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In agricultural applications, the most essential task is to classify leaf diseases and their 

associated pests from various aspects. To achieve this, a Deep Convolutional Neural 

Network (DCNN) model was developed to classify the leaf diseases based on the soil and 

climatic features. But it needs a recommendation system to control the pesticide use for 

controlling the leaf diseases caused by specific pests. Hence, this paper hybridizes the 

Multi-dimensional Feature Learning-based DCNN (MFL-DCNN) with the Rough Set (RS) 

on an intuitionistic Fuzzy approximation space (RSF)-based decision support system to 

suggest the proper pesticides for a certain crop to be planted in a particular region. First, the 

leaf images are augmented by the Positional-aware Dual-Attention and Topology-Fusion 

with Evolutionary Generative Adversarial Network (PDATFEGAN) model. Then, the 

multi-dimensional data such as the created leaf images, pest, soil, weather, and pesticide 

data are fed to the DCNN with a softmax classifier for classifying leaf diseases and related 

pests. Then, the RSF-based decision model is applied, which determines the correlation 

between leaf disease and pests to recommend suitable pesticides. Finally, the experimental 

results reveal that the MFL-DCNN-RSF accomplishes a maximum efficiency than all other 

models for recommending pesticides to control leaf diseases and pests. 
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1. INTRODUCTION

Crop productivity is endangered by many conditions, like 

environmental issues, crop diseases, and land erosion. The 

pathogenic illnesses of plants are worsened due to the growth 

of a wide range of natural commodities, and environmental 

degradation characteristics [1, 2]. Those illnesses are not 

appropriately recognized and diagnosed by human eyesight, 

which impacts yield productivity. To tackle this issue, 

Artificial Intelligence (AI) models including machine learning 

and deep learning algorithms have been adopted in crop/plant 

disease detection [3, 4]. The crop diseases are mostly 

identified by the leaves using a variety of methods. Many 

researchers have experienced the different machine learning 

algorithms for the detection and classification of various plant 

leaf diseases, including Support Vector Machine (SVM), 

Artificial Neural Network (ANN), random forest, and so on [5, 

6]. But these algorithms need separate mechanisms for each 

process like pre-processing, feature extraction, feature 

selection, and classification. This leads to high computational 

time complexity. 

So, deep learning algorithms have been developed for the 

detection and classification of crop leaf diseases from a huge 

number of images. Mostly used deep learning algorithms are 

pre-trained DCNNs [7-9], e.g., VGG, AlexNet, GoogleNet, etc. 

These algorithms achieved better feasibility and efficiency in 

identifying and classifying leaf diseases. Alternatively, images 

captured from farms were blurred. Poor image quality may 

degrade the accuracy of pre-trained classifiers, which were 

trained on clear high-resolution images. To increase the 

accuracy of leaf disease classification, low-resolution images 

should be regenerated into high-resolution images. For this 

purpose, a variety of Generative Adversarial Network (GAN) 

models has been employed [10], which generate more high-

resolution images from the limited number of low-resolution 

images. Amongst, the GAN with the Dual-Attention and 

Topology-Fusion strategies called the DATFGAN model [11] 

outperformed classical GAN models in terms of sharpness and 

image details. It can generate sharper leaf disease images 

precisely by eliminating artifacts or noisy textures for 

increasing classification accuracy. The generated high-

resolution leaf disease images were classified by the different 

pre-trained DCNN models to identify the types of diseases. In 

our previous works, the problems in the DATFGAN were 

solved: (a) the spatial correlation among the training images 

was learned with the position of disease region from the partial 

or whole leaf by the Positional-aware DATFGAN 

(PDATFGAN) model [12], and (b) the non-convergent 

iteration and adversarial learning ability were further 

improved by the Positional-aware Dual-Attention and 

Topology-Fusion with Evolutionary Generative Adversarial 

Network (PDATFEGAN) model which adopts an 

Evolutionary GAN (EGAN) [13]. The EGAN considers many 

adversarial objective values to reduce the different errors 

observed between the distribution of created and actual images. 

But the classification of leaf diseases was not only effective to 

enhance crop productivity. 

Identification of causes for leaf diseases was also essential 

to control both pests and their related diseases efficiently. So, 

a few researchers focused on identifying pests from the leaf 

pest images [14, 15] of different plants using deep learning 

models. But, additional factors like soil and weather attributes 
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were necessary to identify the pests that have more 

responsibility for a particular leaf disease. Also, there were no 

proper pesticide recommendation systems to advise farmers to 

use proper pesticides for controlling pests and leaf diseases. 

Therefore, the MFL-DCNN-RSF model is proposed to 

control pests and leaf diseases by suggesting the proper 

pesticides. It enables a proper decision to predict the pesticide 

for a specific crop to be cultivated in a certain region having 

different soil and climate features. The RSF strategy is adopted 

to create the rule for recommending pesticides regarding 

multi-dimensional data such as crop, climate, soil, leaf 

diseases, and pests. Based on the created rules, the correlation 

between these characteristics is identified to suggest the proper 

pesticide to control leaf diseases and pests. Thus, this MFL-

DCNN-RSF model can be helpful for cultivators to use proper 

pesticides for specific leaf diseases to improve crop 

productivity. 

The remaining sections are prepared as follows: Section 2 

discusses various recommendation systems used in 

agricultural activities. Section 3 describes the MFL-DCNN-RSF 

model and Section 4 demonstrates its competence. Section 5 

summarizes the complete research and gives further 

enhancement. 

2. LITERATURE SURVEY

Pinki et al. [16] designed an automated model using K-

means clustering and the SVM to diagnose the different paddy 

leaf infections. Also, insect repellents were recommended 

based on the infection severity. But this model was not 

effective to classify multiple diseases simultaneously. 

Kosamkar et al. [17] developed a model, which performs 

preprocessing and feature extraction of leaf images followed 

by CNN to classify the diseases and recommend pesticides. 

But it needs other factors, which also affect the leaves.  

Tetila et al. [18] analyzed various CNN frameworks for 

classifying the soybean pest images. However, it has a high 

learning time and less robustness. Rahman et al. [19] designed 

an enhanced 2-level training-based compact CNN model to 

recognize leaf infections and pests from the rice crop images. 

But it requires climate and soil features to improve the 

efficiency of automatically identifying pests. Ayan et al. [20] 

developed a genetic algorithm-based weighted ensemble of 

different pre-trained DCNN models using the sum of 

maximum probabilities mechanism to classify the crop pests 

properly. But its efficiency was less for large-scale datasets.  

Wang et al. [21] developed a new DeepPest using an 

attention strategy for the primary categorization of insect 

photos into plant types. But, it has less efficiency when a small 

number of pest images were trained. Escola et al. [22] 

designed the SVM for the identification of cicadids in coffee 

trees. But it has a high maintenance cost and needs a 

recommendation system to suggest pesticides. Rao et al. [23] 

developed the AlexNet for automatically identifying grapes 

and mango leaf infections. But it needs to classify more classes 

of leaf infections and a recommendation system to suggest the 

proper solution to diagnose that infection.  

Table 1. Comparison of different existing models 

Ref. 

No. 
Algorithm used Problem solved Merits Demerits 

[16] 
K-means clustering

and SVM

Paddy leaf disease 

classification 

It can suggest pesticides 

based on the disease 

severity. 

It was not effective to classify multiple 

diseases simultaneously. 

[17] CNN

Leaf disease classification 

and pesticide 

recommendation 

Better accuracy to suggest 

pesticides 

It needs climate and soil factors to increase 

accuracy. 

[18] CNN Soybean pest classification 
It can control pests in 

soybean fields. 

It has a high learning time and less 

robustness. 

[19] 
2-level training-based

compact CNN

Rice leaf disease and pest 

recognition 
Highest accuracy 

It requires climate and soil features to 

improve efficiency. 

[20] 

Genetic algorithm-

based weighted 

ensemble DCNN 

Crop pest classification 

It can recognize pests earlier 

and suggest suitable 

pesticides. 

Its efficiency was less for large-scale 

datasets. 

[21] 
DeepPest using 

attention strategy 
Pest classification High robustness 

It has less efficiency when for a small-

scale dataset. 

[22] SVM Cicadids recognition Better accuracy 

It has a high maintenance cost and needs a 

recommendation system to suggest 

pesticides 

[23] AlexNet
Grapes and Mango leaf 

disease classification 
Low cost and high accuracy 

It needs to classify more classes of leaf 

infections and suggest the proper solution 

to diagnose that infection. 

[24] Tiny-YOLOv3 Pest classification 

It lowers pesticide costs and 

decreased environmental 

damage. 

More climatic features were needed to 

enhance efficiency. 

[25] OSSL Pest recognition 

It can prevent the 

contamination of a training 

dataset. 

It needs to control the pests by 

recommending pesticides. 

[26] 
Pre-trained CNNs and 

SVM 

Crop disease and pest 

classification 
Highest accuracy It takes more time due to more features. 

[27] VGG
Multi-crop leaf disease 

classification 
Greater accuracy 

It needs to apply advanced CNN 

structures. 
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Chen et al. [24] developed a Tiny-YOLOv3 model to 

recognize fruit tree pests. In contrast, several climatic features 

were needed to enhance efficiency. Rustia et al. [25] designed 

an Online Semi-Supervised Learning (OSSL) for an 

automated insect pest forecasting model. But it needs to 

control the pests by recommending pesticides. Turkoglu et al. 

[26] presented CNN and SVM classifiers to identify crop

disease and pests. But it takes more time due to a large number

of features. Paymode and Malode [27] employed the VGG

model to identify the multi-crops leaf infection. But it needs to

apply advanced CNN structures to achieve a deep analysis of

leaf images.

Table 1 summarizes various models according to the 

algorithms used, problem solved, merits, and demerits. 

According to this summary, it is addressed that most of the 

models focused on pest and leaf disease classification, whereas 

a pesticide recommendation is essential to prevent pest and 

leaf diseases efficiently. So, this research develops a new 

recommendation system, which suggests pesticides to control 

environmental damages due to the use of excessive or 

improper pesticides. 

3. PROPOSED METHODOLOGY

The MFL-DCNN-RSF model for recommending suitable 

pesticides based on the classification of leaf diseases and pests 

is explained briefly. Figure 1 depicts the overall representation 

of the presented model for classifying the leaf diseases with 

their related pests and predicting the proper pesticide. 

Figure 1. Schematic overview of MFL-DCNN-RSF for 

pesticide recommendation 

3.1 Leaf images and pest data collection 

To begin, the PlantVillage Dataset (PVD) [28] is used to 

collect leaf infection images for 3 different plants: tomato, bell 

pepper, and potato plants. There are 20636 images in this 

dataset, which are divided into 15 categories: pepper-bell 

bacterial spot, pepper-bell healthy, potato early blight, potato 

late blight, potato healthy, tomato bacterial spot, tomato early 

blight, tomato late blight, tomato leaf mold, tomato septoria 

leaf spot, tomato 2-spotted spider mites, tomato target spot, 

tomato yellow leaf curl virus, tomato mosaic virus and tomato 

healthy. This PVD includes images of several types of leaf 

infections that can impact tomato, pepper, and potato plants. 

Those images are in the RGB color space and saved in the 

uncompressed JPG format. 

Once those images are obtained, the PDATFEGAN model 

is used to generate super-resolution micro patches for all leaf 

images, which are fused to provide complete super-resolution 

leaf images. In addition to the leaf images, a dataset is formed, 

which contains the agricultural pests related to the given 12 

classes of leaf diseases. In this dataset, 10 insect pests are 

included with the related leaf diseases and weather situations 

in the region of the Coimbatore district in Tamilnadu. 

Maximum Temperature (Tmax), Minimum Temperature (Tmin), 

Relative Humidity (RH) in the morning and evening, Rainfall 

(RF), Wind Speed (WS), and Sun-Shine Hours (SSH) are 

among the time series of weather features evaluated in the 

occurrence of pests. Tomato mosaic virus, Tomato leaf curl 

virus, Xanthomonas campestris, Alternaria solani, 

Phytophthora infestans, Corynespora cassiicola, Xanthomonas 

gardneri, Alternaria tomatophila, Passalora fulva, Septoria 

lycopersici, and Tetranychidae are among the pests associated 

with the given 12 classes of leaf diseases and those pest data 

are addressed for the different climatic features. 

3.2 Training of the MFL-DCNN classifier 

Once all these data are obtained, the MFL-DCNN classifier 

is trained to classify the leaf diseases and their related pests. 

The learning of the MFL-DCNN classifier is shown in Figure 

2, wherein the DCNN consists of 3 different pre-trained 

structures such as ShuffleNetV2, DenseNet121, and 

MobileNetV2. 

Figure 2. Learning of MFL-DCNN classifier 

After classification, it is needed to recommend the proper 

usage of pesticides to control leaf diseases efficiently. So, a 

pesticide dataset is created, which contains 12 classes of 

pesticides like copper hydroxide, resistant cultivators, etc. 

Similarly, soil features such as pH, moisture, and availability 

of nutrients (e.g., nitrogen (N), phosphorus (P), and potassium 

(K)) are collected as a soil property dataset. Both pesticide and 

soil datasets are collected around the Coimbatore district in 

Tamilnadu, from November 2021 to May 2022. Table 2 

presents a few examples of pesticides used for leaf diseases 

with their related pests, soil, and weather factors. 
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Table 2. Examples of pesticides used for different leaf diseases, pests, soil and weather factors 

Leaf Disease Name Pest Name Soil & weather factors Pesticide Name 

Pepper bell bacterial spot 
Xanthomonas 

campestris 
High temperature, high RH, low pH, low nutrients Cuprofix 

Potato Early blight Alternaria solani 
High WS, high RH, high temperature, low pH, low 

nutrients 
Maneb 

Potato late blight Phytophthora infestans High moisture, low pH, low nutrients Mancozeb 

Tomato target spot Corynespora cassiicola High moisture, high RH, low nutrients Azoxystrobin 

Tomato mosaic virus Tomato mosaic virus High temperature, low pH, low nutrients Sulfoxaflor 

Tomato yellow leaf curl 

virus 
Tomato leaf curl virus High temperature, low pH, low nutrients Pyrafluquinazon 

Tomato bacterial spot Xanthomonas gardneri High temperature, high RH, low pH, low nutrients BASF Cabriotop 

Tomato early blight Alternaria tomatophila 
High WS, high RH, high temperature, low pH, low 

nutrients 

Bonide Liquid 

Copper 

Tomato late blight Phytophthora infestans High mositure, low pH, low nutrients Clutch 

Tomato leaf mold Passalora fulva High temperature, high RH, low pH, low nitrogen Spray chlorothalonil 

Tomato septoria leaf spot Septoria lycopersici 
Medium temperature, high RH, high RF, low pH, low 

nutrients 
Copper soap 

Tomato two spotted spider 

mite 
Tetranychidae 

High temperature, low RF, low RH, low pH, low 

nutrients 
Bifenthrin 

3.3 Pesticide decision support and recommendation system 

To recommend suitable pesticides, the RSF-based decision 

support model is proposed. The primary tasks in this RSF 

system as illustrated in Figure 3 are fuzzification, RSF 

inference engine training and testing. 

Figure 3. Major processes in RSF decision support system 

First, a fuzzy set is defined, which gives various degrees of 

the membership function for its elements in the range of (0, 1). 

A fuzzy set is an extension of a crisp set, which allows only 

full membership or no membership, whereas fuzzy set allows 

partial membership. The list of multi-dimensional data created 

the fuzzy set as: 

𝑋 = {𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒, … , 𝑁, 𝑃, 𝐾, } (1) 

Then, a membership function defines how each element in 

the input space is mapped to a membership value (or 

membership degree) between 0 and 1. The membership 

function maps all elements of X to a membership value 

between o and 1 as: 

𝜇(𝑥) = {𝐻𝑖𝑔ℎ, 𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑒, 𝐿𝑜𝑤} (2) 

3.3.1 RSF System 

Consider U≠φ is a quasi finite group of topics known as 

space and x is a specific component of U. An Intuitionistic 

Fuzzy Set (ISF) X of U is described as {𝑥, 𝜇𝑋(𝑥), 𝑣𝑋(𝑥)} ,

where 𝜇𝑋: 𝑈 → [0,1]  and 𝑣𝑋: 𝑈 → [0,1]  is the membership

and non-membership degree, correspondingly, for all 

components 𝑥 ∈ 𝑈  such that 0 ≤ 𝜇𝑋(𝑥) + 𝑣𝑋(𝑥) ≤ 1 . The

range 𝜋𝑋(𝑥) = 1 − (𝜇𝑋(𝑥) + 𝑣𝑋(𝑥))  is known as the

indecision component that can provide either membership or 

non-membership or both ranges. Specifically, (𝜇𝑋(𝑥), 𝑣𝑋(𝑥))

is utilized to define the ISF X. 

An intuitionistic fuzzy association (IA) on U is an ISF 

represented on (U×U) represented using the membership μIA 

and the non-membership vIA in Eq. (3). 

𝐼𝐴 = {(𝜇𝐼𝐴(𝑥𝑖 , 𝑥𝑗), 𝑣𝐼𝐴(𝑥𝑖 , 𝑥𝑗)) |𝑥𝑖 , 𝑥𝑗 ∈ 𝑈} (3) 

An IA on U is called an intuitionistic fuzzy neighborhood 

association when it ensures the below criteria, where 

𝜇𝐼𝐴(𝑥𝑖 , 𝑥𝑗)  is the membership degree and 𝑣𝐼𝐴(𝑥𝑖 , 𝑥𝑗)  is the

non-membership degree among 2 features xi and xj. 

1. 𝜇𝐼𝐴(𝑥𝑖 , 𝑥𝑗) = 1 and 𝑣𝐼𝐴(𝑥𝑖 , 𝑥𝑗) = 0 for each 𝑥𝑖 ∈ 𝑈.

2. 𝜇𝐼𝐴(𝑥𝑖 , 𝑥𝑗) = 𝜇𝐼𝐴(𝑥𝑖 , 𝑥𝑗)  and 𝑣𝐼𝐴(𝑥𝑖 , 𝑥𝑗) = 𝑣𝐼𝐴(𝑥𝑖 , 𝑥𝑗)

for each 𝑥𝑖 , 𝑥𝑗 ∈ 𝑈.

Consider 𝐽 = {(𝛼, 𝛽)|𝛼, 𝛽 ∈ [0,1]}  and 0 ≤ 𝛼 + 𝛽 ≤ 1 . 

After, for any (𝛼, 𝛽) ∈ 𝐽 , (𝛼, 𝛽)-cut is provided as 𝐼𝐴𝛼,𝛽 =

{(𝑥𝑖 , 𝑥𝑗)|𝜇𝐼𝐴(𝑥𝑖 , 𝑥𝑗) ≥ 𝛼 𝑎𝑛𝑑 𝑣𝐼𝐴(𝑥𝑖 , 𝑥𝑗) ≤ 𝛽}. It is observed

that the 2 features xi and xj are (𝛼, 𝛽)-similar to IA, when 

(𝑥𝑖 , 𝑥𝑗) ∈ 𝐼𝐴(𝛼,𝛽) and 𝑥𝑖𝐼𝐴(𝛼,𝛽)𝑥𝑗  is defined. Two features 𝑥𝑖

and 𝑥𝑗  are called (𝛼, 𝛽) -matching to IA, when a series of

components 𝑢1, 𝑢2, … , 𝑢𝑛  presents in 𝑈  such that

𝑥𝑖𝐼𝐴(𝛼,𝛽)𝑢1, 𝑢1𝐼𝐴(𝛼,𝛽)𝑢2, … , 𝑢𝑛𝐼𝐴(𝛼,𝛽)𝑥𝑗. In this scenario, it is

observed that xi is a uniformity association 𝐼𝐴(𝛼,𝛽) . The

𝐼𝐴(𝛼,𝛽)-uniformity class of a component x in U is defined as

[𝑥](𝛼,𝛽) . The pair 𝐾 = (𝑈, 𝐼𝐴(𝛼, 𝛽))  is known as IF

approximation space. 

Consider 𝑋 ⊆ 𝑈 . Then, (α, β)-minimum and (α, β)-

maximum approximation of X in the generalized 

approximation space K=(U, IA(α, β)) is defined as 

(𝑋𝑀𝑖𝑛
𝛼,𝛽

, 𝑋𝑀𝑎𝑥
𝛼,𝛽

) in Eqns. (4) & (5): 

𝑋𝑀𝑖𝑛
𝛼,𝛽

=∪ {𝑌|𝑌 ∈ 𝐼𝐴𝛼,𝛽
∗  𝑎𝑛𝑑 𝑌 ⊆ 𝑋} (4) 
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𝑋𝑀𝑎𝑥
𝛼,𝛽

=∪ {𝑌|𝑌 ∈ 𝐼𝐴𝛼,𝛽
∗  𝑎𝑛𝑑 𝑌 ∩ 𝑋 ≠ 𝜑} (5) 

A given set X is known as (α, β)-rough when 𝑋𝑀𝑎𝑥
𝛼,𝛽

≠ 𝑋𝑀𝑖𝑛
𝛼,𝛽

. 

Similarly, a given set X is known as (α, β)-crisp when 𝑋𝑀𝑎𝑥
𝛼,𝛽

=

𝑋𝑀𝑖𝑛
𝛼,𝛽

. Evenly, a set X is known as (α, β)-rough when the limit 

𝐿𝐼𝑀𝐼𝐴
𝛼,𝛽

= 𝑋𝑀𝑎𝑥
𝛼,𝛽

− 𝑋𝑀𝑖𝑛
𝛼,𝛽

such that 𝐿𝐼𝑀𝐼𝐴
𝛼,𝛽

≠ 𝜑. 

3.3.2 Fuzzification 

In this task, a crisp input is converted into a lingusitic 

variable using the membership function provided by the fuzzy 

knowledge base. The triangular membership function is used 

because the linguistic variables are modeled into 3 sets i.e., all 

the elements in X are converted into Low (L), Medium (M), 

and High (H). This process needs to get input provided by the 

user. The compositional ranges of multi-dimensional data are 

great determinants for predicting suitable pesticide. Such 

multi-dimensional data are grouped into 3 linguistic variables 

in the range of 0 to 1 (as illustrated in Table 3). 

Table 3. RSF-based decision input variables (for weather and 

soil attributess) 

Attributes Low (L) Moderate (M) High (H) 

Temperature 0–35 36–65 66–100 

RH 0–29 30–59 60–80 

RF 0–40 41–70 70–100 

WS 15–30 30–69 70–100 

SSH 0.2–0.45 0.46–0.7 0.71–1.0 

Soil moisture 10–25 25–40 40–60 

pH 0.1–0.3 0.3–0.6 0.6–1.0 

Nitrogen (N) 1.0–1.99 2.0–3.99 4.0–6.0 

Phosphorous (P) 0.15–0.35 0.36–0.59 0.60–0.80 

Pottasium (K) 0.1–2.49 2.50-4.49 4.50–8.50 

3.3.3 Membership and non-membership calculation 

The intuitionistic fuzzy tolerance finds the maximum 

indiscernibility of all attributes. The RSF generates (α, β) 

uniformity classes, where α refers to the membership degree 

and β refers to the non-membership degree, correspondingly. 

The membership degree should be large and the non-

membership degree should be small to obtain a better 

prediction of proper pesticides. 

Because each prediction can include accurately a particular 

pesticide, the model fails to analyze the data if belongingness 

is set to 1 and non-belongingness is set to 0. It is due to the 

feature values being non-qualitative. The membership and 

non-membership associations are calculated such that the total 

ranges obtain from 0 to 1 and such factors should be symmetric. 

Here, pesticide prediction is performed using the different 

features related to leaf diseases, pests, soil, and climatic 

conditions. By changing the values of α and β, these features 

may diverge from each other. The range of α is decremented 

and the range of β is incremented, gradually the number of 

features will become more essential. The membership degree 

(μ) and the non-membership degree (v) amid xi and xj are 

described in Eqns. (6) & (8), respectively: 

𝜇𝐴(𝑥𝑖 , 𝑥𝑗) = 1 −
|𝑉𝑎𝑖

𝑥𝑖 − 𝑉𝑎𝑖

𝑥𝑗
|

max(𝑉𝑎𝑖
)

(6) 

𝑣𝐴(𝑥𝑖 , 𝑥𝑗) = 1 −
|𝑉𝑎𝑖

𝑥𝑖 − 𝑉𝑎𝑖

𝑥𝑗
|

2 × max(𝑉𝑎𝑖
)

(7) 

In Eqns. (6) & (7), 𝑉𝑎𝑖

𝑥𝑖  denotes the value of xi for a 

particular crop ai. 

Table 4. Sample rules for pesticide recommendation 

Temperature RH RF WS SSH 
Soil 

moisture 
pH N P K Leaf diseases Pests Pesticide 

H H L M H L L L L L 
Pepper bell 

bacterial spot 

Xanthomonas 

campestris 
Cuprofix 

H H L H M H L L L L 
Potato Early 

blight 
Alternaria solani Maneb 

L L L L L H L L L L Potato late blight 
Phytophthora 

infestans 
Mancozeb 

M H L M M H L L L L 
Tomato target 

spot 

Corynespora 

cassiicola 
Azoxystrobin 

H M L L M M L L L L 
Tomato mosaic 

virus 

Tomato mosaic 

virus 
Sulfoxaflor 

H M L M H L L L L L 
Tomato yellow 

leaf curl virus 

Tomato leaf curl 

virus 
Pyrafluquinazon 

H H L L L L L L L L 
Tomato bacterial 

spot 

Xanthomonas 

gardneri 
BASF Cabriotop 

H H L H H L L L L L 
Tomato early 

blight 

Alternaria 

tomatophila 

Bonide Liquid 

Copper 

L L M L L H L L L L 
Tomato late 

blight 

Phytophthora 

infestans 
Clutch 

H H L H H L L L L L Tomato leaf mold Passalora fulva 
Spray 

chlorothalonil 

M H H L L M L L L L 
Tomato septoria 

leaf spot 

Septoria 

lycopersici 
Copper soap 

H L L L H L L L L L 

Tomato two 

spotted spider 

mite 

Tetranychidae Bifenthrin 

*Note: H – High; M – Medium; L – Low 
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3.3.4 Inference engine and knowledge base 

The knowledge base is a component, where knowledge is 

developed, accumulated, arranged, analyzed, and distributed. 

It comprises a dataset and a rule base. The dataset gives the 

requied elements to define the linguistic variables and rules 

using IF-THEN control constructs. The dataset involves a 

group of facts utilized to match against the IF (condition) parts 

of rules accumulated in the knowledge base. 

The rule knowledge base follows the Mamdani rule creation. 

Table 4 shows a few rules derived from the use of Mamdani 

rule. For an example of pepper bell bacterial spot disease, if 

the temperature is H && RH is H && RF is L && WS is M 

&& SSH is H && soil moisture is L && pH is L && nitrogen 

is L && phosphorus is L && potassium is L, then this leaf 

disease is caused by the pest called Xanthomonas campestris. 

So, to prevent this pest, the Cuprofix pesticide is 

recommended. 

4. EXPERIMENTAL RESULTS

The performance of the MFL-DCNN-RSF model is 

assessed by implementing it in Python 3.7.8 using the PVD. 

Figure 4 shows the application process of MFL-DCNN-RSF. 

To validate the efficiency of this model, 2250 leaf images with 

15 distinct classes are acquired. For the training process, 1500 

leaf images (100 images from each class) are collected 

randomly. For the testing, 750 leaf images (50 images from 

each class) are collected. Also, the efficiency is analyzed in 

terms of different metrics. Figure 5 portrays a few samples of 

the diseased leaf images from each given class. 

Figure 4. Application process of MFL-DCNN-RSF 

Precision is determined by Eq. (8). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑁𝑜. 𝑜𝑓 𝑒𝑥𝑎𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑑𝑖𝑠𝑒𝑎𝑠𝑒𝑑
 𝑙𝑒𝑎𝑣𝑒𝑠 𝑎𝑛𝑑 𝑝𝑒𝑠𝑡𝑠

𝑁𝑜. 𝑜𝑓 𝑒𝑥𝑎𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑑𝑖𝑠𝑒𝑎𝑠𝑒𝑑 𝑙𝑒𝑎𝑣𝑒𝑠 𝑎𝑛𝑑 𝑝𝑒𝑠𝑡𝑠 + 𝑁𝑜. 𝑜𝑓 𝑖𝑛𝑒𝑥𝑎𝑐𝑡𝑙𝑦 
𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑑𝑖𝑠𝑒𝑎𝑠𝑒𝑑 𝑙𝑒𝑎𝑣𝑒𝑠 𝑎𝑛𝑑 𝑝𝑒𝑠𝑡𝑠

(8) 

Recall is determined by Eq. (9). 

𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑁𝑜. 𝑜𝑓 𝑒𝑥𝑎𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑑𝑖𝑠𝑒𝑎𝑠𝑒𝑑 𝑙𝑒𝑎𝑣𝑒𝑠 𝑎𝑛𝑑 
𝑝𝑒𝑠𝑡𝑠

𝑁𝑜. 𝑜𝑓 𝑒𝑥𝑎𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑑𝑖𝑠𝑒𝑎𝑠𝑒𝑑 𝑙𝑒𝑎𝑣𝑒𝑠 𝑎𝑛𝑑 𝑝𝑒𝑠𝑡𝑠 + 𝑁𝑜. 𝑜𝑓 𝑖𝑛𝑒𝑥𝑎𝑐𝑡𝑙𝑦 
𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 ℎ𝑒𝑎𝑙𝑡ℎ𝑦 𝑙𝑒𝑎𝑣𝑒𝑠 𝑎𝑛𝑑 𝑝𝑒𝑠𝑡𝑠

(9) 

F-measure is calculated as Eq. (10).

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
(10) 

Accuracy is determined by Eq. (11). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝑇𝑁)

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(11) 

The findings of MFL-DCNN-RSF, Tiny-YOLOv3 [24], 

OSSL [25], and SVM [26] applied on the multi-dimensional 

dataset (super-resolved leaf disease images, pests associated 

with the weather, soil factors, and pesticides) are given in 

Table 5 and the graphical depiction of accuracy ranges is 

presented in Figure 6. 

Figure 6 addresses that the accuracy of the MFL-DCNN-RSF 

is 10.81% higher than the SVM, 8.07% higher than the OSSL, 

and 6.19% higher than the tiny-YOLOv3. The precision of the 

MFL-DCNN-RSF is 10.33% higher than the SVM, 7.41% 

higher than the OSSL, and 6.01% higher than the tiny-

YOLOv3. The recall of the MFL-DCNN-RSF is 12.04% higher 

than the SVM, 10.17% higher than the OSSL, and 7.41% 

higher than the tiny-YOLOv3. The comparative scrutiny 

clarifies that the MFL-DCNN-RSF model guarantees the highest 

accuracy in classifying the leaf diseases and pests, as well as 

predicting the suitable pesticides compared to the other models 

applied to the multi-dimensional dataset. The proposed MFL-

DCNN-RSF uses a variety of attributes for pesticide 

recommendation by classifying leaf diseases and pests, 

whereas the existing models focus only on the low-resolution 

leaf and pest images, which may not sufficient to provide 

maximum accuracy. Also, existing models take more time for 

learning and have high complexity while increasing the 

number of data. So, according to the observed accuracies, the 

MFL-DCNN-RSF model is highly helpful to classify leaf 

diseases, and pests and recommend suitable pesticides with 

proper usage for controlling the leaf diseases. 

Table 5. Analysis of MFL-DCNN-RSF and existing models 

for pesticide recommendation 

Models 
Precision 

(%) 

Recall 

(%) 

F-measure

(%)

Accuracy 

(%) 

SVM 89.47 87.19 88.33 89.28 

OSSL 91.90 88.67 90.29 91.54 

Tiny-

YOLOv3 
93.11 90.95 92.03 93.16 

MFL-

DCNN-

RSF 

98.71 97.69 98.20 98.93 
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Figure 5. Few sample images of different classes of diseased 

leaf images 

Figure 6. Comparison of proposed and existing pesticide 

recommendation models 

5. CONCLUSIONS

In this article, the MFL-DCNN-RSF model was developed for 

preventing leaf diseases and pests by recommending suitable 

pesticides. This model can be helpful for cultivators to use 

appropriate pesticides for corresponding pests and leaf 

diseases. As a result, it reduces environmental damages due to 

the excessive/improper usage of pesticides and enhances crop 

productivity significantly. The test outcomes proved that the 

MFL-DCNN-RSF model has a mean accuracy of 98.93%, 

respectively, contrasted with the other classification models. 
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