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Air pollution is a major issue because Particulate Matter (PM) has a substantially higher 

effect on human health than other pollutants. Air Quality (AQ) prediction has become 

critical recently to take action to reduce pollution. This research introduces a unique 

methodology for assessing the effectiveness of PM10 and PM2.5. Enhanced spatial, 

temporal sequence-Improved Sparse Auto Encoder with Deep Learning (EISAE-DL) has 

been proposed to predict AQ affected by the prolonged dependency of air pollution 

congregation. However, Long Short-Term Memory (LSTM) used in EISAE-DL has 

suffered from the learning of a long-term dependent sequence of the training dataset. In 

addition, it is hard to create very reliable AQ forecasts at higher periodic frequencies, such 

as daily, weekly, or even monthly. This paper proposes Transfer learning (TL) in a Stacked 

Bidirectional and Unidirectional LSTM to solve the learning issue in LSTM for long-term 

dependencies. So, EISAE-DL with TL and modified LSTM model is named as EISAE-

Deep Transfer Learning (EISAE-DTL). TL with a modified structure can handle large-size 

datasets effectively. However, training time is increased more than twice for non-transfer 

learning way of modeling due to TL, Wasserstein Distance-based adversarial learning is 

proposed in EISAE-DTL to decrease the variances among AQ data collected from any two 

sites. The proposed work is named EISAE- Enhanced DTL (EISAE-EDTL). The developed 

EISAE-DTL and EISAE-EDTL models are compared and analyzed with the performance 

of existing algorithms EISAE-DL, ISAE-DL, TL-BLSTM, MMSL, and ST-DNN. The 

experimental findings demonstrate the accuracy, precision, sensitivity, specificity, Area 

Under Curve (AUC), and Matthew's correlation coefficient of the proposed model performs 

admirably and improves present condition approaches. 
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1. INTRODUCTION

As AQ deterioration is becoming more of an issue, 

Particulate Matter (PM) has a considerable negative influence 

on human well-being. Since the fine PM2.5 has a smaller 

diameter, it can reach the alveoli and even the bronchioles 

more quickly, interrupting lung gas interchange. Long-term 

submission of PM in the air raised the risk of cardiovascular 

illness, respiratory problems, and lung cancer [1, 2]. AQ 

monitoring systems have been set up in various localities in 

response to rising public health awareness. On the other hand, 

several providers merely can expose the AQ and cannot 

predict it. Predicting AQ is critical for directing choices and 

actions aimed at minimizing PM2.5 prominence, such as 

evaluating whether to participate in internal or external 

activities. Consequently, a complicated array of elements [3, 

4] such as emissions, traffic conditions, and weather data,

make precise AQ prediction challenging.

In the lack of physical models, data mining enables novel 

approaches for analyzing AQ [5, 6] and may find hidden 

patterns in the acquired data. A Machine Learning (ML) based 

method was developed [7] that considered both spatial and 

regional relationships into account. The spatial classifier 

Artificial Neural Network (ANN) analyzes global information 

by utilizing mean results gathered from the surrounding 

regions. However, the results of this model were unaffected by 

local and global climatic conditions. 

The three-input regression model was proposed to combine 

temporal and spatial predictors with regional weather 

information [8]. The identification features may vary to the 

urban scenario an extraordinary increase in people activity, 

and higher electricity and transport requirements. These 

elements play a key role in urban air pollution caused by 

clogged major highway networks. A linear model approach 

considers these factors [9]. 

The more factors considered for AQ prediction make 

decisions more precise. Also, knowledge obtained from huge 

datasets improves the accuracy of AQ prediction. So, DL 

models [10, 11] were used for AQ prediction. But, all proposed 

AQ prediction models suffered from data dissimilarity of 

collected data from various cities. Also, they cannot handle 

long delay-based dataset, which causes a high learning time. 

So, the data dissimilarity issues were solved in ISAE-DL  

and EISAE-DL techniques using an auto-encoder and DL 

method [12]. The data collected from spatially and temporally 

correlated locations are grouped based on Manhattan distance. 

The PM-related data are fed into ANN and LSTM while 

topography data are fed into CNN. Then, aggregated data is 

fed into a sparse autoencoder for normalization. Then 

classifier is used for AQ prediction. The LSTM used in 
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EISAE-DL is suffered to learn the long-term dependencies of 

air pollutant concentrations. The learning issue in LSTM for 

long-term dependencies is solved in this paper by using 

Transferred Stacked Bidirectional and Unidirectional LSTM-

based transfer learning in EISAE-DL which handle large size 

and long delay-dependent datasets. Wasserstein Distance-

based DTL (WD-DTL) is employed in EISAE-DTL to 

minimize the disparities across the origin and destination areas 

through adversarial learning. In summary, the major 

contribution of this paper is the following: 

• To develop EISAE-DTL for AQ prediction by adopting

T-SBU-LSTM which extarcts temporal relation among

long delay-dependent data efficiently.

• To develop EISAE-EDTL using the WD-DTL with CNN

for AQ prediction, which extarcts informative data of

terrain details.

• To evaluate the efficiency of the EISAE-DTL and EISAE-

EDTL compared with the existing AQ prediction models.

• Thus, the utilization of TL can efficiently handle the long

delay-dependent datasets and decrease the learning period

of the classifier for appropriately predicting the AQ

contrasted with the existing DL methods.

The remaining sections of the manuscript are structured as 

follows: Section 2 discusses the literature on the diagnosis of 

DL-based AQ prediction. Proposed EISAE-DTL and EISAE-

EDTL are described in Section 3 and the results are shown in

Section 4. The study is summed up and suggestions for further

research are offered in Section 5.

2. RELATED WORK

An Apriori pattern mining technique [13] was employed to 

mine contextual spatial-temporal correlations among PMs. 

The temporal sequences provide high-frequency rule 

generation from specified intervals in each time series. Thus 

the techniques emerge to identify the relationship among 

emissions in various locations with varying timeframes. On 

the other hand, periodically executing the rule creation process 

for every data update is a time-consuming process. 

As a means of improving the accuracy of the nonlinear AQ 

Index (AQI) series, a novel hybrid learning strategy [14] was 

provided with multidimensional scaling-based K-means and a 

Modified Extreme Learning Machine (MELM) for urban AQ  

prediction. Predictions for AQ were made using a neuro-fuzzy 

network and self-organizing clustering [15]. To fine-tune the 

network's settings, evolutionary techniques like steepest 

descent backpropagation are employed. Fuzzy rules, once 

learned, can be utilized to make predictions about the AQ of 

test data. 

However, ML-based approaches are limited to processing 

large-size datasets. To solve this issue, DL-based approaches 

were proposed to handle large-size data efficiently. A Spatial-

Temporal Deep Neural Network (ST-DNN) was a 

comprehensive predictive model [16] for AQ forecasts by 

incorporating data from a wide range of monitoring sites, 

temperature, wind features, and direction and elevation 

information. A temporal sliding-based Bidirectional LSTM 

(BLSTM) with which strong temporal connections can be 

preserved [17] was proposed to handle PMs and related 

information integrated with an appropriate time lag. AQ 

forecasting using a TL-BLSTM [18] was proposed which 

learns from PM2.5's long-term dependencies and then uses 

transfer learning to apply that knowledge across different time 

scales. 

Empirical Mode Decomposition (EMD) and BLSTM were 

proposed [19] that consist solely of PM2.5 time-series data, 

which are treated as signal data. To break down the data and 

pull out the frequency and amplitude features, EMD is used as 

an unsupervised feature learning method. AQ prediction of 

shorter-term trends, especially for unexpected shifts, was 

enhanced by this method. Multi-output and Multi-index of 

Supervised Learning (MMSL) were developed in LSTM [20] 

to simultaneously learn the PM data of the current monitoring 

station and its nearest neighbor stations. 

The underlying uncertainties associated with data necessary 

to run these models are another source of uncertainty in 

operational models. The natural sources associated, for 

instance, are hard to fully characterize. The disadvantages of 

operational models involve the usage of standard settings and 

the lack of information for the same geographical scale that 

might be used to evaluate model findings. To solve these 

issues, a novel AQ prediction technique is proposed in this 

paper.  

3. PROPOSED METHODOLOGY

This model considers the Air quality data in India (2015 – 

2020) database, which comprises the name of the city, date, 

PM2.5, PM10, NO, NO2, NOx, NH3, CO, SO2, O3, Benzene, 

Toluene, Xylene, AQI, and class of different stations across 26 

places in India. It is retreived from kaggle website. The 

suggested predictive model framework, depicted in Figure 1, 

is made up of four key components. 𝑇𝐺  refers global time

between all datations. 𝑇𝐿  represent the local time history of

data colelcted in every stations.Time perid is 3 years durarion 

from every day with every 6 hours colelctions  

Figure 1. Overall prediction framework 

To examine the sequence delays and linkages among places 

using past temporal patterns, as well as to analyze location 

feature variations for future determinants, to uncover the most 

significant interactions between locations. Even if they have 

substantial correlations with the target place, it is worthwhile 

to investigate nearby places. ISAE-DL and EISAE-DL 

connection extractors are used to find the most comparable 

locations to the requested location, and then create training 

datasets from the best 𝑘  associated locations. At last, the 

prediction outcomes of the DL model must be trained and 

tested.   

The suggested EISAE-DTL paradigm combines objective 

location temporal data, related position spatial-temporal data, 

and terrain data. The data stream contains statistical data from 

the target and related sites, such as pollution levels, weather 
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conditions, and objective features, as well as changes over a 

previous couple of hours. These data are given as input to 

LSTM, Adaptive Temporal Extractor (ASE), and ANN. This 

information was fed into the LSTM and ANN. A matrix of 121 

squares was employed for topography data, equivalent to 1111 

reference locations at 500 m intervals, with the principal 

square in the matrix reflecting the present areas. As a result, 

there are 120 previously unknown locations with AQI 

estimated using WD-based deep adversarial TL.   

Concatenating the proportional altitude with the unknown 

points AQIs and these points are given as input to the CNN to 

lessen AQI influence at a greater altitude. CNN inputs can be 

fine-tuned later to improve accuracy. Contaminants, climatic 

situations, and objective attribute(s) of regions with significant 

resemblance (identified by ISAE-DL and EISAE-DL) were 

entered into the EISAE-DL and ASE without any previous 

training. To integrate TRE, SRE, and TE, a two-layer Feed-

forwrad FNN was used. The divergence among the targeted 

feature value and a particular time 𝑡𝑞+ℎ 𝑤ℎ𝑒𝑟𝑒 𝑡𝑞+ℎ < 𝑓𝑖𝑡

was the actual prediction. 

Figure 2. Architecture of EISAE-DTL framework 

The model's structure is depicted in Figure 2. EISAE-DL 

and ASE receive data on AQ and meteorological conditions, 

whereas CNN receives data on terrain [21]. The models are 

con catenated beside each other, and the parameters are 

transferred onto the next layer. Because the present state 

evolves in terms of its impact on upcoming time intervals, the 

classifier is constructed hourly throughout the next 48 hours. 

As a result, in specified time intervals, the inputs are 

integrated with the desired feature changes to learn distinct 

versions with identical topologies multiple times. This 

approach has the advantage of maintaining uniform input sizes 

regardless of position or time. To extract AQ feature 

information from linked sites identified by ISAE-DL and 

EISAE-DL, the spatial-temporal relationships extractor (SRE) 

utilizes an ANN model The temporal relationships extractor 

(TRE) collects AQ attributes using meteorological data 

obtained in the objective region during the last few hours to 

apply an LSTM model. 

3.1 Temporal relations 

The temporal sequence input for PM2.5, PM10, and other 

elements are continuous and constant, and they can be 

classified as lower (trends) or high (fast growth) bandwidth 

data. EISAE-DTL is developed to acquire target location time 

series patterns because EISAE-DL simulates historical time 

series behavior; however, the ANN employs only recent data 

and is thus sensitive to quick changes. As a result, the EISAE- 

DL, and ANN obtain less and more bandwidth data from the 

patterns, respectively. The EISAE-DTL forecasts trends in 

PM2.5 and PM10 levels for the last six hours and local weather 

parameters (wind speed and direction, humidity, and 

temperature), whereas the ASE TRE enhances model 

sensitivity by utilizing similar attributes as the EISAE-DTL. 

Preceding research work has established the significance of 

these features in terms of AQ [22]. 

3.2 Spatial-temporal relations 

Contaminant diffusion refers to the ability to link AQ at one 

area with that at other locations Because AQ in a single area is 

influenced by both local pollutants and pollution from 

neighboring locations, SRE takes into account past spatial-

temporal nearby location features as inputs. 

As a result, SRE is developed which leverages AQIs and 

meteorological data from other places to calculate AQ at the 

target location. Terrain factors, such as a hilltop between 

locations, are underestimated when partitioning spaces into 

sections using circles of varying diameters. Data from 

partitioned regions is frequently comprised of mean or mode 

values, which are incredibly unreliable, especially in areas 

with few locations. Furthermore, for an SRE position, data 

mining from places in the spatial-temporal proximity using 

ISAE-DL and EISAE-DL is required, which includes AQIs 

and meteorological variables (wind speed and direction) for 

the previous 6 hours. The spatial-temporal neighborhood 

period sequences such as the target location are undeniably 

durable and coherent. As a result, by accounting for spatial-

temporal neighborhood influences, ANN-SRE is used to 

improve model stability [22]. 

3.3 Terrain extractor 

Due to various barriers and elevation variances, the 

relationships between locations differ. As a result, most terrain 

information is utilized to improve position associations. 

Terrian is generally expressed in terms of the elevation, slope, 

and orientation of the area around the stations. Terrain 

statistics in the locations were obtained using a 121-square-

section vector made up of 11*11 coordinate lines spaced 500 

meters apart. To establish the correlations between terrain and 

PM2.5 & PM10, the approach [23] of is used for the evaluation 

of each location is normalized as Eq. (1): 

𝐸𝑙𝑠 =
𝑒𝑙𝑒−𝑒𝑙𝑒𝑠𝑡

𝑒𝑙𝑒𝑠𝑡
(1) 

and transferred to equivalent altitude is expressed as Eq. (2): 

𝑒𝑙𝑒𝑟𝑒𝑙 =
1

𝑒𝐸𝑙𝑠
(2) 

The standardized altitude is represented as 𝐸𝑙𝑠 , and it

reduces the effect of higher altitudes, although the distribution 

is heavily sensitive to elevation. The TE, SRE, and TRE results 

are combined and given to the FFNN using an enhanced sparse 

autoencoder. Figure 2 depicts the suggested approach's general 

framework. The upgraded sparse autoencoder accomplishes 

the process of layer blending and outlier detection. The input 

data is successfully managed in a systematic manner. 

Complex forms are formulated from smaller shapes with the 

use of an autoencoder. Autoencoders are capable and efficient 

detectors of important features. For the learning experience, 

data is combined in both continuous and categorical forms. 

The value obtained is multiplied by the input data in this 

strategy, which employs a feed-forward artificial neural 
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network-based perceptron. The linear function, log-sigmoid, 

hard limit, and hyperbolic tangent with probable saturation is 

used to start the process, which is then added to the total inputs 

and weights. The value of the consequence is calculated as Eq. 

(3): 

𝐵 = 𝑓(𝑤𝑝 + 𝑎) (3) 

In Eq. (3), 𝑓(∙) is the activation function, 𝑤 is the weight 

value, 𝑎 is the bias, and 𝑝 is the given input. Traditionally, 

perceptrons employ a primary function for prediction, and the 

commonly chosen function is provided by Eq. (4) 

𝑓(𝑝) =
1

(1+𝑒−𝑥)
(4) 

The precise estimation of the weight lowers the error among 

the output and the assumed value is decided in the training set 

of data. The existence of multiple perceptrons is organized as 

several layers, with each layer's output data being sent to the 

input of the next layer. This multilayer network can solve 

challenging linear separable classification problems. By using 

the initial weights, the input data is propagated [24]. The error 

value can be estimated from the desired outcome, which is the 

variance in feed-forward propagation output. The algorithm is 

developed in batches, and each test is completed before the 

weight is updated. The mean of the elevation value is used to 

optimize the weights, and each input is probed by the revised 

weights, while the output data is categorized correspondingly. 

3.4 Proposed EISAE-DTL 

The proposed Enriched spatial, temporal sequence-

Improved Sparse Auto Encoder with Deep TL (EISAE-DTL) 

algorithm is mainly used to solve the learning issue in LSTM 

for long-term dependencies. Deep LSTM frameworks are 

networks with several stacked LSTM hidden layers, with each 

LSTM hidden layer's output passing into the next LSTM 

hidden layer. To enhance prediction accuracy at higher 

temporal resolutions, TL is used. To transmit data from the 

source to the new domain, TL exploits similarities between 

two separate datasets, tasks, or models. 

Figure 3. Architecture of T-SBU-LSTM 

This research adopts the stacked-layers technique, which 

has been found to improve neural network efficiency. T-SBU-

LSTM was used in EISAE-DL to forecast network-wide 

traffic speed values. Figure 3 depicts the T-SBU-LSTM design. 

The Transferred Stacked Bidirectional and Unidirectional 

LSTM (T-SBU-LSTM) is proposed as a method for learning 

from long-term PM2.5 dependencies in this study, and it 

employs TL to deliver data from lower to higher temporal 

resolutions. Figure 3 depicts the T-SBU-LSTM structure. 

BLSTM is an improved RNN that can learn long-term 

dependencies from both upwards and backward sequences of 

time series data. SBU-LSTM (Stacked Bidirectional and 

Unidirectional LSTM) is an AQ prediction model developed 

by merging LSTM and BLSTM. The proposed paradigm can 

deal with both long-term and short-term dependency. This 

phase of research extends the AQ prediction from a single 

place to multiple nearby locations, with time delays ranging 

from short to lengthy. By learning both forward and backward 

dependencies, the integrated architecture improves feature 

learning from large-scale spatiotemporal time series data.  

TL allows the model to learn and store information from 

samples with lower temporal resolutions, as well as increase 

prediction performance for data with higher temporal 

resolutions. The initial feature-learning layer of T-SBU-

LSTM is a BLSTM layer, while the last layer is an LSTM layer. 

The T-SBU-LSTM can be filled with one or more 

LSTM/BLSTM layers in the middle to make full use of the 

input data and learn sophisticated and extensive features. T-

SBU-LSTM predicts future temporal values for one time step 

using spatial time series data as input. Based on past data, the 

SBU-LSTM can also estimate values for numerous future time 

steps. 

Initially, the sequences are projected for the targeted area 

using time sequence attributes that incorporate spatial data 

after selecting the places with the greatest significant spatial-

temporal linkages to the specified area. Consequently, the 

position remains constant, but the time series might change 

depending on where they are. A mountain between two points, 

for example, could affect the sequences. As a result, the 

prediction model takes into account both time and spatial 

relationships. To extract features for prediction, the spatial and 

temporal connection features should be developed. Assume, 

the group of regions: 𝐴 = {𝑎1, 𝑎2, … 𝑎𝑛} and set of features: 

𝐹𝑆 =  {𝑓𝑠1, 𝑓𝑠2, … . . 𝑓𝑠𝑚}. Although each area contains 

geographical data like latitude and longitude, the area 

coordinate (AC) is described as Eq. (5): 

𝐴𝐶𝑖 = (𝑎𝑖 , 𝑙𝑖 , 𝑚𝑖)𝑎𝑖 ∈ 𝐴 (5) 

The latitude and longitude of area 𝑎𝑖  are 𝑙𝑖 and 𝑚𝑖, 
respectively. Considering related geographical features may 

enhance prediction, the distance between two locations is 

computed as Eq. (6): 

𝐷𝑝,𝑞 = 𝑑𝑖𝑠𝑡𝑎𝑟𝑒𝑎(𝐴𝐶𝑝, 𝐴𝐶𝑞) =

𝑑𝑖𝑠𝑡𝑎𝑟𝑒𝑎 ((𝑎𝑝, 𝑙𝑝𝑚𝑝), (𝑎𝑞 , 𝑙𝑞𝑚𝑞)) , 𝑎𝑝, 𝑎𝑞 ∈ 𝐴 𝑝 ≠ 𝑞 
(6) 

To discover the spatial domain's closest strongly linked 

areas, and the Spatial Relationships Sequence Set (SRSS) as 

Eq. (7): 

𝑆𝑅𝑆𝑆 = {𝐷1,2, 𝐷1,3 … … . 𝐷𝑛−1,𝑛}, 𝐷𝑖,𝑗 = 0,0 < 𝑖 < 𝑛 + 1 (7) 

where, 𝑛 is the number of positions and the diagonal numbers 

𝐷𝑖,𝑗 will be 0. 𝑆𝑅𝑆𝑆_𝑐𝑎𝑛𝑑(𝑎𝑖 , 𝑥) is a set of 𝑥 regions with the

shortest spatial proximity to 𝑎𝑖 .To investigate the attributes of

these major spatial places, as areas with identical pattern 

sequences may aid prediction. The Feature Sequence Interval 

(FSI) for a particular region is described as Eq. (8): 

𝐹(𝑎𝑖 , 𝑓𝑠𝑗 , 𝑡𝑣𝑡,𝑠𝑡 = {𝑏(𝑎𝑖 , 𝑓𝑠𝑗 , 𝑡𝑣𝑡), 𝑏(𝑎𝑖 , 𝑓𝑠𝑖 , 𝑡𝑣𝑡+1),

… . . 𝑏(𝑎𝑖 , 𝑓𝑠𝑖 , 𝑡𝑣𝑡), 𝑎𝑖 ∈ 𝐴, 𝑓𝑠𝑗 ∈ 𝐹𝑆, 𝑣𝑡 < 𝑠𝑡})
(8) 
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where, 𝑎𝑖 has a variable feature 𝑓𝑠𝑖 from start to end (𝑣𝑡 to 𝑠𝑡

time (𝑣𝑡 < 𝑠𝑡), and b(𝑎𝑖 , 𝑓𝑠𝑗 ,  𝑡𝑥) indicates the observed level

of off 𝑓𝑠𝑗 at 𝑡𝑥. For any two sites, the proximity across feature

patterns can be represented as Eq. (9): 

𝐷𝑆𝑝,𝑞,𝑡𝑣𝑡,𝑠𝑡
=

𝑑𝑖𝑠𝑡𝑠𝑒𝑞 (𝐹(𝑎𝑝 , 𝑓𝑠𝑡𝑎𝑟𝑔𝑒𝑡 , 𝑡𝑣𝑡,𝑠𝑡
), 𝐹(𝑎𝑞 , 𝑓𝑠𝑡𝑎𝑟𝑔𝑒𝑡 , 𝑡𝑣𝑡,𝑠𝑡

)),

 𝑎𝑝, 𝑎𝑞 ∈ 𝐴, 𝑝 ≠ 𝑞

(9) 

Apply TL to enhance the performance of the prediction 

model. Assume a target training set of nt instances 𝐴𝑞𝑡 =

{(𝑎1
𝑡 , 𝑏1 

𝑡 ), … … , (𝑎𝑛𝑡
𝑡 , 𝑏𝑛𝑡

𝑡 )} drawn from some probability 𝐷𝑖 ,

and an origin learning set of ns samples 𝐴𝑞𝑠 =
{(𝑎1

𝑡 , 𝑏1 
𝑡 ), … … , (𝑎𝑛𝑠

𝑡 , 𝑏𝑛𝑠
𝑡 ). The objective and source training

sets maintain the identical feature space and label space, with 

each input feature vector 𝑎𝑖 ∈ 𝐸𝑛 and the accompanying class 

label 𝑏𝑖 ∈  {𝐶1, . . . , 𝐶𝐿}. Further, target data 𝐴𝑞𝑡 should not be

inferred from the same distribution as the source data 𝐴𝑞𝑠 ,

implying that the models derived from the source set would be 

unable to reliably identify the (target) test data due to the 

different time series. The size of 𝐴𝑞𝑡 , on the other hand, is

typically insufficient for training an effective classifier for the 

test data. The purpose of TL is to use knowledge from 𝐴𝑞𝑠 to

aid in the learning of the target prediction function in 𝐴𝑞𝑡.

In order to find the positions which are mostly related 

closely before utilizing the measures, initially, feature fstarget  is 

selected to act as the objective detection sequence: in this case, 

PM2.5 was selected, but other objectives might be utilized if 

necessary. Eq. (10) can then be used to compute the collection 

of Temporal Relations Sequence Set (TRSS). 

𝑇𝑅𝑆𝑆𝑡𝑣𝑡,𝑠𝑡
= {𝐷𝑆1,2,𝑡𝑣𝑡,𝑠𝑡

, … … … 𝐷𝑆𝑛−1,𝑛,𝑡𝑣𝑡,𝑠𝑡
} (10) 

The set of x positions with the minimum variations from 

position i is then chosen as TRSS_cand (𝑎𝑖,𝑥). The Spatial-

Temporal Relations (STR) cluster is introduced which is the 

collection of locations that are most strongly associated to ai 

to investigate both linkages respectively in Eq.(11): 

𝑆𝑇𝑅_𝑐𝑎𝑛𝑑(𝑎𝑖 , 𝑥)  = 𝑆𝑅𝑆𝑆_𝑐𝑎𝑛𝑑(𝑎𝑖 , 𝑥) ∪
𝑇𝑅𝑆𝑆__𝑐𝑎𝑛𝑑(𝑎𝑖 , 𝑥),aiϵ A

(11) 

Instead of using the intersection, the union of SRCS cand 

(𝑎𝑖,𝑥) and TRSS cand (𝑎𝑖,𝑥) is used to provide a greater value

of connections for the methodology to train; the conjunction 

will have lesser candidates (or none at all), leading to the in 

the absence of significant objective quality because certain 

location behaviors varied from adjacent locations. The Spatial-

Temporal Predictor (STP) is defined by 𝑆𝑇𝑅𝑐𝑎𝑛𝑑(𝑎𝑖,𝑥) Eq. (12):

𝑃(𝑆𝑇𝑅𝑐𝑎𝑛𝑑(𝑎𝑖,𝑥))[𝑡𝑡𝑙,𝑡𝑞] = 𝐹(𝑎𝑖 , 𝑓𝑠𝑡𝑎𝑟𝑔𝑒𝑡 , 𝑡𝑣𝑡′,𝑠𝑡′), 𝑡𝑙

< 𝑏𝑞 < 𝑣𝑡′ ≤ 𝑠𝑡′ (12) 

In the above equation,  𝑃  predicts a series of objective 

qualities and delivers a sequential set, 𝑆 which provides the 

expected objective characteristics For the temporal range from 

tvt to tst,. 𝐹 is produced from the nearest identical time series, 

where tl is the recalled time when comparing tl to tq. 

Algorithm 1: Pseudocode for EISAE-DTL 

Input: Target Terminal (T ); set of geographic coordinates 

(LC), number of candidates (n) 

Output: Set of locations L 

Step 1: Start the process 

Step 2: Assume a set of areas: 𝐴 = {𝑎1, 𝑎2, … 𝑎𝑛} 

Step 3: Assume a set of features: 𝐹𝑆 =
 {𝑓𝑠1, 𝑓𝑠2, … . . 𝑓𝑠𝑚} 

Step 4: Compute Area Coordinate (AC) 

ACi = (ai, li, mi)
//Let latitude and longitude of area ai are li and mi 

Step 5: Calculate the distance between two locations 

Dp,q = distarea(ACp, ACq) =

distarea ((ap, lpmp), (aq, lqmq)) , ap, aq ∈ A

//Apply TL for T-SBU-LSTM 

Step 6: Initialize AQ data Aqs̃= ∅.

Step 7: for l = 1 to L do 

7.1 Initialize a multilayer autoencoder MAEl (W,b). 

7.2 Select location-based AQ Aqt
c
1 from Aqt. 

7.3 Train AEl(W,b) using Aqt
c
1 

7.4 Select location-based AQ Aqs
c
1 from Aqs 

7.5 Reconstruct data Aqs
cl = MAERecon

l̃ (Aqs
cl)

7.6 Update the reconstructed data Aqs̃ ∪  Aqs
cl

Step 8: end for 

Step 9: Find spatial relationships sequence 

SRSS ={D1,2, D1,3, ….. Dn-1,n},   //Di,i= 0 

// n is the integer spots, and the oblique values are Di,i, are 0. 

Step 10: Compute FSI 

F(ai, fsj, tvt,st

= {b(ai, fsj, tvt), b(ai, fsi, tvt+1), … . . b(ai, fsi, tvt), ai  ∈ A, fsj

∈ FS, vt < st})
// ai possesses fsi that fluctuates from start to end (vt to st) 

time (vtst); and b(ai,fsj,tx) indicates the measured fsi level at 

tx. 

Step 11: Find the distance between feature sequences 

Step 12: 𝐷𝑆𝑝,𝑞,𝑡𝑣𝑡,𝑠𝑡
=

𝑑𝑖𝑠𝑡𝑠𝑒𝑞 (𝐹(𝑎𝑝, 𝑓𝑠𝑡𝑎𝑟𝑔𝑒𝑡 , 𝑡𝑣𝑡,𝑠𝑡
), 𝐹 (

𝑎𝑞 , 𝑓𝑠𝑡𝑎𝑟𝑔𝑒𝑡 ,

𝑡𝑣𝑡,𝑠𝑡

)), 

 𝑎𝑝, 𝑎𝑞 ∈ 𝐴

Step 13: Compute TRSS 

𝑇𝑅𝑆𝑆𝑡𝑣𝑡,𝑠𝑡
= {𝐷𝑆1,2,𝑡𝑣𝑡,𝑠𝑡

, … … … 𝐷𝑆𝑛−1,𝑛,𝑡𝑣𝑡,𝑠𝑡
}

// The set of x positions with the minimum variance from 

position i is then chosen as TRSS_cand (ai,x). 

Step 14: Evaluate STR 

𝑆𝑇𝑅_𝑐𝑎𝑛𝑑(𝑎𝑖 , 𝑥)  
= 𝑆𝑅𝑆𝑆_𝑐𝑎𝑛𝑑(𝑎𝑖 , 𝑥) ∪ 𝑇𝑅𝑆𝑆__𝑐𝑎𝑛𝑑(𝑎𝑖 , 𝑥)

Step 15: Each location is normalized as 

𝐸𝑙𝑠 =
𝑒𝑙𝑒−𝑒𝑙𝑒𝑠𝑡

𝑒𝑙𝑒𝑠𝑡

Step 16: Transferred to equivalent altitude is expressed as 

 𝑒𝑙𝑒𝑟𝑒𝑙 =
1

𝑒𝐸𝑙𝑠

Step 17: Calculate STP 

𝑃(𝑆𝑇𝑅_𝑐𝑎𝑛𝑑(𝑎𝑖 , 𝑥)) [𝑡𝑡𝑙,𝑡𝑞]  = 𝐹(𝑎𝑖 , 𝑓𝑠𝑡𝑎𝑟𝑔𝑒𝑡 , 𝑡𝑣𝑡′,𝑠𝑡′)

Step 18: ASE receives data on AQ and meteorological 

conditions, whereas CNN receives data on terrain  

Step 19: Concatenate each other and the parameters are 

transferred onto the next layer 

Step 20: Perform a feedforward pass using FFNN 

Step 21: Determine the activations for levels L2, L3, and so 

on, all the way up to the output layer Lnl. 

Step 22: End the process 

3.5 Proposed EISAE-EDTL 

EISAE-EDTL is designed to shorten the training time of TL 
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due to heavier data in the source domain by employing WD-

DTL to optimize the differences among the actual and desired 

domains. Figure 4 depicts the WD-DTL architecture. The TL 

method is used to investigate the transferable characteristics of 

an 𝐴𝑄  dataset under various meteorological situations. The 

atmospheric statistics are temperature, wind speed and 

direction, average wind speed and direction, humidity level, 

and elevation. Initially, a basic LSTM model is trained with 

appropriate data. Then, to acquire terrain features across 

source and target regions around the stations, the WD-DTL is 

developed and combined with the CNN, which minimizes the 

learning period. A neural network (known as domain critic) is 

built to calculate the actual Wasserstein proximity by 

improving domain critic loss. The LSTM-based feature 

extractor variables are then adjusted using a discriminator by 

lowering the predicted empirical Wasserstein distance. Using 

the adversarial training approach mentioned above, 

transferable attributes from a given area with confirmed 

erroneous labels can be used to diagnose a different yet similar 

detection objective without any tagged examples.  

Figure 4. Architecture of CNN –WD-DTL 

Suppose 𝐴𝑞𝑠  and 𝐴𝑞𝑡 are the objective datasets; the 

learning rate for classifier and feature learning is 2, whereas 

the training rate for domain conformity critic is 1. the batch 

size is 𝑛 ; the critic training step is 𝐶𝑡 , and the balance 

coefficients and fe are the first CNN-based feature extractor 

variable, cp is the preliminary domain alignment critic 

parameters, and pp is the initial detective variable Gradient 

distance is calculated as Eq. (13): 

𝑔𝑔𝑟𝑎𝑑 ← (‖∇2𝑔𝑔𝑟𝑎𝑑  ← (‖∇𝑓𝑝𝑐(𝑓)‖
2

− 1)2
(13) 

The Wasserstein-1 distance can be approximated as: 

𝑙𝑖𝑤𝑑 =
1

𝑁𝑠
∑ 𝑝𝑐 (𝑝𝑓(𝐴𝑞𝑠)) −

1

𝑁𝑠
∑ 𝑝𝑐 (𝑝𝑓(𝐴𝑞𝑡))𝑏𝑡∈𝐴𝑞𝑡𝑎𝑠∈𝐴𝑞𝑠   (14) 

Algorithm 2 Pseudocode for EISAE-EDTL 

Input: Target Terminal (T); Set of geographic coordinate 

(LC), number of candidates (n) 

Output: Set of locations (L) 

Step 1: Start the process 

Step 2: Assume a set of areas: A={a1,a2,…an}  

Step 3: Assume set of features: FS = {fs1,fs2,…..fsm} 

Step 4: Compute Area Coordinate (AC)  

ACi = (ai, li, mi) 

//Let latitude and longitude of area ai are li and mi 

Step 5: Calculate the distance between two locations 

Dp,q = distarea (ACp, ACq) 

= distarea((ap,lp,mp), (aq,lq,mq)) 

Step 6: ASE receives data on AQ and meteorological 

conditions, whereas CNN receives data on 

terrain  

// Apply WD-DTL 

Step 7: While θfe, θcp, and θ pp have not converged do 

Step 8: Assume the source dataset Aqt = {(a1
s , b1

s  )}i=1
n

Step 9: Assume the target dataset Aqs = {a1
t }i=1

n

Step 10: For i=0,……Ct 

Step 11: 𝑓𝑠 ← 𝑝𝑓(𝐴𝑞𝑠), 𝑓𝑡 ← 𝑝𝑓(𝐴𝑞𝑡), 
Step 12: 𝑓 ← {𝑓𝑠, 𝑓𝑡, 𝑓𝑟} 

Step 13: ggrad ← (‖▽ggrad  ← (‖∇fpc(f)‖2 − 1)2

θcp ←  θcp + β1∇θcpliwd(as, bt) −  τggrad(f)

Step 14: end for 

θpp ←  θpp + β2∇θpplct(as, bs)

θfe ←  θfe +  β2∇θfe[lct(as, bs) +  δliwd(Aqs, Aqt)]
Step 15: end while 

Step 16: Find spatial relationships sequence 

𝑆𝑅𝑆𝑆 = {𝐷1,2, 𝐷1,3, … . . 𝐷𝑛 − 1, 𝑛},   //Di,i= 0 

// n is the integer spots, and the oblique values are Di,i, are 0. 

Step 17: Compute FSI 

𝐹(𝑎𝑖, 𝑓𝑠𝑗, 𝑡𝑣𝑡, 𝑠𝑡)  =  {𝑏(𝑎𝑖, 𝑓𝑠𝑗, 𝑡𝑣𝑡), 𝑏(𝑎𝑖, 𝑓𝑠𝑖, 𝑡𝑣𝑡 +
1), … , 𝑏(𝑎𝑖, 𝑓𝑠𝑖, 𝑡𝑣𝑡)}  

//ai has feature fsi that changes from first to last (vt to st) 

time (vt<st); and b(ai,fsj,tx) denotes determined value of fsi at 

tx. 

Step 18: Find the distance between feature sequences 

DSp,q,tvt,st= distseq(F(ap,fstarget, tvt,st), F(aq,fstarget,tvt,st)) 

Step 19: Compute TRSS 

TRSStvt,st
= {DS1,2,tvt,st

, … … … DSn−1,n,tvt,st
} 

// The set of x positions with the minimum variance from 

position i is then chosen as TRSS_cand (ai,x). 

Step 20: Evaluate STR 

STR_cand(ai, x)  = SRSS_cand(ai, x) ∪ TRSS__cand(ai, x)
Step 21: Calculate STP 

P(STR_cand(ai, x)) [ttl,tq]  = F(ai, fstarget, tvt′,st′)

Step 22: Execute a feedforward pass, calculating the 

activations for layers L2, L3, and so on all the 

way up to the output layer Lnl.  

Step 23: End the process 

4. RESULT AND DISCUSSION

The efficiency of EISAE-DTL and EISAE-EDTL is 

compared with ST-DNN [16], and EISAE-DL [12] on the 

considered dataset in terms of accuracy, precision, sensitivity, 

specificity, AUC, and MCC. 

4.1 Accuracy and precision 

Accuracy is the estimation of the actual value in the AQ 

prediction. Also, it is the identification (both valid positive and 

actual negative values) amongst the number of estimated 

classes. It is calculated as Eq. (15): 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
(15) 

Precision defines the closeness of the measurement and the 

relevance among the values identified in the AQ prediction. It 

is calculated as Eq. (16): 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
(16) 
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(a) 

(b) 

Figure 5. Evaluation of (a) accuracy, and (b) precision of 

EISAE-EDTL with existing works 

Figure 5(a) & 5(b) depicts the accuracy & precision of ST-

DNN, EISAE-DL, EISAE-DTL and EISAE-EDTL for various 

iterations. The accuracy (precision) is represented by the Y-

axis, while the number of iterations is represented by the X-

axis. When the range of iterations is 100, the accuracy 

(precision) of EISAE-EDTL for AQ prediction is 11.57% 

(11%), 1.33% (2.5%), and 0.303% (0.21%) higher than ST-

DNN, EISAE-DL, and EISAE-DTL. This analysis 

demonstrates that the EISAE-EDTL exceeds other AQ 

detection methods in terms of accuracy and precision. 

4.2 Sensitivity and specificity 

Sensitivity is the fraction of positive values that are 

adequately identified. It is calculated as Eq. (17): 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
(17) 

Specificity is calculated as the number of correct negative 

predictions divided by the total number of negatives. It 

measures the proportion of locations not impacted by air 

pollution, which is correctly predicted. It is calculated as Eq. 

(18): 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
(18) 

Figure 6 (a) and (b) depicts the sensitivity and specificity of 

ST-DNN, EISAE-DL, EISAE-DTL, and EISAE-EDTL for 

various iterations. When the number of iteration is set to 100, 

the sensitivity (specificity) of EISAE-EDTL for AQ 

estimation is 20.51% (13.92%), and 4.44% (4.65%) and 1.08% 

(1.12) higher than ST-DNN, EISAE-DL, and EISAE-DTL. 

This evaluation demonstrates that the suggested EISAE-EDTL 

has higher sensitivity and specificity than traditional AQ 

prediction systems. 

(a) 

(b) 

Figure 6. Evaluation of (a) sensitivity, and (b) specificity of 

EISAE-EDTL with existing works 

4.3 AUC and MCC 

AUC is the prediction indicator and is independent among 

the classes with distributed instances. It is computed by Eq. 

(19): 

𝐴𝑈𝐶 =
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦+𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦

2
(19) 

MCC is the correlation coefficient between the predicted 

and actual values. It is calculated as Eq. (20): 

𝑀𝐶𝐶 =
𝑇𝑃×𝑇𝑁−𝐹𝑃×𝐹𝑁

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
(20) 

Figure 7 (a) and (b) depicts the AUC (MCC) of ST-DNN, 

EISAE-DL, EISAE-DTL, and EISAE-EDTL for various 

iterations. When the number of iterations is 100, the AUC 

(MCC) of EISAE-EDTL for AQ prediction is 24.12%

(29.17%) 4.59% (1.52%), and 1.20% (1.138%) higher than

ST-DNN, EISAE-DL, and EISAE-DTL. This investigation

shows that the EISAE-EDTL has a higher AUC and MCC than

classical AQ prediction systems.

Also, the proposed EISAE-EDTL is compared with the 

related works recently proposed TL-BLSTM [18], and 

MMSL[20] to show the effectiveness. 
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(a) 

(b) 

Figure 7. Evaluation of (a) AUC, and (b) MCC of EISAE-

EDTL with existing works 

Figure 8. Evaluation of accuracy and precision of EISAE-

EDTL with related work 

Figure 9. Evaluation of sensitivity and specificity of EISAE-

EDTL with related works 

Figure 10. Evaluation of AUC and MCC of EISAE-EDTL 

with related works 

Figure 8 depicts the accuracy (precision) of TL-BLSTM, 

MMSL, and EISAE-EDTL for various iterations. When the 

range of iterations is 100, the accuracy (precision) of EISAE-

EDTL for AQ prediction is 13.45% (12.83%), and 4.12% 

(3.17%) higher than TL-BLSTM, and MMSL. This analysis 

shows that the EISAE-EDTL outperforms conventional AQ 

forecast systems in terms of accuracy and precision. 

Figure 9 depicts the sensitivity (specificity) of TL-BLSTM, 

MMSL, and EISAE-EDTL for various iterations. This 

analysis demonstrates that the EISAE-EDTL has higher 

sensitivity and specificity than the classical AQ prediction 

models. 

Figure 10 depicts the AUC (MCC) of TL-BLSTM, MMSL, 

and EISAE-EDTL for various iterations. When the number of 

iterations is 100, the AUC (MCC) of EISAE-DTL for AQ 

prediction is 22.24% (30.78%), and 3.41% (6.26%) higher 

than TL-BLSTM, and MMSL. According to this analysis, the 

EISAE-EDTL has a greater AUC and MCC than classical AQ 

prediction systems. 

5. CONCLUSION

In this paper, EISAE-DTL and EISAE-EDTL are proposed 

to handle long-time delay-based locations for better AQ 

prediction. PM2.5 and PM10 datasets were used to test the 

proposed models. The significance of pertinent position 

selection was reaffirmed with the addition of all locations 

increasing model noise and resulting in poor predicting 

accuracy. The suggested method surpassed all baselines and 

comparator models studied. According to the suggested 

EISAE-EDTL, including an LSTM approach that improved 

first-hour forecasts with the CNN element being more 

successful for prolonged detections since CNN might recover 

the spatial latency factor from neighboring subjective qualities 

by employing spatial data. In terms of accuracy, precision, 

specificity, sensitivity, AUC, and MCC, the experimental 

results suggest that the suggested EISAE-EDTL surpasses 

current AQ prediction methods. 
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