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The fixed point theory is of great importance as it is used as an application for solving 

differential equations for different types of equations and various applications in 

physical, engineering, and statistical sciences. This investigation aims to define (λ, ρ) -

firmly nonexpansive multivalued mappings in modular function spaces and to introduce 

a new iterative algorithm. Accordingly, some results of approximating fixed points for 

these mappings are proved with an example. Further, the concept of stability is 

discussed and supported by an example. 
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1. INTRODUCTION

A lot of academics have worked on the fixed point since it 

has numerous applications in a wide range of industries. Over 

the years, many researchers have introduced iterative 

processes to solve fixed point problems, but the search for 

more effective and quick methods continues [1]. Modular 

function spaces were first introduced by Nakano in (1950), and 

Musielak and Orlicz greatly expanded on them [2]. One of the 

most important characteristics of the Modular function spaces 

is that considered a space separate from other spaces and is 

dealt with by functions. 

Khamisi and Kozlowski [3] were the first to discuss the 

fixed point in modular function spaces in 1990. Researchers in 

this subject, which is thought to be growing, have tried to 

approximate the fixed point in modular function spaces. In 

Mann and Ishikawa iterative processes, Dehaish and 

Kozlowski [4] proved certain conclusions of approximation 

fixed point by modular function spaces. For monotone 

asymptotically nonexpansive mapping in modular function 

spaces, Alfuraidan and Khamsi [5] developed the Fibonacci-

Mann iteration with studding. Hussain Khan [6] developed the 

notion of a strongly nonexpansive mapping from Banach 

spaces to modular function spaces. Additionally, Panwar [7] 

recently presented some findings in this area as shown in 

Figure 1. Only the fixed point theory for single-valued 

mappings acting in modular function spaces was addressed by 

Kozlowski [8]. Berinde [9] introduced and studied a tighter 

idea of nearly stability for fixed point iteration algorithms. 

Besides, Abed and Abduljabbar [10] demonstrated a general 

two theorem for the two step iterative sequence of multivalued 

mappings in a complete convex real modular space. In order 

to achieve the best approximation in modular spaces, Abed 

and Sada [11] used fixed point theorems of compact -

nonexpansive multivalued mapping. For iteration schemes in 

multivalued mappings in modular function spaces, Abdul 

Jabbar and Abed [12] studied convergence. For shared fixed 

points and convergence, Morwal and Panwar [13] presented a 

three-step iterative technique in three multivalued -

nonexpansive mappings and studded approximation. Okeke 

and Khan [14] subsequently extended the proof to the class of 

multivalued -quasi-contractive mappings with studding of 

stability. Abed and Jabbar [15] developed the idea of 

normalized duality mapping in actual convex modular spaces. 

Then, a few of its characteristics have emerged, enabling the 

handling of outcomes connected to the idea of uniformly 

smooth convex real modular spaces. In this regards, Abed and 

Abduljabbar [16] demonstrated convergence for iteration 

algorithms in multivalued mappings in modular function 

spaces. Using the Picard-Krasnoselskii hybrid iterative 

process in these spaces, Okeke et al. [17] proved theorems for 

-quasi-nonexpansive mappings.

There are many iterative schemes presented by researchers,

the aim of the paper to find a new iterative scheme to

approximate the fixed point that is faster than the previous

iterative scheme.

With the introduction of securely multivalued mappings and 

a new iterative technique and some comparison, the goal of 

this work is to extend the findings of prior studies, The 

following Figure in the study [7]: 

Figure 1. Generated of ρ-converges to the fixed point by 

taking different initial values 

Here, we construct an iterative sequence of a four-step for 

(λ, ρ)- firmly nonexpansive multi-valued mappings and study 
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it is convergence and stabile to fixed point in the framework 

of modular function spaces confirming the results an example 

and tables are provided. Further, we mention to utilize our 

proposed algorithm in solve differential equation as an 

application. 

 

 

2. PRELIMINARIES 

 

This section includes some fundamentals, significant 

definitions, and certain lemmas. Assume that Ω is a nonempty 

set and that Σ is a nontrivial σ -algebra of L p subsets. 

Considering that ρ is closed in terms of constructing a finite 

union and has countable crossings and differences, let ρ be 

nontrivial ring subsets of Ω. Additionally, let us assume that 

𝐸 ∩ 𝐴 ∈ 𝜌 for any 𝐸 ∈ 𝜌 and 𝐴 ∈ Σ, there exists an increasing 

series of sets𝐾𝑛 ∈ 𝜌 such that Ω = ⋃𝐾𝑛. With help from, we 

denote by E the linear space of all simple functions. The space 

of all extended measurable functions, or all functions, is 

denoted by 𝑀∞. 

𝑓: Ω ⟶ [−∞, ∞]  Then, {𝑔𝑛} ⊂ 𝐸 , |𝑔𝑛| ≤ |𝑓| and 

𝑔𝑛(𝑤) ⟶ 𝑓 for all 𝑤 ∈ Ω, by 1𝐴 the characteristic function of 

the set 𝐴 [8]. 

 

Definition 1 [8]: 

Let 𝜌: 𝑀∞ ⟶ [0, ∞]  be a nontrivial, convex, and even 

function.  

Then, 𝜌 is a regular convex function pseudo modular if : 

(a) ρ(0)=0. 

(b) ρ is considered as a monotone, and, |f(w)|≤|g(w)| for all 

𝑤 ∈ Ω implies ρ(f)≤ρ(g), where 𝑓, 𝑔 ∈ 𝑀∞. 

(c) ρ is considered as an orthogonally sub additive, and, 

𝜌(𝑓1𝐴∪𝐵
) ≤ 𝜌(𝑓1𝐴

) + 𝜌(𝑓1𝐵
) for any 𝐴, 𝐵 ∈ Σ  as A∩B 

nonempty, where 𝑓 ∈ 𝑀∞. 

(d) 𝜌 has the Fatou property: |𝑓𝑛(𝑤)| ↑ |𝑓(𝑤)| for all 𝑤 ∈
Ω implies 𝜌(𝑓𝑛) ↑ 𝜌(𝑓),where 𝑓 ∈ 𝑀∞. 

(e) 𝜌 is considered as an order continuous in 𝐸, and, 𝑔𝑛 ∈ 𝐸 

and |𝑔𝑛(𝑤)| ↓ 0 implies 𝜌(𝑔𝑛) ↓ 0. 

 

Define 𝑀 = {𝑓 ∈ 𝑀∞: |𝑓(𝑤)| < ∞, 𝜌 − 𝑎. 𝑒} 

where, each 𝑓 ∈ 𝑀  is actually an equivalence class of 

functions equal ρ-a.e. rather than an individual function. 

 

Definition 2 [18]: 

Let ρ:M⟶[0,∞] possesses the following properties: 

1- ρ(0)=0, f=0, ρ-a.e 

2- ρ(αf)=ρ(f), for every scalar 𝛼 

3- ρ(αx+βy)≤ρ(x)+ρ(y) For every α,β≥0 with α+β=1 

where: convex modular. 

 

Definition 3 [3]: 

According to definition 2 ρ is considered as a convex 

modular in X, as well as is named modular function spaces: 

 

𝐿𝑝 = {𝑓 ∈ 𝑀: 𝜌(𝜆𝑓) ⟶ 0 𝑎𝑠 𝜆 ⟶ 0} 

 

Definition 4 [8]: 

Let 𝜌 ∈ ℜ then ρ has Δ2-condition if sup 𝜌(2𝑓𝑛, 𝐷) ⟶ 0 as 

k⟶∞ and 𝐷 ⟶ ∅, and sup 𝜌(𝑓𝑛, 𝐷) ⟶ 0 

Here, ρ is considered regular convex function modular if 

ρ(f)=0 then f=0, a-e the class of all nonzero regular convex 

function in modular Ω is denoted by ℜ. 

 

Definition 5 [8]: 

Here, we considered the above definition of 𝜌 on Ω let r>0, 

ϵ>0 define 𝐷(𝑟, 𝜖) = {(𝑓, 𝑔): 𝑓, 𝑔 ∈ 𝐿𝑃 , 𝜌𝑓 ≤ 𝑟, 𝜌𝑓 − 𝑔 ≥
𝜖𝑟}. 

Let 𝜉1(𝑟, 𝜖) = inf {1 −
1

𝑟
𝜌(

𝑓+𝑔

2
) ∶ (𝑓, 𝑔) ∈ 𝐷(𝑟, 𝜖)} 

If 𝐷(𝑟, 𝜖) ≠ ∅ and 𝜉1(𝑟, 𝜖) = 1, If 𝐷(𝑟, 𝜖) = ∅ 

Also, 𝜌 satisfy (UC1) if for every r> 0, 𝜖 > 0 𝜉1(𝑟, 𝜖) > 0 

then 𝐷(𝑟, 𝜖) ≠ ∅. 

 

Definition 6 [8]:  

Let ρ be a nonzero regular convex function modular defined 

on Ω ρ satisfy (UUC1) 𝛿 ≥ 0, 𝜖 > 0 there exists 𝜂1(𝑟, 𝜖) > 0 

depending only on 𝛿 and 𝜖  such that 𝜉1(𝑟, 𝜖) > 𝜂1(𝑟, 𝜖) > 0 

for any r>δ. 

 

Definition 7 [10, 15]:  

Let 𝜌 ∈ ℜ 

1- We say that {𝑓𝑛} is 𝜌-convergent to 𝑓 if 𝜌(𝑓𝑛 − 𝑓) ⟶ 0. 

2- A sequence {𝑓𝑛} is 𝜌-Cauchy sequence if 𝜌(𝑓𝑛 − 𝑓𝑚) ⟶
0 as n, m→∞. 

3- 𝐵 ⊏ 𝐿𝑝  is 𝑛𝑎𝑚𝑒𝑑 𝜌 -closed if for any 𝑓𝑛 ∈  𝐿𝑝  the 

convergence 𝜌(𝑓𝑛 − 𝑓) ⟶ 0and 𝑓 belongs to 𝐵. 

4- 𝐵 ⊏ 𝐿𝑝 is 𝑛𝑎𝑚𝑒𝑑𝜌-bounded if 𝜌- diameter is finite. 𝜌- 

diameter define as ℌ𝑝(𝐵) = sup{𝜌(𝑓 − 𝑔), 𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵} <

∞. 

5- A set 𝐵 ⊏ 𝐿𝑝 is named strongly 𝜌-bounded if 𝛽 > 1 and 

𝑀𝑝(𝐵) = sup{𝜌(𝛽(𝑓 − 𝑔)), 𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵} < ∞. 

6- A set 𝐵 ⊏ 𝐿𝑝 is called 𝜌-compact if every 𝑓𝑛  ∈ 𝐵, there 

exists a subsequence {𝑓𝑛𝑘
} and 𝑓 in 𝜌(𝑓𝑛𝑘

− 𝑓) → 0. 

7- A set 𝐵 ⊏ 𝐿𝑝  is called ρ-a.e, closed if every 𝑓𝑛  ∈ 𝐵  , 

which𝜌 − 𝑎. 𝑒, converges to some f, then f in B. 

8- A set 𝐵 ⊏ 𝐿𝑝 is called ρ-a.e, -compact if every 𝑓𝑛  ∈ 𝐵, 

there exists a subsequence {𝑓𝑛𝑘
} 𝜌 − 𝑎. 𝑒 -converges to some 

f in B.  

9- Let f in 𝐿𝑝 and 𝐵 ⊏ 𝐿𝑝 , the 𝜌-distance between f and B 

is defined as: 

 

𝑑𝑖𝑠𝑡𝑝(𝑓, 𝐵) = inf{𝜌(𝑓 − 𝑔), 𝑔 ∈ 𝐵}. 

 

Note that, ρ dose note satisfy triangle inequality so ρ-

convergence dose not ρ-Cauchy, it is possible that this 

relationship can be realized if and only if ρ satisfies Δ2 -

condition [6]. 

 

Definition 8 [6]:  

The sequence {𝑡𝑛} is considered to be bounded away from 

0 if α>0 and t 𝑡𝑛 > 𝛼 for all 𝑛 ∈ 𝑁. Also, the sequence {𝑡𝑛} is 

considered to be bounded away from 1 if 𝑏 < 1 and 𝑡𝑛 ≤ 𝑏for 

all n∈N. 

 

Definition 9 [6]: 

𝐸 ⊂ 𝐿𝑝, let 𝑇: 𝐸 ⟶ 2𝐸 said to be satisfy condition (I) if no 

decreasing function ∅: [0, ∞) ⟶ [0, ∞)  with ∅(0) =
0, ∅(𝑟) > 0  for all r ∈ [0,∞] such that 𝜌(𝑓 − 𝑇𝑓) ≥

∅(𝑑𝑖𝑠𝑡𝜌 (𝑓, 𝐹𝑝(𝑡))) for all 𝑓 ∈ 𝐸. 

 

Definition 10 [13]: 

A set 𝐸 ⊂ 𝐿𝑝  is 𝑛𝑎𝑚𝑒𝑑 𝜌- proximinal if for each 𝑓 ∈ 𝐿𝑝 

there exists an element 𝑔  in E. And, 𝜌(𝑓 − 𝑔) =
𝑑𝑖𝑠𝑡𝑝(𝑓, 𝐸) = inf { 𝜌(𝑓 − ℎ): ℎ 𝑖𝑛 𝐸 .  
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Lemma 1 [6]:  

Let 𝜌 ∈ ℜ satisfy (UUC1) and let {𝑡𝑛} in (0, 1) be bounded 

away from 0 and 1, if m>0 Then, lim 𝑠𝑢𝑝𝑛⟶∞𝜌(𝑓𝑛) ≤
𝑚, lim 𝑠𝑢𝑝𝑛⟶∞𝜌(𝑔𝑛) ≤ 𝑚 , and  𝑙𝑖𝑚𝑛⟶∞𝜌(𝑡𝑛𝑓𝑛 + (1 −
𝑡𝑛)𝑔𝑛) = 𝑚, then lim 𝑛⟶∞ 𝜌(𝑓𝑛 − 𝑔𝑛) = 0. 

 

Lemma 2 [9]: 

Let {𝑐𝑛}𝑛=0
∞ , {𝑑𝑛}𝑛=0

∞  be sequence of nonnegative number 

and 0 ≤ 𝑟 < 1, such that 𝑐𝑛+1 ≤ 𝑟𝑐𝑛 + 𝑑𝑛 for all 𝑛 ≥ 0 

1- if 𝑙𝑖𝑚𝑛⟶∞𝑑𝑛 = 0, then 𝑙𝑖𝑚𝑛⟶∞𝑐𝑛 = 0 

2- if ∑ 𝑑𝑛
∞
𝑛=0 < ∞ , then ∑ 𝑐𝑛

∞
𝑛=0 < ∞ 

Here, 𝑃𝑝(𝐸) denotes the family of nonempty ρ-proximinal, 

ρ-bounded subset of E, 𝐶𝑝(𝐸) denotes the family of nonempty 

ρ-closed, ρ-bounded subset of E, and 𝐻𝑝(. , . )  ρ- Hausdorff 

distance on 𝐶𝑝(𝐸) 

 

𝐻𝑝(𝐴, 𝐵) = max{ 𝑠𝑢𝑝𝑓∈𝐴 𝑑𝑖𝑠𝑡𝑝  (𝑓, 𝐵),

𝑠𝑢𝑝𝑔∈𝐵  𝑑𝑖𝑠𝑡𝑝 (𝑔, 𝐴)}  𝐴, 𝐵 ∈ 𝐶𝑝(𝐿𝑝)  

 

where, 𝑑𝑖𝑠𝑡𝑝(𝑓, 𝐵) = inf{𝜌(𝑓 − 𝑔), 𝑔 ∈ 𝐵}. 

 

Lemma 3 [13]: 

Let 𝜌 ∈ ℛ and satisfy 𝐴, 𝐵 ∈ 𝑃𝑝(𝐿𝑝) for each f in A there 

exists g in B such that 𝜌(𝑓 − 𝑔) ≤ 𝐻𝑝(𝐴, 𝐵). 

 

Definition 11 [13, 14]: 

Let  𝑇: 𝐸 ⟶ 2𝐸  is multivalued mapping said to be ρ-

nonexpansive mapping if 𝐻𝑝(𝑇𝑓, 𝑇𝑔) ≤ 𝜌(𝑓 − 𝑔) said to be 

𝜌 - quasi nonexpansive mapping if for 𝑠 ∈ 𝐹𝑝(𝑇)  of T in 

modular spaces: 

 

𝐻𝑝(𝑇𝑓, 𝑠) ≤ 𝜌(𝑓 − 𝑠) 

 

Finally, we can consider to be 𝜌-contraction mapping if 

there exists constant: 

 

0 ≤ 𝑘 < 1 

𝐻𝑝(𝑇𝑓 − 𝑇𝑔) ≤ 𝑘𝜌(𝑓 − 𝑔) 

 

For all f, g in E. 

 

Lemma 4 [13]: 

Let 𝑇: 𝐸 ⟶ 2𝐸  be a multivalued mapping and 𝑃𝑝
𝑇(𝑓) =

{𝑔 ∈ 𝑇: 𝜌(𝑓 − 𝑔) = 𝑑𝑖𝑠𝑡𝜌(𝑓, 𝑇𝑓)} then: 

1- 𝑓 ∈ 𝐹𝑝(𝑇), and 𝑓 ∈ 𝑇(𝑓) 

2- 𝑃𝑝
𝑇 = {𝑓} and 𝑓 = 𝑔 for each 𝑔 ∈ 𝑃𝑝

𝑇(𝑓) 

3- 𝑓 ∈ 𝐹𝑝 (𝑃𝑝
𝑇(𝑓)),  and 𝑓 ∈ 𝑃𝑝

𝑇(𝑓) , further 𝐹𝑝(𝑇) =

𝐹(𝑃𝑝
𝑇(𝑓)) where 𝐹(𝑃𝑝

𝑇(𝑓)) denotes the set of fixed points of 

𝑃𝑝
𝑇(𝑓). 

 

 

3. RESULTS AND DISCUSSION 
 

3.1 Convergence results for (λ, ρ)- firmly nonexpansive 

multivalued mappings 
 

Starting with the definition below: 

 

Definition 12:  

Let  𝑇: 𝐸 ⟶ 2𝐸  said to be (λ, ρ)- firmly nonexpansive 

multivalued mapping if for λ in (0,1), 𝐻𝑝(𝑇𝑓, 𝑇𝑔) ≤ 𝜌[(1 −

𝜆)(𝑓 − 𝑔) + 𝜆(𝑢 − 𝑣) ], 𝑢 ∈ 𝑇𝑓, 𝑣 ∈ 𝑇𝑔 said to be (λ, ρ)- 

quasi firmly nonexpansive multivalued mapping if for λ in (0,1) 

and 𝑠 ∈ 𝐹𝑝(𝑇) is the set of fixed point of T in modular spaces: 

 

𝐻𝑝(𝑇𝑓, 𝑠) ≤ 𝜌[(1 − 𝜆)(𝑓 − 𝑠) + 𝜆(𝑢 − 𝑠)] 

𝑢 ∈ 𝑇𝑓 

 

Clearly, (λ, ρ)- quasi firmly nonexpansive mapping is quasi 

nonexpansive mapping. 

 

Lemma 5:  

Every (λ, ρ) - firmly nonexpansive mapping is ρ-

nonexpansive mapping: 

 

Proof:  

By Definition 12, convexity of ρ and Lemma 3, obtaining: 

 

𝐻𝑝(𝑇𝑓, 𝑇𝑔) ≤ 𝜌[(1 − 𝜆)(𝑓 − 𝑔) + 𝜆(𝑢 − 𝑣)], 𝑢 ∈

𝑃𝑝
𝑇(𝑓), 𝑣 ∈ 𝑃𝑝

𝑇(𝑔) 

≤ (1 − 𝜆)𝜌(𝑓 − 𝑔) + 𝜆𝜌(𝑢 − 𝑣) 

≤ (1 − 𝜆)𝜌(𝑓 − 𝑔) + 𝜆𝐻𝑝(𝑇𝑓, 𝑇𝑔) 

 

Hence 𝐻𝑝(𝑇𝑓, 𝑇𝑔) ≤ 𝜌(𝑓 − 𝑔). 

 

Lemma 6:  

Let 𝜌 ∈ ℜ  and 𝐸  be nonempty ρ-bounded, ρ-closed and 

𝐸 ⊂ 𝐿𝑝  let 𝑇: 𝐸 ⟶ 2𝐸  be (λ, ρ)- firmly nonexpansive 

multivalued mapping, then the 𝐹𝑝(𝑇) is convex and closed. 

 

Proof:  

Let { 𝑓𝑛}  is a sequence in fixed point set 𝐹𝑝(𝑇)  is 𝜌 -

converges to some 𝑓 in 𝐸, to prove 𝑓 fixed point. 

𝜌 (
𝑓−𝑇𝑓

2
) ≤

1

2
𝜌(𝑓 − 𝑓𝑛) +

1

2
𝜌(𝑇𝑓 − 𝑓𝑛)  ≤

1

2
𝜌(𝑓 − 𝑓𝑛) +

1

2
𝐻𝑝(𝑇𝑓, 𝑇𝑓𝑛)  ≤

1

2
𝜌(𝑓 − 𝑓𝑛) +

1

2
𝜌(𝑓 − 𝑓𝑛)  = 𝜌(𝑓 − 𝑓𝑛) ⟶

0 𝑎𝑠 𝑛 ⟶ ∞. 

𝜌 (
𝑓−𝑇𝑓

2
) = 0, then 𝑇𝑓 = 𝑓, 𝑎𝑛𝑑 𝑓 ∈ 𝐹𝑝(𝑇), by define ρ – 

closed 𝐹𝑝(𝑇) is closed. 

To prove 𝐹𝑝(𝑇) convex, let f, g in 𝐹𝑝(𝑇) and ℎ =
𝑓+𝑔

2
: 

 

𝜌(𝑓 − 𝑇ℎ) = 𝜌(𝑇ℎ − 𝑓) ≤ 𝐻𝑝(𝑇ℎ, 𝑇𝑓) ≤ 𝜌(ℎ − 𝑓)

= 𝜌 (
𝑓 − 𝑔

2
) 

(1) 

 

𝜌(𝑔 − 𝑇ℎ) = 𝜌(𝑇ℎ − 𝑔) ≤ 𝐻𝑝(𝑇ℎ, 𝑇𝑔) ≤ 𝜌(ℎ −

𝑔) = 𝜌 (
𝑓−𝑔

2
) 

(2) 

 

𝜌(𝑓 − ℎ) = 𝜌 (
𝑓−𝑔

2
), 𝜌(𝑔 − ℎ) = 𝜌 (

𝑓−𝑔

2
) (3) 

 

𝜌 (𝑓 −
ℎ + 𝑇ℎ

2
) = 𝜌(

1

2
(𝑓 − ℎ) +

1

2
(𝑓 − 𝑇ℎ)) 

 

By ℎ =
𝑓+𝑔

2
 and convexly ≤

1

2
 𝜌 (

𝑓−𝑔

2
) +

1

2
 𝜌 (

𝑓−𝑔

2
)  = 

𝜌 (
𝑓−𝑔

2
) 𝜌 (𝑔 −

ℎ+𝑇ℎ

2
) = 𝜌(

1

2
(𝑔 − ℎ) +

1

2
(𝑔 − 𝑇ℎ) 

By ℎ =
𝑓+𝑔

2
 and convexly ≤

1

2
 ρ (

f−g

2
) +

1

2
 ρ (

f−g

2
) = ρ (

f−g

2
) 

𝜌 (
𝑓−𝑔

2
) ≤

1

2
𝜌 (𝑓 −

ℎ+𝑇ℎ

2
) +

1

2
𝜌 (

ℎ+𝑇ℎ

2
− 𝑔) 

𝜌 (
𝑓−𝑔

2
) ≤ 𝜌 (𝑓 −

ℎ+𝑇ℎ

2
)  

And by above: 
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𝜌 (𝑓 −
ℎ+𝑇ℎ

2
) ≤ 𝜌 (

𝑓−𝑔

2
), then 𝜌 (𝑓 −

ℎ+𝑇ℎ

2
) =

𝜌 (
𝑓−𝑔

2
) 

(4) 

 

By (1), (2), (3), (4), and Lemma 1, ρ(h-Th)=0, h in 𝐹𝑝(𝑇), 

then 𝐹𝑝(𝑇) is convex. 

Below, we introduce a new iterative algorithm and then 

prove convergence results. 

Let 𝑇: 𝐸 ⟶ 2𝐸 , and let E nonempty convex subset of 𝐿𝑝 

sequence {𝑓𝑛} by the following iterative process: 

 

𝑓1 ∈ 𝐸 

ℎ𝑛 = (1 − 𝛽𝑛)𝑓𝑛 + 𝛽𝑛𝑢𝑛 

𝑔𝑛 = 𝑣𝑛 

𝐽𝑛 = (1 − 𝛼𝑛)𝑔𝑛 + 𝛼𝑛𝑤𝑛 

𝑓𝑛+1 = 𝑚𝑛, 𝑛𝜖𝑁 

(5) 

 

where, { 𝛼𝑛 }and { 𝛽𝑛}  in (0,1), 𝑢𝑛 ∈ 𝑃𝜌
𝑇(𝑓𝑛), 𝑣𝑛 ∈ 𝑃𝜌

𝑇(ℎ𝑛),

𝑤𝑛 ∈ 𝑃𝜌
𝑇(𝑔𝑛), 𝑚𝑛 ∈ 𝑃𝜌

𝑇(𝐽𝑛). 

 

Theorem 1:  

Let 𝜌 ∈ ℜ  satisfy (UUC1) and Δ2 -condition, let E be 

nonempty 𝜌 -bounded, ρ-closed and convex 𝐸 ⊂ 𝐿𝑝  and 

𝑇: 𝐸 ⟶ 2𝐸 , be (λ, ρ)- firmly nonexpansive multivalued 

mapping, let {𝑓𝑛} in 𝐸define by (5) then 𝑙𝑖𝑚𝑛⟶∞𝜌(𝑓𝑛 − 𝑠) 

exists for all s fixed point. 

 

Proof:  

Let 𝑠 ∈ 𝐹𝑝(𝑇). To prove 𝑙𝑖𝑚𝑛⟶∞𝜌(𝑓𝑛 − 𝑠) exists. 

By Definitions (11, 12), convexity of ρ, and Lemmas (3,5), 

we get: 

 

𝜌(𝑓𝑛+1 − 𝑠) = 𝜌(𝑚𝑛 − 𝑠) ≤ 𝐻𝑝(𝑃𝑝
𝑇(𝐽𝑛), 𝑃𝑝

𝑇(𝑠))

≤ 𝜌(𝐽𝑛 − 𝑠) 
(6) 

 

𝜌(𝐽𝑛 − 𝑠) ≤ 𝜌((1 − 𝛼𝑛)𝑔𝑛 + 𝛼𝑛𝑤𝑛) − 𝑠)

≤ (1 − 𝛼𝑛)𝜌(𝑔𝑛 − 𝑠)
+ 𝛼𝑛𝐻𝑝(𝑃𝑝

𝑇(𝑔𝑛), 𝑃𝑝
𝑇(𝑠))

≤ 𝜌(𝑔𝑛 − 𝑠) 

(7) 

 

Also,  

 

𝜌(𝑔𝑛 − 𝑠) = 𝜌(𝑣𝑛 − 𝑠) ≤ 𝐻𝑝(𝑃𝑝
𝑇(ℎ𝑛), 𝑃𝑝

𝑇(𝑠))

≤ 𝜌(ℎ𝑛 − 𝑠) 
(8) 

 

Similarly, 

 

𝜌(ℎ𝑛 − 𝑠) = 𝜌(𝛽𝑛𝑢𝑛 + (1 − 𝛽𝑛)𝑓𝑛 − 𝑠)
≤ 𝛽𝑛𝐻𝑝(𝑃𝑝

𝑇(𝑓𝑛), 𝑃𝑝
𝑇(𝑠))

+ (1 − 𝛽𝑛)𝜌(𝑓𝑛 − 𝑠) ≤ 𝜌(𝑓𝑛 − 𝑠) 

(9) 

 

By (6), (7), (8) and (9), 𝜌(𝑓𝑛+1 − 𝑠)  ≤ 𝜌(𝑓𝑛 − 𝑠) , so, 

𝑙𝑖𝑚𝑛⟶∞𝜌(𝑓𝑛 − 𝑠) exists for all 𝑠 ∈ 𝐹𝑝(𝑇). 

 

Theorem 2:  

Let 𝜌 ∈ ℜ  satisfy (UUC1) and Δ2 -condition, let E be 

nonempty 𝜌 -bounded, 𝜌 -closed and convex 𝐸 ⊂ 𝐿𝑝  and 

: 𝐸 ⟶ 2𝐸, be (λ,ρ)- firmly nonexpansive multivalued mapping, 

let { 𝑓𝑛 } in 𝐸  define by (5) then 

𝑙𝑖𝑚𝑛⟶∞ 𝑑𝑖𝑠𝑡𝜌𝜌(𝑓𝑛, 𝑃𝑝
𝑇(𝑓𝑛)) = 0  

Proof:  

By Theorem 1 𝑙𝑖𝑚𝑛⟶∞𝜌(𝑓𝑛 − 𝑠) exists  

Let  

 

𝑙𝑖𝑚𝑛⟶∞𝜌(𝑓𝑛 − 𝑠) = 𝑘, where 𝑘 ≥ 0 (10) 

 

By (7), (8), and (9) the following hold: 

 

𝜌(ℎ𝑛 − 𝑠) ≤ 𝜌(𝑓𝑛 − 𝑠) ⇒  𝑙𝑖𝑚𝑛⟶∞𝜌(ℎ𝑛 − 𝑠) ≤ 𝑘 (11) 

 

 𝑙𝑖𝑚𝑛⟶∞𝜌(𝑔𝑛 − 𝑠) ≤ 𝑘 (12) 

 

 𝑙𝑖𝑚𝑛⟶∞𝜌(𝐽𝑛 − 𝑠) ≤ 𝑘 (13) 

 

𝜌(𝑣𝑛 − 𝑠) ≤ 𝐻𝑝(𝑃𝑝
𝑇(ℎ𝑛), 𝑃𝑝

𝑇(𝑠)) ≤ 𝜌(ℎ𝑛 − 𝑠)

≤ 𝜌(𝑓𝑛 − 𝑠) 

lim
𝑛⟶∞

𝜌(𝑣𝑛 − 𝑠) ≤ lim
𝑛⟶∞

𝜌(𝑓𝑛 − 𝑠) ≤ 𝑘 
(14) 

 

𝜌(𝑢𝑛 − 𝑠) ≤ 𝐻𝑝 (𝑃𝑝
𝑇(𝑓𝑛), 𝑃𝑝

𝑇(𝑠)) ≤ 𝜌(𝑓𝑛 − 𝑠), 

Then lim
𝑛⟶∞

𝜌(𝑢𝑛 − 𝑠) ≤ 𝑘 
(15) 

 

𝜌(𝑤𝑛 − 𝑠) ≤ 𝐻𝑝(𝑃𝑝
𝑇(𝑔𝑛), 𝑃𝑝

𝑇(𝑠)) ≤ 𝜌(𝑔𝑛 − 𝑠)

≤ 𝜌(𝑓𝑛 − 𝑠) 

Then lim
𝑛⟶∞

𝜌(𝑤𝑛 − 𝑠) ≤ 𝑘 
(16) 

 

𝜌(𝑚𝑛 − 𝑠) ≤ 𝐻𝑝(𝑃𝑝
𝑇(𝐽𝑛), 𝑃𝑝

𝑇(𝑠)) ≤ 𝜌(𝐽𝑛 − 𝑠)

≤ 𝜌(𝑓𝑛 − 𝑠) 

Then lim
𝑛⟶∞

𝜌(𝑚𝑛 − 𝑠) ≤ 𝑘 
(17) 

 

Let lim
𝑛⟶∞

𝛼𝑛 = 𝛼 , 𝜌(𝑓𝑛+1 − 𝑠) = 𝜌(𝑚𝑛 − 𝑠) ≤

𝐻𝑝(𝑃𝑝
𝑇(𝐽𝑛), 𝑃𝑝

𝑇(𝑠)) ≤ 𝜌(𝐽𝑛 − 𝑠) ≤ 𝜌(𝛼𝑛𝑤𝑛 + (1 − 𝛼𝑛)𝑔𝑛 −

𝑠) ≤ 𝛼𝑛𝜌(𝑤𝑛 − 𝑠) + (1 − 𝛼𝑛)𝜌(𝑔𝑛 − 𝑠). 

So, lim
𝑛⟶∞

𝑖𝑛𝑓𝜌(𝑓𝑛+1 − 𝑠) ≤  lim
𝑛⟶∞

inf [𝛼𝑛𝜌(𝑤𝑛 − 𝑠) +

(1 − 𝛼𝑛)𝜌(𝑔𝑛 − 𝑠)].  
Then, 𝑘 ≤ lim

𝑛⟶∞
inf 𝛼𝑛𝜌(𝑤𝑛 − 𝑠) + (1 − 𝛼)𝑘  ⇒ 𝛼𝑘 ≤

𝛼 lim
𝑛⟶∞

inf 𝜌(𝑤𝑛 − 𝑠).  

Hence,  

 

𝑘 ≤ lim
𝑛⟶∞

inf 𝜌(𝑤𝑛 − 𝑠) (18) 

 

By (16) and (18), 
 

lim
𝑛⟶∞

𝜌(𝑤𝑛 − 𝑠) = 𝑘 

𝜌(𝑤𝑛 − 𝑠) ≤ 𝐻𝑝(𝑃𝑝
𝑇(𝑔𝑛), 𝑃𝑝

𝑇(𝑠)) ≤ 𝜌(𝑔𝑛 − 𝑠) 
(19) 

 

Then, 
 

𝑘 ≤ 𝜌(𝑔𝑛 − 𝑠) (20) 
 

By (12) and (20),  
 

lim
𝑛⟶∞

𝜌(𝑔𝑛 − 𝑠) = 𝑘 (21) 

 

Since, 
 

𝜌(𝑔𝑛 − 𝑠) = 𝜌(𝑣𝑛 − 𝑠),so, lim
𝑛⟶∞

𝜌(𝑣𝑛 − 𝑠) = 𝑘 

𝜌(𝑣𝑛 − 𝑠) ≤ 𝐻𝑝(𝑃𝑝
𝑇(ℎ𝑛), 𝑃𝑝

𝑇(𝑠)) ≤ 𝜌(ℎ𝑛 − 𝑠)

⇒ lim
𝑛⟶∞

𝜌(𝑣𝑛 − 𝑠)

≤ lim
𝑛⟶∞

𝜌(ℎ𝑛 − 𝑠) 

(22) 

 

so, 
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𝑘 ≤ lim
𝑛⟶∞

𝜌(ℎ𝑛 − 𝑠) (23) 

 

By (11) and (23), then: 

 

lim
𝑛⟶∞

𝜌(ℎ𝑛 − 𝑠) = 𝑘 (24) 

 

By (24), 

 

lim
𝑛⟶∞

𝜌(ℎ𝑛 − 𝑠) = 𝑘 ⇒ lim
𝑛⟶∞

𝜌(𝛽𝑛𝑢𝑛 + (1 − 𝛽𝑛)𝑓𝑛 −

𝑠) = 𝑘 

lim
𝑛⟶∞

𝜌(𝛽𝑛(𝑢𝑛 − 𝑠) + (1 − 𝛽𝑛)(𝑓𝑛 − 𝑠) = 𝑘 

(25) 

 

By (10), (15), (25) and Lemma1, lim
𝑛⟶∞

𝜌(𝑓𝑛 − 𝑢𝑛) = 0 then 

𝑢𝑛 ∈ 𝑃𝑝
𝑇(𝑓𝑛) . Since  𝑑𝑖𝑠𝑡𝜌𝜌(𝑓𝑛, 𝑃𝑝

𝑇(𝑓𝑛)) ≤ lim
𝑛⟶∞

𝜌(𝑓𝑛 − 𝑢𝑛) , 

𝑙𝑖𝑚𝑛⟶∞ 𝑑𝑖𝑠𝑡𝜌𝜌(𝑓𝑛, 𝑃𝑝
𝑇(𝑓𝑛)) =0. This completes the proof. 

 

Theorem 3: 

Let 𝜌 ∈ ℜ  satisfy (UUC1) and Δ2 -condition, let E be 

nonempty ρ-bounded, ρ-closed and convex 𝐸 ⊂ 𝐿𝑝 

and 𝑇: 𝐸 ⟶ 2𝐸 , be (λ, ρ)- firmly nonexpansive multivalued 

mapping, let {𝑓𝑛} in 𝐸 define by (5), 𝑓0 unique fixed point in 

T, then 𝑓𝑛 converge to fixed point in T. 

 

Proof:  

By convexity of ρ, Lemma 3, Definitions (11,12) and 

Lemma 5, implies that: 

 

𝜌(ℎ𝑛 − 𝑓0) = 𝜌((1 − 𝛽𝑛)𝑓𝑛 + 𝛽𝑛𝑢𝑛) − 𝑓0) 

≤ (1 − 𝛽𝑛)𝜌(𝑓𝑛 − 𝑓0) + 𝛽𝑛𝐻𝑝(𝑃𝑝
𝑇(𝑓𝑛), 𝑃𝑝

𝑇(𝑓0)) 

≤ (1 − 𝛽𝑛)𝜌(𝑓𝑛 − 𝑓0) + 𝛽𝑛𝜌(𝑓𝑛 − 𝑓0) 

≤ 𝜌(𝑓𝑛 − 𝑓0) 

(26) 

 

Again, 

 

𝜌(𝑔𝑛 − 𝑓0) ≤ 𝜌(𝑣𝑛 − 𝑓0) 

≤ 𝐻𝑝(𝑃𝑝
𝑇(ℎ𝑛), 𝑃𝑝

𝑇(𝑓0)) 

≤ 𝜌(ℎ𝑛 − 𝑓0) 

≤ 𝜌(𝑓𝑛 − 𝑓0) 

(27) 

 

Similarity, 

 

𝜌(𝐽𝑛 − 𝑓0) = 𝜌((1 − 𝛼𝑛)𝑔𝑛 + 𝛼𝑛𝑤𝑛 − 𝑓0) 

≤ (1 − 𝛼𝑛)𝜌(𝑔𝑛 − 𝑓0) + 𝛼𝑛𝐻𝑝(𝑃𝑝
𝑇(𝑔𝑛), 𝑃𝑝

𝑇(𝑓0)) 

≤ (1 − 𝛼𝑛)𝜌(𝑔𝑛 − 𝑓0) + 𝛼𝑛𝜌(𝑔𝑛 − 𝑓0) 

≤ 𝜌(𝑓𝑛 − 𝑓0) 

(28) 

 

Similarity, 

 

𝜌(𝑓𝑛+1 − 𝑓0) = 𝜌(𝑚𝑛 − 𝑓0) ≤ 𝐻𝑝(𝑃𝑝
𝑇(𝐽𝑛), 𝑃𝑝

𝑇(𝑓0)) 

≤ 𝜌(𝐽𝑛 − 𝑓0) 

𝜌(𝑓𝑛 − 𝑓0) ≤ 𝜌(𝑓𝑛−1 − 𝑓0) 

(29) 

 

Since  𝜌(𝑓1 − 𝑓0) ≤ 𝜌(𝑓0 − 𝑓0) , so, 𝜌(𝑓𝑛 − 𝑓0) ≤ 𝜌(𝑓0 −
𝑓0), 𝜌(𝑓𝑛 − 𝑓0) ≤ 𝜌(0) = 0, then 𝑓𝑛 ⟶ 𝑓0. 

 

Theorem 4: 

Let 𝜌 ∈ ℜ  satisfy (UUC1) and Δ2 -condition, let E be 

nonempty ρ-compact, ρ-closed and convex 𝐸 ⊂ 𝐿𝑝 

and 𝑇: 𝐸 ⟶ 2𝐸 , be (λ, ρ)- firmly nonexpansive multivalued 

mapping, let {𝑓𝑛} n E define by (5) then 𝑓𝑛 converge to fixed 

point of T. 

Proof: 

Since 𝐸  is 𝜌 -compact there exists subsequence 𝑓𝑛𝑘
 of 𝑓𝑛 

and 𝜌(𝑓𝑛𝑘
− 𝑓) = 0. 

𝑙𝑖𝑚𝑛⟶∞𝜌(𝑓𝑛𝑘
− 𝑓) = 0, to prove 𝑓 fixed point.  

Let 𝑔 fixed point 𝑔 ∈ 𝑃𝑝
𝑇(𝑓), 𝑔𝑘 ∈ 𝑃𝑝

𝑇(𝑓𝑛𝑘
). 

By Lemma 3, Definitions (7, 11), and Lemma 5, we get 

 

𝜌 (
𝑓 − 𝑔

3
) = 𝜌[

𝑓 − 𝑓𝑛𝑘

3
+

𝑓𝑛𝑘
− 𝑔𝑘

3
+

𝑔𝑘 − 𝑔

3
]

≤
1

3
𝜌(𝑓 − 𝑓𝑛𝑘

) +
1

3
𝜌(𝑓𝑛𝑘

− 𝑔𝑘) +
1

3
𝜌(𝑔𝑘

− 𝑔)

≤
1

3
𝜌(𝑓 − 𝑓𝑛𝑘

) +
1

3
𝑑𝑖𝑠𝑡𝜌(𝑓𝑛𝑘

, 𝑃𝑝
𝑇(𝑓𝑛𝑘

))

+
1

3
𝐻𝑝(𝑃𝑝

𝑇(𝑓𝑛𝑘
), 𝑃𝑝

𝑇(𝑓))

≤
1

3
𝜌(𝑓 − 𝑓𝑛𝑘

) +
1

3
𝑑𝑖𝑠𝑡𝜌(𝑓𝑛𝑘

, 𝑃𝑝
𝑇(𝑓𝑛𝑘

))

+
1

3
(𝑓𝑛𝑘

− 𝑓)𝑑𝑖𝑠𝑡𝜌(𝑓𝑛𝑘
, 𝑃𝑝

𝑇(𝑓𝑛𝑘
)) = 0 

 

by Theorem 2, 𝜌 (
𝑓−𝑔

3
) = 0, therefore f=g, then T has unique 

fixed point f, 𝑓𝑛 converge to fixed point of T. 

 

Theorem 5:  

Let 𝜌 ∈ ℜ  satisfy (UUC1) and Δ2 -condition, let E be 

nonempty ρ-bounded, ρ-closed and convex 𝐸 ⊂ 𝐿𝑝  and 

𝑇: 𝐸 ⟶ 2𝐸 , be (λ, ρ)- firmly nonexpansive multivalued 

mapping, let {𝑓𝑛} in E define by (5) then 𝑓𝑛 converge to fixed 

point s of T if and only if lim 𝑖𝑛𝑓𝑛⟶∞ 𝑑𝑖𝑠𝑡𝑝(𝑓𝑛, 𝐹(𝑇)) = 0, 

where 𝑑𝑖𝑠𝑡𝑝(𝑓𝑛, 𝐹(𝑇)) = inf {𝜌(𝑓 − 𝑠), 𝑠 ∈ 𝐹𝑝(𝑇)}. 

 

Proof:  

Let 𝑓𝑛  converge to fixed point s of T, to prove 

lim 𝑖𝑛𝑓𝑛⟶∞ 𝑑𝑖𝑠𝑡𝑝(𝑓𝑛, 𝐹(𝑇)) = 0. 

Since 𝑓𝑛 ⟶ 𝑠, then lim 𝑛⟶∞  𝑑𝑖𝑠𝑡𝑝(𝑓𝑛, 𝑠) = 0. 

Since 𝑑𝑖𝑠𝑡𝑝(𝑓𝑛, 𝐹𝑝(𝑇)) ≤ 𝑑𝑖𝑠𝑡𝑝(𝑓𝑛, 𝑠),  then 

lim 𝑖𝑛𝑓𝑛⟶∞ 𝑑𝑖𝑠𝑡𝑝(𝑓𝑛, 𝐹𝑝(𝑇)) = 0. 

If lim 𝑖𝑛𝑓𝑛⟶∞ 𝑑𝑖𝑠𝑡𝑝(𝑓𝑛, 𝐹𝑝(𝑇)) = 0, to prove 𝜌(𝑓𝑛 − 𝑠) =

0. 

By Theorem 1 𝑙𝑖𝑚𝑛⟶∞𝜌(𝑓𝑛 − 𝑠)  exists, then 

𝑙𝑖𝑚𝑛⟶∞𝜌(𝑓𝑛 − 𝐹𝑝(𝑇)) exists and s∈ 𝐹𝑝(𝑇). 

Suppose 𝑓𝑛𝑘
 s any subsequence of 𝑓𝑛 , and 𝑢𝑘  sequence in 

𝐹𝑝(𝑇). 

𝜌(𝑓𝑛𝑘
− 𝑢𝑘) ≤

1

2𝑘,  Since, lim 𝑖𝑛𝑓𝑛⟶∞ 𝑑𝑖𝑠𝑡𝑝 (𝑓𝑛, 𝐹𝑝(𝑇)) =

0. 

𝜌(𝑓𝑛+1 − 𝑢𝑘) ≤ 𝜌(𝑓𝑛 − 𝑢𝑘) ≤
1

2𝑘 . 

𝜌(𝑢𝑘+1 − 𝑢𝑘) ≤ 𝜌(𝑢𝑘+1 − 𝑓𝑛+1) + 𝜌(𝑓𝑛+1 − 𝑢𝑘) ≤
1

2𝑘+1 +
1

2𝑘 ≤
1

2𝑘−1 . 

𝜌(𝑢𝑘+1 − 𝑢𝑘) ⟶ 0, as 𝑘 ⟶ ∞. 

𝑢𝑘  is 𝜌 -cauchy in 𝐹𝑝(𝑇) , since ∆2  condition, so 𝜌 -

cauchy⟺ 𝜌-converge.  

𝑢𝑘 is 𝜌-convergence in 𝐹𝑝(𝑇), so 𝜌(𝑢𝑘 − 𝑠) ⟶ 0. 

Now, 𝜌(𝑓𝑛𝑘
− 𝑠) ≤ 𝜌(𝑓𝑛𝑘

− 𝑢𝑘) + 𝜌(𝑢𝑘 − 𝑠) , 𝜌(𝑓𝑛𝑘
−

𝑢𝑘) ⟶ 0, and 𝜌(𝑢𝑘 − 𝑠) ⟶ 0,𝑓𝑛 Converges to fixed point 𝑠 

in 𝐹𝑝(𝑇). 
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Theorem 6: 

Let 𝜌 ∈ ℜ  satisfy (UUC1) and Δ2 -condition, let E be 

nonempty ρ-bounded, ρ-closed and convex 𝐸 ⊂ 𝐿𝑝 

and  𝑇: 𝐸 ⟶ 2𝐸  be (λ,ρ)- firmly nonexpansive multivalued 

mapping, and T satisfied condition (I), let {𝑓𝑛} in E define by 

(5) then 𝑓𝑛 converge to fixed point s of T.  

 

Proof:  

By Theorem 1 𝑙𝑖𝑚𝑛⟶∞𝜌(𝑓𝑛 − 𝑠) exists, s is fixed point.  

If 𝑙𝑖𝑚𝑛⟶∞𝜌(𝑓𝑛 − 𝑠) = 0 , nothing to prove, if 

𝑙𝑖𝑚𝑛⟶∞𝜌(𝑓𝑛 − 𝑠) = 𝑘, 𝑘 ≥ 0. 

By Theorem 1𝜌(𝑓𝑛+1 − 𝑠) ≤ 𝜌(𝑓𝑛 − 𝑠)  

Then , 𝑑𝑖𝑠𝑡𝜌(𝑓𝑛+1, 𝐹𝑝(𝑇)) ≤ 𝑑𝑖𝑠𝑡𝜌(𝑓𝑛, 𝐹𝑝(𝑇)) , hence 

𝑙𝑖𝑚𝑛⟶∞𝑑𝑖𝑠𝑡𝜌(𝑓𝑛, 𝐹𝑝(𝑇)) exists.  

By applying condition (I) and Theorem 2 

𝑙𝑖𝑚𝑛⟶∞∅(𝑑𝑖𝑠𝑡𝜌 (𝑓𝑛, 𝐹𝑝(𝑇)) ≤ 𝑙𝑖𝑚𝑛⟶∞(𝑓𝑛, 𝑃𝑝
𝑇(𝑓𝑛)) = 0.  

Since  ∅(0) = 0, so,  𝑙𝑖𝑚𝑛⟶∞𝑑𝑖𝑠𝑡𝜌(𝑓𝑛, 𝐹𝑝(𝑇))  = 0, by 

Theorem 5, 𝑓𝑛 is ρ -converge to fixed point 𝑠. 

 

3.2 Stability 

 

In this section, firstly we reform the definition of stability 

as in the study [9], then give results and an example.  

 

Definition 13 [9]: 

Let E be anon empty convex subset of modular function 

space 𝐿𝑝, and T:E⟶E, let 𝑥1in E, and 𝑥𝑛+1 = 𝑓(𝑇, 𝑥𝑛) define 

the iterative schemes which given sequence 𝑥𝑛 in 𝐸, suppose 

that {𝑥𝑛}𝑛=1
∞  converge to 𝑥 ∈ 𝐹𝑝(𝑇) ≠ ∅, let {𝑦𝑛}𝑛=1

∞  be any 

bounded sequence in 𝐸 and put 𝜀𝑛 = 𝜌(𝑦𝑛+1 − 𝑓(𝑇, 𝑥𝑛)). 

1- The iteration scheme {𝑥𝑛}𝑛=1
∞  define by 𝑥𝑛+1 = 𝑓(𝑇, 𝑥𝑛) 

is displayed to be T-stable on 𝐸 if 𝑙𝑖𝑚𝑛⟶∞𝜀𝑛 = 0 implies that 

𝑙𝑖𝑚𝑛⟶∞𝑦𝑛 = 𝑥. 

2- The iteration scheme {𝑥𝑛}𝑛=1
∞  define by 𝑥𝑛+1 = 𝑓(𝑇, 𝑥𝑛) 

is displayed to be almost T-stable on  𝐸  if ∑ 𝜀𝑛
∞
𝑛=1 < ∞ 

implies that 𝑙𝑖𝑚𝑛⟶∞𝑦𝑛 = 𝑥. 

3- The iteration scheme {𝑥𝑛}𝑛=1
∞  define by 𝑥𝑛+1 = 𝑓(𝑇, 𝑥𝑛) 

is considered to be summably almost T-stable on 𝐸 if and only 

if ∑ 𝜀𝑛
∞
𝑛=1 < ∞ implies that ∑ 𝜌(𝑦𝑛 − 𝑥)∞

𝑛=1 < ∞. 

 

Theorem 7:  

Let 𝜌 ∈ ℜ  satisfy (UUC1) and Δ2 -condition, let E be 

nonempty ρ-bounded, ρ-closed and convex 𝐸 ⊂ 𝐿𝑝 

and 𝑇: 𝐸 ⟶ 2𝐸 , be (λ, ρ)- firmly nonexpansive multivalued 

mapping, and 𝑇 satisfied condition (I), let {𝑓𝑛} in E define by 

(5) then 𝑓𝑛 is summably almost T-stable. 

 

Proof:  

Let s is fixed point of 𝑇, and 𝜀𝑛 = 𝜌(𝑓𝑛+1 − 𝑚𝑛), by (5), 

convexity of 𝜌, Lemma 3, Definitions (11, 12), and Lemma 5, 

implies that: 

 

𝜌(𝑓𝑛+1 − 𝑠) = 𝜌((𝑓𝑛+1 −  𝑚𝑛) + (𝑚𝑛 − 𝑠))
≤ 𝜌(𝑓𝑛+1 −  𝑚𝑛) + 𝜌(𝑚𝑛 − 𝑠)
≤ 𝜀𝑛 + 𝐻𝑝(𝑃𝑝

𝑇(𝐽𝑛), 𝑃𝑝
𝑇(𝑠))

≤ 𝜀𝑛 + 𝜌(𝐽𝑛 − 𝑠) 

 

Substituting 𝐽𝑛 and similarity above: 

 

≤ 𝜀𝑛 + 𝑝((1 − 𝛼𝑛)𝑔𝑛 + 𝛼𝑛𝑤𝑛) − 𝑠)) 

≤ 𝜀𝑛 + (1 − 𝛼𝑛)𝜌(𝑔𝑛 − 𝑠) + 𝛼𝑛𝐻𝑝(𝑃𝑝
𝑇(𝑔𝑛), 𝑃𝑝

𝑇(𝑠)) 

≤ 𝜀𝑛 + 𝜌(𝑔𝑛 − 𝑠) 

 

Substituting 𝑔𝑛 and similarity above: 

 

= 𝜀𝑛 + 𝜌(𝑣𝑛 − 𝑠) 

≤ 𝜀𝑛 + 𝐻𝑝(𝑃𝑝
𝑇(ℎ𝑛), 𝑃𝑝

𝑇(𝑠)) 

≤ 𝜀𝑛 + 𝜌(ℎ𝑛 − 𝑠) 

 

Substituting ℎ𝑛 and similarity above: 

 

≤ 𝜀𝑛 + 𝜌(𝛽𝑛𝑢𝑛 + (1 − 𝛽𝑛)𝑓𝑛 − 𝑠) 

≤ 𝜀𝑛 + 𝜌(𝑓𝑛 − 𝑠) 

𝜌(𝑓𝑛+1 − 𝑠) ≤ 𝜀𝑛 + 𝜌(𝑓𝑛 − 𝑠)  

 

So, by Lemma 2 and Definition 13, implies that 𝑓𝑛  is 

summably almost T-stable. 

 

Example 1: 

The set of real number ℜ by the space ρ(f)=|f|, ρ is satisfy 

(UUC1) and ∆2 -condition, 𝐸 = {𝑓 ∈ 𝐿𝑝 ∶ 0 ≤ 𝑓 < ∞ }, 

T:E⟶E (λ, ρ)- firmly nonexpansive mapping and 𝑇𝑓 =
𝑓

4
, 

with 𝐹𝑝(𝑇) = {0}, and let 𝛼𝑛, 𝛽𝑛 = 0.5 for all n. 

 

ℎ𝑛 = (1 − 𝛽𝑛)𝑓𝑛 + 𝛽𝑛𝑇𝑓𝑛  

𝑔𝑛 = 𝑇ℎ𝑛  

𝐽𝑛 = (1 − 𝛼𝑛)𝑔𝑛 + 𝛼𝑛𝑇𝑔𝑛  

𝑓𝑛+1 = 𝑇𝐽𝑛 

 

Let 𝑓𝑛 =
𝑛+1

𝑛+2
  

ℎ𝑛 =
1

2

𝑛+1

𝑛+2
+

1

2

𝑛+1

4(𝑛+2)
 =

5

8

(𝑛+1)

(𝑛+2)
, then 𝑇ℎ𝑛 =

5(𝑛+1)

32(𝑛+2)
 

𝑓𝑛+1 = 𝑇(
1

2
(

5(𝑛+1)

32(𝑛+2)
) +

1

2
(

5(𝑛+1)

128(𝑛+2)
), so 𝑓𝑛+1 =

25(𝑛+1)

1024(𝑛+2)
  

𝜀𝑛 = 𝜌(𝑓𝑛+1 − 𝑓(𝑇, 𝑓𝑛))  

= 𝜌(
𝑛+2

𝑛+3
−

25(𝑛+1)

1024(𝑛+2)
)  = |

𝑛+2

𝑛+3
−

25(𝑛+1)

1024(𝑛+2)
|  = |(1 −

25

1024
) +

(
25

1024(𝑛+2)
−

1

𝑛+3
)| ≤ |1 −

25

1024
| + |

25

1024(𝑛+2)
−

1

𝑛+3
|  ≤ |

1

𝑛+2
−

1

𝑛+3
|=

1

𝑛+2
−

1

𝑛+3
 

Since ∑ 𝜀𝑛
∞
𝑛=1 ≤ ∑ (

1

𝑛+2
−

1

𝑛+3
)∞

𝑛=1 , so ∑ 𝜀𝑛
∞
𝑛=1 < ∞  

∑ 𝜌(𝑓𝑛 − 𝑠)∞
𝑛=1  s fixed point 

= ∑ |
𝑛+1

𝑛+2
− 0|∞

𝑛=1 =∑
𝑛+1

𝑛+2

∞
𝑛=1 =∑ (1 −

𝑛+1

𝑛+2
) < ∞∞

𝑛=1  

The iterative scheme in (5) is summably almost T-stable. 

 

Example 2:  

The set of real number ℜ by the space ρ(f)=|f|, ρ is satisfy 

(UUC1) and ∆2-condition, E=[0, 3] define T:E⟶E a mapping, 

∅: [0, ∞) ⟶ [0, ∞), ∅(𝑟) =
𝑟

6
 

And 𝑇𝑓 =
𝑓+4

5
, 𝐹𝑝(𝑇) = {1} , to prove 𝜌(𝑓 − 𝑇𝑓) ≥

∅(𝑑𝑖𝑠𝑡𝑝(𝑓, 𝐹𝑝(𝑇)) for all f in E. 

𝜌(𝑓 − 𝑇𝑓) = 𝜌 (𝑓 −
𝑓+4

5
) =

4𝑓+4

5
, while 

∅(𝑑𝑖𝑠𝑡𝑝(𝑓, 𝐹𝑝(𝑇)) = ∅(𝑑𝑖𝑠𝑡𝑝(𝑓, {1}) = 𝜙[𝜌(𝑓 − 1)] =
𝑓−1

6
. 

Now, prove 𝑇 is (λ, ρ)- firmly nonexpansive mapping 

𝜌(𝑇𝑓 − 𝑇𝑔) = 𝜌 (
𝑓+4

5
−

𝑔+4

5
) = |

1

5
(𝑓 − 𝑔)| ≤ |

21

25
(𝑓 −

𝑔)| ≤ 𝜌(
4

5
(𝑓 − 𝑔) +

1

5
(

1

5
(𝑓 − 𝑔))) , T is (λ, ρ)-firmly 

nonexpansive mapping when 𝜆 =
1

5
. 

Tables 1, 2, and 3 represent the corresponding results as 

shown below. 
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Table 1. Results of 𝑓𝑛, ℎ𝑛, 𝑔𝑛, and 𝐽𝑛 where 𝛼𝑛= 𝛽𝑛= 0.5, with 𝑓1 = 2 

 

Step 𝒇𝒏 𝒉𝒏 𝒈𝒏 𝑱𝒏 

1 2 1.6 1.12 1.072 

2 1.0144 1.00864 1.001728 1.0010368 

3 1.00020736 1.000124416 1.00024883 1.00001493 

4 1.000002986 1.000001701 1.00000034 1.000000204 

5 1.000000041 1.000000025 1.000000005 1.000000003 

6 1.000000001 1 1 1 

7 1 1 1 1 

 

Table 2. Results of 𝑓𝑛, ℎ𝑛, 𝑔𝑛, and 𝐽𝑛 where 𝛼𝑛= 𝛽𝑛=0.2, with 𝑓1 = 2 

 

Step 𝒇𝒏 𝒉𝒏 𝒈𝒏 𝑱𝒏 

1 2 1.84 1.168 1.14112 

2 1.028224 1.02370816 1.004741632 1.003982971 

3 1.000796594 1.000669138 1.000133828 1.000112415 

4 1.000022483 1.000018885 1.000003777 1.000003173 

5 1.00000635 1.000000533 1.000000107 1.000000090 

6 1.000000018 1.000000014 1.000000003 1.000000002 

7 1 1 1 1 

 

Table 3. Results of 𝑓𝑛, ℎ𝑛, 𝑔𝑛, and 𝐽𝑛 where 𝛼𝑛= 𝛽𝑛=0.8, with 𝑓1 = 2 

 

Step 𝒇𝒏 𝒉𝒏 𝒈𝒏 𝑱𝒏 

1 2 1.36 1.072 1.02592 

2 1.005184 1.00186624 1.000373248 1.000134369 

3 1.000026874 1.0000009674 1.000001935 1.00000696 

4 1.000000139 1.00000050 1.00000010 1.00000003 

5 1.00000001 1 1 1 

6 1 1 1 1 

 

Through our study of the above tables, it becomes clear that 

the closer the value of 𝛼𝑛 and 𝛽𝑛 o the fixed point, the faster 

the approximation to the fixed point. 

 

 

4. APPLICATION 

 

Since fixed point theory provides useful tools to solve many 

problems that have applications in different fields of sciences, 

the studying of iterative algorithms to approximate the 

solution of differential equations be one of most active studies 

area. Therefore, this section is devoted to applying the above 

results to differential equations in way similar to what is 

presented in the study [3]. In the following, we deal with 

especial case of algorithm (5):  

Let 𝜌 ∈ ℜ, consider the initial value problem v: [0, B] ⟶ E 

and E in 𝐿𝑝: 

 

𝑣(0) = 𝑔 

𝑣∖(𝑡) + (𝐼 − 𝑇)𝑣(𝑡) = 0 
(30) 

 

where, 𝑔 ∈ 𝐸, B>0, and T: E⟶E such that 𝑃𝜌
𝑇  is (λ, ρ)-firmly 

nonexpansive mappings, and by define:  

 

𝑄(𝑡) = 1 − 𝑒−𝑡 = ∫ 𝑒𝑠−𝑡
𝑡

0

𝑑𝑠 (31) 

 

For any 𝑢: [0, 𝐵] ⟶ 𝐿𝑝 and 𝐵 > 0 then: 

 

𝑆(𝑢)(𝑡) = ∫ 𝑒𝑠−𝑡
𝑡

0

𝑢(𝑠)𝑑𝑠 (32) 

 

Also, 

 

𝑆𝑡(𝑢)(𝑡) = ∑ (𝑡𝑖+1

𝑛−1

𝑖=0
− 𝑡𝑖)𝑒𝑡𝑖−𝑡𝑣(𝑡𝑖) (33) 

 

The following Lemma and Theorem in the study [3]: 

 

Lemma 6:  

Let 𝜌 ∈ ℜ  be separable let 𝑚, 𝑙: [0, 𝐵] ⟶ 𝐿𝑝  by two 

Bochner-integrable ‖. ‖𝜌 -bounded functions where B>0 for 

𝑡 ∈ [0, 𝐵] then: 

 

𝜌 (𝑒−𝑡𝑙(𝑡) + ∫ 𝑒𝑠−𝑡
𝑡

0

𝑚(𝑠)𝑑𝑠)

≤ 𝑒−𝑡𝜌(𝑙(𝑡)) + 𝑄(𝑡) sup 𝜌(𝑚(𝑠)) 

𝑠 ∈ [0, 𝑡] 
 

Theorem 8:  

Let 𝜌 ∈ ℜ be separable, let D in 𝐿𝑝 be nonempty, convex, 

𝜌-bounded, and 𝜌-closed set with vitali property. Let 𝑇: 𝐷 ⟶
𝑃𝜌(𝐷) be multivalued mapping such that 𝑃𝜌

𝑇  is nonexpansive 

mappings. Let fixed 𝑔 ∈ 𝐸  define sequence of functions 

𝑣𝑛: [0, 𝐵] ⟹ 𝐸  by the following formula 𝑣0(0) = 𝑔 , 

𝑣𝑛+1(𝑡) = 𝑒−𝑡𝑔 + ∫ 𝑒𝑠−𝑡𝑇(𝑣𝑛
𝑡

0
(𝑠))𝑑𝑠. 

Then 𝑡 ∈ [0, 𝐵] there exists 𝑣(𝑡) ∈ 𝐸 such that 𝜌(𝑣𝑛(𝑡) −
𝑣(𝑡)) ⟶ 0 and by the function 𝑣: [0, 𝐵] ⟶ 𝐸 the 𝜌(𝑣𝑛(𝑡) −
𝑣(𝑡)) ⟶ 0  is solution to (30), moreover 𝜌(𝑔 − 𝑣𝑛(𝑡)) ≤
𝑄𝑛+1(𝐵)𝛿𝜌(𝐸). 
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5. CONCLUSIONS 

 

The modular type conditions are more natural as 

assumptions of modular type can be checked more easily than 

their metric or modular counterparts especially in applications 

for differential operators, approximations and fixed point 

results. In the current investigation, the concept of (λ, ρ)-firmly 

nonexpansive mapping and its relationship with (λ, ρ)- quasi 

firmly nonexpansive mapping and nonexpansive mapping 

have been discussed. In addition, some convergence and 

stability results by using an iterative scheme in four steps of 

multivalued mapping in modular function space have been 

proved. The study suggests to the authors using the iterative 

scheme in other styles in modular function spaces or another 

spaces. This study is important as the iterative scheme that was 

presented is faster in reaching the fixed point than other 

iterative (see the research [19]). Lastly, we apply this 

algorithm to solving of a differential equation. 

 

 

6. FUTURE WORK 

 

We look forward to employing our results (which relate to 

the convergence of algorithm 5 and equation 30) in practical 

application in one of the anther branches of sciences such as 

physical engineering or control. This aim may require 

cooperation with some colleagues. 
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