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The slenderness ratio, length to diameter, of the cylindrical concrete samples of the slab 

block by the core-drilling method is believed to affect the compressive strength other 

than the aggregates in the concrete. In this study, the relationship between the 

compressive strength with mixing and slenderness ratio of cylindrical concrete 

specimens was investigated by statistics. Further, the discrimination model for mixing 

cylindrical concrete specimens has been developed by using machine learning 

algorithms, including support vector machine (SVM), linear discriminant analysis 

(LDA), k-nearest neighbor (k-NN), and random forest (RF). A total of 180 cylindrical 

concrete specimens have been measured for compressive strength using UTM. The 

sample consisted of a mixture of type-A and type-B with a slenderness ratio of 2.48, 

2.72, and 3.28, respectively. Samples were obtained by the core-drilling method from 

slab block concrete. The ANOVA tests showed that the aggregate and slenderness ratio 

caused a significant difference in the compressive strength of the concrete (p<0.05). 

This indicates that the type of aggregate mixture in concrete and the slenderness ratio 

of cylindrical concrete specimens significantly affect the compressive strength of the 

concrete. The model for discrimination of mixing cylindrical concrete specimens using 

machine learning algorithms can be used with satisfactory results. LDA is a machine 

learning algorithm that can show stability in the training and testing stages with 

accuracy reaching 78% and inconsistency of less than 2.63% (the smallest compared to 

others). The descending order of machine learning algorithms based on their 

consistency is LDA > RF > SVM > k-NN. Subsequently, this model can discriminate 

the aggregate mixture on cylindrical concrete specimens obtained from the core-drilling 

method. 
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1. INTRODUCTION

Drilling and testing concrete cores is a popular method of 

measuring the in-situ strength of the material. Despite the 

method's costly and time-consuming activities, they produce 

accurate and relevant findings since cores are mechanically 

tested to failure. The test findings should be carefully 

evaluated, as core strengths depend on various variables, 

including the specimen's diameter, length, slenderness ratio, 

aggregate mixing, drilling direction, and reinforcing steel bars 

[1-3]. The core's diameter is crucial when analyzing the results 

of core strength tests. As long as the core diameter is three 

times greater than the maximum aggregate size in the concrete 

mixture, ASTM and British Standards recommend a minimum 

core diameter of 100 mm [4]. Turkish Standard permits the use 

of cores with a diameter of 50 mm [5]. But the Standard does 

not provide any adjustment factors to translate the strength of 

50 mm cores to that of cores with bigger diameters. 

Small-diameter cores are typically favored because they are 

simpler to drill, handle, and store than larger cores. In the case 

of small-diameter cores, the chance of cutting reinforcing bars 

is reduced during drilling, and a smaller hole is left for 

subsequent repair [6, 7]. Additionally, a more extensive region 

may be investigated because it is possible to get a lot of tiny 

cores. Furthermore, small-diameter cores could be the sole 

option in some circumstances when conventional core 

specimens with a slenderness ratio of 2 are sought. Even with 

a slenderness ratio of 1, it is often hard to get 100 mm diameter 

cores in structural reinforced concrete components, 

particularly in pre-stressed units. This can be a result of 

member dimension restrictions or crucial reinforcement places. 

Small-diameter cores are frequently criticized for being 

unreliable. There are conflicting findings regarding the 

relationship between core diameter and core strength; some 

researchers claim no association, while others claim that the 

strength of tiny cores is significantly lower than that of bigger 

cores [8-10]. The size of the specimen, cutting damage, and 

the connection between the maximum aggregate size and the 

core's diameter are the main elements that might lead to 

behavioral variations between small and big cores. Smaller 

cores are more likely to sustain damage when drilled, handled, 

and stored. With smaller cores, drilling damage may 

significantly impact measured strength because the ratio of cut 

surface area to volume rises as core diameter drops. The 
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aggregate's relative size to core diameter is significant for 

small-diameter cores. The impact of any aggregate freed by 

cutting will be amplified when the aggregate particles are 

substantial in comparison to the size of the core. Additionally, 

the test specimen's homogeneity of the material is far lower 

than it would be in a more significant specimen, which might 

affect the interior failure characteristics. 

Concrete's compressive strength is frequently employed as 

a critical factor in the mix design process. However, the tests 

for compressive strength require time. Additionally, tests are 

often conducted seven and twenty-eight days after the concrete 

is poured into a form at a building site [11-13]. It is impractical 

to make corrections even if the results do not exceed the 

design's compressive strength. Because of this, it is crucial to 

estimate the strength of the concrete accurately and 

realistically before it is cast. In some structural circumstances, 

the strength of the concrete must also be assessed after the 

concrete has been exposed to various climatic conditions over 

a lengthy period. 

Currently, various techniques are utilized to calculate in-situ 

strength, and each one offers a variety of advantages, including 

economy, avoiding delays in computing strength, etc. 

However, many of these methods allow for introducing all the 

elements that influence appropriate evaluation. In addition, the 

conceptual design, as well as non-invasive measurement, is 

crucial for processing these data, especially in the current 

engineering scope [14-19]. Therefore, involving machine 

learning in the analysis is a crucial thing to consider. 

Several previous studies focused on estimating compressive 

strength by knowing the composition of the concrete [20-22]. 

However, no one has thought to focus on how to discriminate 

concrete composition if its compressive strength is known. 

This will be very helpful in the practical practice of 

determining the quality of concrete in the case of forensic 

analysis. Furthermore, the development of this model will be 

able to measure and estimate the aggregates used in the case 

of non-conformities in the field. 

In this experimental investigation, the effects of aggregate 

type, as well as the slenderness ratio of the core upon the 

compressive strength, were studied. The correlations between 

compressive strengths and slenderness ratio from cylinder 

concrete were also confirmed. Finally, a model to discriminate 

against aggregates contained in cylinder concrete was 

developed using machine learning.  

2. MATERIAL AND METHOD

The material consists of two types, namely mixing type-A 

and mixing type-B. Mixing type-A is to use the type of 

aggregate 1-2. Mixing type-B uses 1-2 aggregates combined 

with 2-3 aggregates. Both mixing types are combined with 

complementary concrete paste, cement, sand, and water. The 

ratio of cement and sand follows the Indonesian National 

Standard for Mixture selection procedures for normal concrete, 

heavy and mass concrete (SNI 7656:2012), which is 1:2, 

respectively. The physical properties of each aggregate in this 

study are presented in Table 1. The physical properties of 

aggregate for concrete used in this study follow the threshold 

for aggregate requirements for concrete in Indonesia for the 

slurry content of aggregate 1-2, which must be less than 1%, 

and aggregate of 2-3 must be less than 5%. In addition, the 

abrasion on the aggregate must be less than 50%. 

Two concrete slab blocks are prepared according to 

standards according to the two types of aggregate mixing to be 

studied (type-A and type-B). After reaching concrete maturity 

(28 days) [23, 24], cylindrical concrete specimens were taken 

using the core-drilling method with diameters of 7.62 cm, 

10.13 cm, and 12.7 cm, respectively (Figure 1). This 

difference in diameter samples aims to obtain a variation of the 

slenderness ratio of the concrete for further testing of its 

compressive strength. For each of these diameters, thickness 

variations were carried out, including 25.02 cm, 25.16 cm, and 

34.56 cm. From the diameter and length of the sample, the 

slenderness ratio for cylindrical concrete specimens is 2.48, 

2.72, and 3.28. A total of 30 concrete specimens from each 

treatment condition were prepared for testing. From that, 180 

total cylindrical concrete specimens were studied in this study. 

Table 1. Physical properties aggregate used in this study 

Properties 
Aggregate 1-

2 

Aggregate 2-

3 

Fine 

aggregate 

Bulk density 

(gr.cm-3) 
1.34 1.33 1.30 

Saturated surface 

dry 

2.7 

(0.92%) 

2.7 

(0.94%) 

2.59 

(1.08%) 

Sludge waste (%) 0.57 0.48 2.11 

Abrasion value (%) 19.19 

Slump test (cm) 10±2.0 

Figure 1. Cylindrical concrete specimens and slab block 

concrete 

The compressive strength test from cylindrical concrete 

specimens was then carried out using electro-hydraulic servo 

universal testing machines (UTM HT-9501 series) (Figure 2). 

The primary parameter obtained from the electro-hydraulic 

servo universal testing machine is a graph between the x-axis 

of a time and the y-axis of a response in the form of 

compressive strength in MPa units. Furthermore, the 

maximum compressive strength point of the graph is further 

analyzed. The maximum compressive strength is recorded in 

MPa. Cylindrical concrete specimens are placed between the 

lower plates centrically, and loading is carried out at a speed 

of 4-6 kg.s-1.cm-2. 

Figure 2. Compressive strength data acquisition using UTM 
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Statistical data analysis was performed using analysis of 

variance (ANOVA). The general steps of ANOVA include 

setting up the null and alternative hypotheses, determining the 

appropriate ANOVA test to use (e.g. one-way or two-way), 

checking assumptions (normality and equal variances), and 

interpreting the results. Specific processes in ANOVA include 

calculating the sum of squares, degrees of freedom, mean 

squares, and F-statistic to determine the statistical significance 

of the differences between group means. This is conducted to 

observe the significance of the effect of the level of treatment 

on the dependent variable [25]. The confidence level applied 

is 95%. In addition, if there is a difference between treatments 

on the compressive strength value at that confidence level, 

proceed with the Duncan test. 

The prediction made in this study is a qualitative model by 

applying discrimination to distinguish the type of aggregate 

tendency used in cylindrical concrete specimens. Machine 

learning algorithm with the supervised type used in this study 

includes support vector machine (SVM), linear discriminant 

analysis (LDA), k-nearest neighbor (k-NN), and random forest 

(RF). Machine learning algorithms are executed using python 

code by utilizing packets from scikit-learn.  

In addition, “gridsearchcv” from scikit-learn is also used 

optimally to optimize each algorithm's hyperparameters to 

discriminate the model. For SVM, hyperparameters that can 

be optimized, including C coefficient, kernel, gamma, 

independent term in the polynomial kernel, shrinking, decision 

function shape, tolerance for stopping criterion, the maximum 

number of iterations, and boolean parameter to enable 

probability estimates [26]. For LDA, hyperparameters that can 

be optimized, including solver, shrinkage, priors, store 

covariance, tolerance for stopping criterion, number of 

components to keep, and a method used to estimate the 

covariance matrix [27]. For k-NN, hyperparameters can be 

optimized, including several nearest neighbors, distance 

metric, weighting, leaf size, the algorithm used to find the 

nearest neighbors, power parameter for the Minkowski 

distance metric, and several parallel jobs to run for neighbors 

search [28]. For RF, hyperparameters that can be optimized, 

including a number of decision trees in the forest, a function 

used to measure the quality of a split, the maximum depth of 

the decision trees, a minimum number of samples required to 

split an internal node, a minimum number of samples required 

to be at a leaf node, number of features to consider when 

looking for the best split, bootstrap, boolean parameter that 

controls whether or not to use out-of-bag samples to estimate 

the generalization accuracy, number of jobs to run in parallel 

for both fit and predict and seed used by the random number 

generator [29]. 

In the development stage of the discrimination model (Y) to 

be able to distinguish the type of aggregate tendency used in 

cylindrical concrete specimens, independent variables (X) are 

used, including diameter (x1) and length (x2) of cylindrical 

concrete specimens, slenderness ratio (x3) and compressive 

strength of concrete (x4). Every variable in this study indeed 

correlates. Still, the direction of the correlation is not known 

with certainty. Hence, using a machine learning algorithm that 

works without knowing the relationships in the independent 

variables is very appropriate in this case. 

The data was split randomly from the total dataset of 180 

testing samples, with a proportion of 80% for training and 20% 

for testing. The model's performance is measured using a 

confusion matrix focusing on accuracy, precision, sensitivity 

(recall), and F1-score. Based on these parameters, the best 

model is then determined to discriminate the tendency of 

aggregates used in cylindrical concrete specimens by 

computation at the stability of each parameter in the training 

and testing stages of the tested dataset. 

3. RESULT AND ANALYSIS

3.1 Effect of mixing and slenderness ratio of cylindrical 

concrete specimens on compressive strength of concrete 

The ANOVA of the effect of aggregate and the slenderness 

ratio on the compressive strength of cylindrical concrete 

specimens is presented in Table 2. It can be seen that the 

aggregate composition of cylindrical concrete specimens 

significantly affects the compressive strength significantly 

(p<0.05). Besides, the slenderness ratio of cylindrical concrete 

specimens also significantly affects compressive strength at a 

p-value of 95%. However, the influence of both at the same

time did not have a significant effect (p>0.05). The results of

further tests using Duncan test showed that the average

compressive strength of concrete type-A and type-B was

significantly different for all types of slenderness ratio levels

(Figure 3). Only in the condition of the slenderness ratio 3.28

and 2.48 there was no significant difference in compressive

strength. This is probably because in the slenderness ratio of

3.28 and 2.48, the thickness of cylindrical concrete specimens

tends to be the same (25.02 cm and 25.16 cm) with the

difference in diameter (7.62 cm and 10.16 cm). However,

cylindrical concrete specimens at a slenderness ratio of 2.72

use a thickness and diameter of 34.22 cm, 12.7 cm,

respectively. This is in line with the research results of Gao et

al. [30], who reported a positive relationship between the

slenderness ratio and compressive strength.

3.2 Discrimination of mixing cylindrical concrete 

specimens using machine learning algorithms 

The confusion matrix for the application of machine 

learning with the Support Vector Machine (SVM) algorithm is 

shown in Figure 4. The optimal parameter is achieved with 

penalty factor (C) of 1, the polynomial type kernel type 

polynomial with kernel coefficient () is auto, the degree of the 

polynomial kernel function is two, and the independent in 

kernel function is 0.01. The SVM algorithm can generally 

discriminate cylindrical concrete specimens type-A on true 

positive (TP) and type-B on the true negative (TN) training 

phases of 53 and 59, respectively. In the testing phase, the 

SVM algorithm can discriminate cylindrical concrete 

specimens type-A on true positive (TP) and type-B on the true 

negative (TN) in training stages 9 and 14, respectively. 

Table 2. ANOVA from effect of aggregate and slenderness 

ratio on compressive strength of cylindrical concrete 

specimens 

Source of 

variation 

Sum of 

square 
df 

Mean 

square 
F 

P-

value 

Aggregate 937.90 1 937.90 79.92 0.000 

Slenderness 

ratio 
3162.78 2 1581.39 134.75 0.000 

Interaction 56.27 2 28.14 2.40 0.094 

Within 2042.09 174 11.74 

Total 6199.04 179 
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Figure 3. Relationship between slenderness vs. compressive 

strength 

Training Testing 

Figure 4. confusion matrix discriminates mixing aggregate 

of cylindrical concrete specimens using the SVM algorithm 

The performance of the model in discriminating the mixing 

of cylindrical concrete specimens is presented in Table 3. The 

disparity in the accuracy of the model in discriminating 

aggregates in cylindrical concrete specimens in training and 

testing is 17.95%. Accuracy is the number of classifications a 

model correctly predicts divided by the total number of 

predictions made. The disparity in model precision in 

discriminating type-A and type-B aggregates on cylindrical 

concrete specimens in training and testing is 33.33% and 

4.11%, respectively. Precision evaluates the fraction of 

correctly classified instances or samples among those 

classified as positives. The difference in sensitivity (recall) of 

the model in discriminating type-A and type-B aggregates on 

cylindrical concrete specimens during training and testing is 

15.49% and 22.09%, respectively. Sensitivity is how sensitive 

the classification algorithm is to the attributes of the true 

positive. The disparity in the F1-score model in discriminating 

type-A and type-B aggregates on cylindrical concrete 

specimens in training and testing is 24.68% and 13.92%, 

respectively. F1-score is the harmonic mean of precision and 

recall and is a better measure than accuracy. 

Table 3. Performance of SVM algorithms in discriminating 

mixing aggregate of cylindrical concrete specimens 

Stage Parameter Type-A Type-B 

Training 

Precision 0.84 0.73 

Recall 0.71 0.86 

F1-scores 0.77 0.79 

Accuracy 0.78 

Testing 

Precision 0.56 0.70 

Recall 0.60 0.67 

F1-scores 0.58 0.68 

Accuracy 0.64 

The confusion matrix for the application of machine 

learning with the linear discriminant analysis (LDA) algorithm 

is shown in Figure 5. The optimal parameter is achieved by the 

composition of the solver using singular value decomposition 

(svd) with a number of components for the reduction in 

dimensionality being one. In general, the LDA algorithm can 

distinguish cylindrical concrete specimens type-A on true 

positive (TP) and type-B on the true negative (TN) training 

phases of 57 and 52, respectively. In the testing phase, the 

SVM algorithm can discriminate cylindrical concrete 

specimens type-A in true positive (TP) and type-B on the true 

negative (TN) in training stages 13 and 15, respectively.  

Training Testing 

Figure 5. Confusion matrix discriminates mixing aggregate 

of cylindrical concrete specimens using the LDA algorithm 

The performance of the model in discriminating the mixing 

of cylindrical concrete specimens is presented in Table 4. The 

disparity in the accuracy of the model in discriminating 

aggregates in cylindrical concrete specimens in training and 

testing is 2.63%. The disparity in model precision in 

discriminating type-A and type-B aggregates on cylindrical 

concrete specimens in training and testing is 11.69% and 

18.92%, respectively. The difference in model recall in 

discriminating type-A and type-B aggregates on cylindrical 

concrete specimens during training and testing is 14.47% and 

5.33%, respectively. The disparity in the F1-score model in 

discriminating type-A and type-B aggregates on cylindrical 

concrete specimens in training and testing is 1.30% and 5.33%, 

respectively. These results represent that the performance of 

the LDA algorithm is more stable than the SVM algorithm in 

discriminating the mixing aggregate of cylindrical concrete 

specimens. 

Table 4. Performance of LDA algorithms in discriminating 

mixing aggregate of cylindrical concrete specimens 

Stage Parameter Type-A Type-B 

Training 

Precision 0.77 0.74 

Recall 0.76 0.75 

F1-scores 0.77 0.75 

Accuracy 0.76 

Testing 

Precision 0.68 0.88 

Recall 0.87 0.71 

F1-scores 0.76 0.79 

Accuracy 0.78 

The confusion matrix for the application of machine 

learning with the k-nearest neighbor (k-NN) algorithm is 

shown in Figure 6. The optimal parameter is performed by 

using a k-number of neighbors is three. In general, the k-NN 

algorithm can distinguish cylindrical concrete specimens type-

A on true positive (TP) and type-B on the true negative (TN) 

training phases of 62 and 64, respectively. In the testing phase, 

the k-NN algorithm can discriminate cylindrical concrete 
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specimens type-A on true positive (TP) and type-B on the true 

negative (TN) in training stages 9 and 15, respectively. 

 

  
Training Testing 

 

Figure 6. Confusion matrix discriminates mixing aggregate 

of cylindrical concrete specimens using the k-NN algorithm 

 

The performance of the model in discriminating the mixing 

of cylindrical concrete specimens is presented in Table 5. The 

disparity in the accuracy of the model in discriminating 

aggregates in cylindrical concrete specimens in training and 

testing is 23.86%. The disparity in model precision in 

discriminating type-A and type-B aggregates on cylindrical 

concrete specimens in training and testing is 15.73% and 

27.91%, respectively. The difference in model recall in 

discriminating type-A and type-B aggregates on cylindrical 

concrete specimens during training and testing is 41.86% and 

6.74%, respectively. The disparity in the F1-score model in 

discriminating type-A and type-B aggregates on cylindrical 

concrete specimens in training and testing is 31.03% and 

19.32%, respectively. These results represent that the 

performance of the k-NN algorithm is not steadier than the 

LDA algorithm in discriminating the mixing aggregate of 

cylindrical concrete specimens. 

The confusion matrix for the application of machine 

learning with the random forest algorithm is shown in Figure 

7. Optimum parameters are achieved using the function to 

measure the quality of a split, namely, entropy, maximum 

depth of the tree is 15, minimum number of samples required 

to split an internal node is 3, minimum weighted fraction of 

the sum total of weights required to be at a leaf node is 0.1 and 

number of trees in the forest is 40. In general, the random 

forest algorithm can distinguish cylindrical concrete 

specimens type-A on true positive (TP) and type-B on the true 

negative (TN) training phases 56 and 62, respectively. In the 

testing phase, the random forest algorithm can discriminate 

cylindrical concrete specimens type -A on true positive (TP) 

and type-B on the true negative (TN) in training stages 10 and 

16, respectively. 

 

Table 5. Performance of k-NN algorithms in discriminating 

mixing aggregate of cylindrical concrete specimens 

 
Stage Parameter Type-A Type-B 

Training 

Precision 0.89 0.86 

Recall 0.86 0.89 

F1-scores 0.87 0.88 

Accuracy 0.88 

Testing 

Precision 0.75 0.62 

Recall 0.50 0.83 

F1-scores 0.60 0.71 

Accuracy 0.67 

 

The performance of the model in discriminating the mixing 

of cylindrical concrete specimens is presented in Table 6. The 

disparity in the accuracy of the model in discriminating 

aggregates in cylindrical concrete specimens in training and 

testing is 12.20%. The disparity in model precision in 

discriminating type-A and type-B aggregates on cylindrical 

concrete specimens in training and testing is 24.72% and 

1.30%, respectively. The difference in model recall in 

discriminating type-A and type-B aggregates on cylindrical 

concrete specimens during training and testing is 10.67% and 

15.56%, respectively. The disparity in the F1-score model in 

discriminating type-A and type-B aggregates on cylindrical 

concrete specimens in training and testing is 17.28% and 

8.43%, respectively. These results represent that the 

performance of the random forest algorithm is more stable 

than the k-NN algorithm in discriminating the mixing 

aggregate of cylindrical concrete specimens. 

 

  
Training Testing 

 

Figure 7. Confusion matrix discriminates mixing aggregate 

of cylindrical concrete specimens using the random forest 

algorithm 

 

Table 6. Performance of random forest algorithms in 

discriminating mixing aggregate of cylindrical concrete 

specimens 

 
Stage Parameter Type-A Type-B 

Training 

Precision 0.89 0.77 

Recall 0.75 0.90 

F1-scores 0.81 0.83 

Accuracy 0.82 

Testing 

Precision 0.67 0.76 

Recall 0.67 0.76 

F1-scores 0.67 0.76 

Accuracy 0.72 

 

 

4. CONCLUSIONS 

 

The relationship between compressive strength with mixing 

and slenderness ratio of cylindrical concrete specimens was 

studied using ANOVA statistical methods. Furthermore, the 

discrimination model for mixing cylindrical concrete 

specimens has been studied by using machine learning 

algorithms, including support vector machine (SVM), linear 

discriminant analysis (LDA), k-nearest neighbor (k-NN), and 

random forest (RF). The mixing of aggregate and slenderness 

ratios is known to produce significant differences in the 

compressive strength of cylindrical concrete specimens 

(p<0.05). In particular, type-A and type-B of the type of 

concrete mixing significantly affect the compressive strength 

of cylindrical concrete specimens from further statistical tests 

using Duncan testing. Besides, the slenderness ratio has also 

significantly affected the compressive strength of cylindrical 

concrete specimens. LDA algorithm from machine learning 

can direct the discrimination of a mixture of cylindrical 

concrete specimens obtained by the core-drilling method from 

a slab block. It can be concluded that the outcomes of the 
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machine learning model are encouraging and complement 

each other's statistically based experimental process control 

tools. This study figures that the LDA model's machine 

learning algorithm is more accurate in discriminating than the 

other machine learning models. Machine learning techniques 

are more appropriate and trustworthy when it is difficult to 

obtain experimental results or when the decision of an expert 

is essential. 
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