved the 

performance of the proposed model and the quality of the 

reconstructed satellite images. Moreover, this solution showed 

a great generalization capacity by improving test images 

completely different from the training one. Nevertheless, we 

can notice that as was the case for the second experimentation 

(section 5.2), the improvement concerned mainly the areas or 

objects of heterogeneous structures (non-water). While for 

those of homogeneous structures (sea area), minimal noise was 

found that only influences the human visual perception 

keeping the reliability of the information on the concerned 

areas. However, it is possible to use a frequency filtering 

method to reduce the noise to increase the human visual 

quality, but this method alters the spectral information within 

the satellite images. Nevertheless, the method AIMS to 

improve, all the same, the areas of heterogeneous structures 

mainly targeted by the super-resolution and to improve the 

quality of restoration of homogeneous areas, as well as the 

overall visual quality in a satisfactory way. 

Thus, we compare the model to the state-of-the-art methods 

proposed for the super-resolution of satellite images for scale 

factor 4. This comparison was first made with the standard 

reference method which is the bicubic interpolation, before 

being made with the other methods namely: Auto-en [13], 

SARNet8 [53], NLB-HMS3D [18], SSPSR [54], MCNet [55], 
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3DFCNN [56], GDRRN [57], VDSR [11], EDSR [12], 

SRCNN [58], SRDCN [59] and RCAN [60]. This comparison 

is not exhaustive but includes networks with public 

implementations and architectures that support the input 

dataset so that the comparison is fair. 

 

Table 8. Quantitative comparison of super-resolution models 

for scale factor 4 

 
Method PSNR SSIM 

Bicubic 29,471 0,936 

Auto-en 32,415 0,990 

SARNet8 33,578 0,990 

FSRSI 33,616 0,988 

NLB-HMS3D 33,331 0,983 

SSPSR 33,201 0,979 

MCNet 33,045 0,974 

3DFCNN 32,486 0,958 

GDRRN 32,950 0,971 

VDSR 32,739 0,965 

EDSR 33,178 0,978 

SRCNN 32,414 0,956 

RCAN 32,632 0,962 

 

From Table 8, we can see that the model has the best PSNR 

compared to the other state-of-the-art models, which proves 

the capability of the model in reconstruction, however for the 

SSIM, we find that other models are better with a very reduced 

factor (these models only focus on the spatial information 

exploration but ignore the spectral component, so they will 

have less performance for the other metrics) Thus, the model 

shows a global average PSNR of 0.038 dB compared to the 

following network, otherwise, for the other metrics, the model 

is even better. 

The model shows better performance in other metrics that 

are essential for measuring the performance of models for 

super-resolution of multispectral satellite images. Thus, Table 

9 presents the performance of the FSRSI model in spectral 

angle mapper (SAM) [61]; root means square error (RMSE) 

[62]; Relative dimensionless global error synthesis (ERGAS) 

[63], and cross-correlation (CC) [64]. 

 

Table 9. Quantitative performance in other metrics 

 
Metric Performance 

SAM 2,8431 

RMSE 0,0269 

ERGAS 5,7324 

CC 0,9216 

 

5.4 Computational time 

 

To highlight the speed of the model, a comparison to a 

standard CNN (SRCNN [58]) for Super-Resolution was done 

first before comparing it to a faster version considered in the 

literature (FSRCNN [31]). To do this, a time complexity 

analysis of the algorithms [65] was done. 

Thus, the computational complexity for SRCNN is of the 

order of Eq. (12). 

 

Comp= O{(f1
2n1+n1f2

2n2+n2f3
2) SHR} (12) 

 

This complexity is proportional to the size of the HR image. 

The larger the HR image, the higher the complexity. If we take 

a Sentinel-2 satellite image we have an image with 13 spectral 

bands and a size of 10000X10000 so if we consider a standard 

SRCNN we have Eq. (13). 

 

Comp=O{(81*64+64*1*32+32*25)13*208}=O{2013} (13) 

 

However, for FSRCNN, the complexity is of the order of 

Eq. (14). 

 

Comp= O{(25d+sd+9ms2+ds+81d) SLR} 

                = O{(9ms2+2sd+106d) SLR} 
(14) 

 

This complexity is proportional to the size of the LR image, 

which is much smaller than the SRCNN. So the satellite image 

(if we consider a scale factor of 2) is of the order of Eq. (15). 

 

Comp=O{(9*4*144+2*12*56+106*56)13*10E4} 

=O{15*10E8} 
(15) 

 

For the computation time, SRCNN needs a speed of 19m/s; 

while FRSCNN needs only almost 1m/s.  

Moreover, the model has a complexity of the order of 

O{10E5}, which requires a computation time of 6*10-5m/s.  

However, the space complexity also counts for this case but 

it is an outdated problem nowadays given the available storage 

space allocation. 

 

5.5 Discussion 

 

The adopted approach takes into consideration all the 

specifications of the satellite images. The model is effective 

for the super-resolution of multispectral satellite images 

without data loss with a reliable transformation. Thus, this 

study has allowed to set up a new global approach adapted for 

multispectral images, giving an efficient and optimal model 

with better performances by approaching the cases of ordinary 

images but keeping the reality of spatial images. 

This method capitalizes on all the advantages realized in all 

types of networks but adapted to the adopted design. Indeed, 

FSRSI has a relatively shallow network, with an optimal 

architecture. It is even faster with a better quality of the 

reconstructed image. Indeed, the examination of the results 

obtained confirms the choice of this design which presents 

remarkable results in terms of signal similarity and visual 

quality for the super-resolution of multispectral images. In 

addition, the architectural features and technical parameters 

allow for better performance in terms of the quality of the 

result, but without increasing the computation time and 

complexity too much. We also add that the number of 

parameters for FSRSI is extremely reduced, which allows for 

a decrease in the computations required for the super-

resolution processing of satellite images. 

Thus, the proposed network can reconstruct fine textures 

and realistic details that are essential for a better perceptual 

quality of satellite images that have the particularity of having 

fine details and are important for interpretation. 

The FSRCNN model can be considered as a network that 

provides, a more powerful expression of features and learning 

of correlations of features of intermediate layers. This CNN 

model encompasses all the capabilities allowed nowadays to 

be an unavoidable choice for the Super-Resolution of 

multispectral images. Composed of 6 steps and a set of 

modules, thanks to its simplicity, it is faster than other SISR 

algorithms for satellite images and offers superior 

performance in most cases in terms of PSNR [18].  

In the FSRSI model, the mapping is learned directly without 
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going through interpolation but directly from the LR image, 

with reduced input dimensionality. Thus, FSRSI makes better 

use of 1×1 convolution which is used between two 

convolutions to reduce the number of connections 

(parameters). By reducing the parameters, we only need fewer 

multiplication and addition operations, and ultimately speed 

up the network. This is why FSRSI is faster than other models 

proposed in the literature. 

In addition, FSRSI also uses multiple 3X3 convolutions 

which reduces complexity by reducing the filter size. Thus, 

with fewer parameters to learn, it is better to have faster 

convergence and reduced overlearning problems. In addition, 

the filter size is smaller and the number of filters is lower, with 

only 12464 parameters and an even higher PSNR. This 

improvement is because there are fewer parameters to train, 

which facilitates convergence. Thus, FSRSI generates the 

super-resolved image from a deconvolution layer, which 

reduces the computational load, improves the speed, and 

results in a higher-quality image. 

The results obtained allow to conclude that the empirical 

experimentation performed has confirmed the model 

adaptation to super-resolution of multispectral satellite images. 

However, FSRSI is a global model, generic and better adapted 

to all types of images (RGB, monochrome or multispectral). 

Its results remain satisfactory. 

The use of the compression approach allows to prove first 

of all the use of the model for the treatment of RGB images, 

but especially that this approach is not at all adapted to the 

treatment of multispectral images, where the spatial 

information is encapsulated in spectral bands other than the 

RGB channels. 

Moreover, the spectral dependence between the bands 

allows further improvement to the visual and perceptual 

quality as well as the reconstruction accuracy with an even 

better inference speed and a great generalization capacity. 

Multiscale fusion has improved the efficiency of the model, 

which is a key to the success of the method in terms of efficient 

reconstruction of high and low-frequency details. This 

technique allows keeping a maximum of information within 

the image, thus more details, and a better resolution. The 

information fusion guarantees a faithful reconstruction taking 

into account the real character of the satellite images and the 

spatial coherence, as well as a good consideration of the 

difference in GSD within the Sentinel-2 dataset images. This 

technique allows a multi-level exchange of the extracted 

features within the intermediate layers. 

The proposed network shows good image detail recovery 

and efficient edge reconstruction, in addition to high 

generalization capability by demonstrating its global 

reusability. However, MSE favors a high PSNR, but the model 

also showed satisfactory performance in other metrics mainly 

SSIM, but also in SAM, RMSE, ERGAS, and CC. 

The small noise found in areas with homogeneous structures 

is due to the degradation process that introduces noise in 

interesting areas; in this case the areas with fine structures.  

Despite the use of images with the same characteristics and 

the same sensor with the same GSD, we still have other 

constraints that are related to atmospheric conditions and 

cloud cover that affect the learning process, the experience 

within this model has allowed isolating this phenomenon and 

getting a better ability to generalize  

Further research is needed to improve the training process 

and increase the performance of the network and prove the 

effectiveness of this improvement on the decrease 

(improvement) of the GSD of the satellite image and analyze 

the processes related to spatial imagery, i.e., to see if, for 

example, the method improves the process of object detection 

on a satellite image. 

The experimentation of the model with the best training and 

optimization strategies and an efficient hyper-

parameterization allowed to improve the performances and to 

have a satisfactory gain in PSNR. 

The adopted approach supports both low-cost satellite 

sensors and free sensors to have superior image quality. Indeed, 

the improvement of the quality of satellite images by the 

model improves all the analysis processes using spatial 

imagery such as classification, change detection, and land 

monitoring. 

End-to-end learning techniques, CNN acceleration, neural 

network optimization, consideration of inter-spectral and 

inter-layer correlation, multi-scale fusion, mosaicking process, 

network-in-network, and filter transfer mechanisms as well as 

the choice of training data are among the keys to the success 

of the FSRSI model. 

Thus, the proposed model is effective for the Super-

resolution of satellite images with better performances and a 

great generalization capacity exceeding several state-of-the-

art approaches proposed for Super-resolution and adapting to 

the spatial context. 

 

 

6. CONCLUSION 

 

This paper was motivated by the increasing access to lower-

cost satellite imagery in the emerging commercial space 

industry. In this emerging industry, there is a trade-off between 

sensor quality and price. This paper contributes to the 

advanced processing of satellite images with a major potential 

to reduce this trade-off. Its main objective was to contribute to 

the improvement of satellite images taken from a low-quality 

sensor, at a lower cost, by exploring the potential of artificial 

intelligence and in particular, deep learning. The particularity 

of satellite images led this work to propose a new FSRSI 

model for the super-resolution of multispectral images, in 

particular satellite imagery, by multi-scale fusion of 5 parallel 

sub-networks. Thus, the proposed method exploits all the 

improvements proposed in the literature to get an adequate 

architecture, an adapted parameterization, and specific 

processing to the particularities of multispectral satellite 

images. The proposed model efficiently reconstructs satellite 

images with a clear improvement over the proposed state-of-

the-art methods in terms of performance and noise-free 

reconstruction quality. This solution exploits the potential of 

CNNs, network-in-network concepts, end-to-end learning, 

multiscale fusion, neural network optimization, and 

acceleration in addition to filter transfer. The suggested model 

has successfully improved by a scale factor of 4 the resolution 

of the Sentinel-2 dataset from 10m spatial resolution to 2.5m 

in a reliable manner while maintaining the spectral coherence 

of the 13 spectral bands. This new solution brings 

contributions to the learning model and to the way of 

processing the data (notably the proposal of an efficient 

mosaicking solution) to manage the specificities of the satellite 

images (volumetry, multiplicity, and band dependency). The 

experimentation of this solution showed that they give 

satisfactory results in terms of visual and perceptive qualities 

as well as in terms of inference speed. However, the 

consideration of the spectral correlation makes this solution 
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powerful and generic in terms of the processing capacity of 

any type of multispectral images and learning capacity for 

better generalization at a still interesting time. 

At the end of this study, the results obtained are promising. 

However, we propose as perspectives to push further the 

experimentation of the model with new hyperparameters or an 

adaptation of the architecture to study the possibility of further 

improvement of its performances. This approach can be 

adopted for other satellite image vision problems such as 

change detection, object classification, and cloud removal, but 

other avenues of improvement can be exploited by using, for 

example, auto-encoders to reduce dimensionality and remove 

noise (noise learning). Thus, Spatio-temporal learning can be 

considered to take full advantage of it or to apply this solution 

to multispectral medical imaging to isolate misdiagnosed 

pathologies. 
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