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Advanced Metering Infrastructure (AMI) is the prime smart grid application that 

connects smart meters and electric power stations. Routing Protocol for Low-Power and 

Lossy Networks (RPL) is the most familiar lightweight routing protocol for AMI 

networks. The reliability of RPL routing is a potential problem for the efficient 

deployment of AMI networks. This paper ensures attack and network reliability for 

AMI-RPL and proposes Hybrid Deep Learning based Intrusion Detection System 

(HDL-IDS) for attack reliability and a Multi-Objective Function-based Reliable RPL 

(MOR-RPL) for network reliability. The HDL-IDS assures AMI-RPL reliability against 

attacks by analyzing and eliminating the attack traffic successfully. The MOR-RPL 

method improves the RPL construction reliability by procuring the multi-objective 

function-based reliability metrics in the DODAG building. The simulation results show 

that the attack and network reliability are significantly enhanced with balanced energy 

consumption. 

Keywords: 

AMI, ARR, HDL-IDS, MOR-RPL, multi-

objective function, multi of based reliable rank 

estimation, machine learning and Cooja based 

traffic analysis, reliability 

1. INTRODUCTION

The AMI is the splendiferous smart grid application that 

ameliorates the electrical system by enabling bi-directional 

communication among smart meters and power stations [1]. 

Thus, the AMI-IoT necessitates a reliable bi-directional 

routing protocol. The RPL is the simplest and lightweight IoT 

routing protocol widely employed in smart IoT-based 

applications. Albeit, the reliability RPL routing protocol is 

diminished due to insecure routing path and low-reliability 

link selection. The reliable RPL design is a censoriously 

challenging issue owing to the malicious activities and limited 

resources of tiny smart meters [2]. Additionally, the AMI is a 

large-scale network and incorporated numerous different 

smart meters in recent days. Thus, it drastically increases the 

packet sending frequency among the smart meters and servers. 

The large-scale AMI with novel services creates several issues 

in providing reliable communication among the AMI devices. 

For instance, an intelligent attacker can launch numerous 

attacks like rank, hello flood, Denial of Service (DoS), and 

version by compromising the smart devices of AMI. Hence, 

assuring security and reliability in AMI-RPL communication 

in a large-scale resource-limited IoT environment is a 

tremendously challenging issue [3, 4].  

The Objective Function (OF) and the OF metrics are the 

most significant features of RPL. The OF plays a vital role in 

the DODAG construction, and it creates a strong influence on 

the AMI routing reliability. Thus, it takes into account diverse 

kinds of node features and link cost metrics. However, the 

design of RPL lacks the incorporation of security-related 

metrics in DODAG construction, resulting in different types 

of attacks happen and the communication reliability in 

minimized. Minimum Rank with Hysteresis Objective 

Function (MRHOF) and Objective Function zero (OF0) are 

the two main OF available in RPL, whereas they do not 

include security metrics against attacks. Since the RPL 

reliability is suffered by these attacks and it is crucial to 

eliminate such attacks from RPL DODOAG construction. The 

deep learning IDS models are suitable solutions to maximize 

the accuracy of reliable DODAG construction against attacks. 

The deep learning IDS analyzes the data produced by smart 

meters extensively and categorizing the data into normal and 

malicious based on the learning information [5]. Thus, the 

deep learning IDS is appropriate to provide strong RPL 

reliability against attacks. Nonetheless, taking into account a 

single security metric in routing reliability improvement is not 

an admirable solution. Therefore, the proposed ARR protocol 

exploits anomaly-based IDS with a hybrid deep learning 

model to categorize the RPL nodes [6] and includes diverse 

metrics such as BI, ETX, DI, EBF, NQSI, and TI to enhance 

the network reliability of RPL routing.  

1.1 Contributions 

The main contributions of the ARR are as follows. 

• The prime intention of ARR is to enhance the RPL

routing reliability by designing two different reliability 

mechanisms, such as HDL-IDS traffic analysis and MOR-RPL 

traffic analysis. 

• The reliability against attack model includes HDL-

IDS to eliminate the attackers. The reliable RPL network 

model integrates a MOR-RPL method in which the 

consideration of multi-OF ensures DODAG reliability against 

network vulnerabilities. 
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• To maximize the reliability against multiple RPL 

attacks, the HDL-IDS analyzes the collected traffic based on 

deep hybrid learning and estimates a security metric in terms 

of the belief of AMI nodes by eliminating the attacks.  

• Enhancing the RPL reliability against attacks and 

network vulnerability, the MOR-RPL considers the metrics 

like Belief, ETX, DI, EBFI, NQSI, and TI through the Cooja 

based traffic analysis phase. Thus, the MOR-RPL model 

improves the reliable DODAG construction.  

• To demonstrate the excellence of the proposed ARR, 

python-based machine learning evaluation is employed to 

validate the HDL-IDS reliability, and the Cooja-based 

simulation model is used to validate the MOR-RPL reliability 

method. 

 

 
2. BACKGROUND 
 

The AMI applications necessitate suitable routing methods 

to assure high reliability in a resource-limited IoT environment. 

An improved RPL routing protocol (IRPL) has been designed 

[7]. Such work incorporates multiple metrics to select better 

DODAG paths from a source and destination, resulting in high 

RPL performance. Nevertheless, the routing attacks diminish 

the performance of smart meters. Only a few works attempt to 

design RPL security mechanisms to satisfy the AMI-IoT 

requirements [8, 9]. The work [8] evaluates the AMI network 

performance in the presence of blackhole attackers. For 

securing the AMI communication against blackhole attackers, 

such work develops a cuckoo filter-based RPL. Nonetheless, 

it fails to work well in multiple attack scenarios of AMI. Hence, 

it is crucial to analyze the AMI efficiency in the presence of 

multiple attacks to introduce appropriate security solutions for 

maximizing the security and reliability of routing [9]. For a 

comprehensive review, the conventional works are 

categorized under three types that are IDS based methods, 

machine and deep learning-based methods, and reliable RPL 

methods.  

 
2.1 IDS based solutions 

 
The centralized IDS [10] permits the attackers to show their 

activities and determines such attacks by employing the IDS 

system. The centralized IDS model is most compatible with 

the AMI-IoT environment due to the resource-limited nature 

of smart devices. The self-organizing map-based IDS [11] 

detects the RPL assisted sensor network routing attacks by 

employing a neural network-based clustering model. An 

anomaly-based IDS [12] employs threshold values to deal with 

the RPL neighbor and DIS attacks efficiently. In such a 

lightweight anomaly IDS model, the stand-alone system 

architecture is employed, and the fully distributed IDS 

placement methods are utilized. The threshold detection 

method of the anomaly IDS method also detects similar attacks. 

Thus, the lightweight anomaly-based IDS strategy is adaptable 

for different RPL based IoT applications. A hybrid IDS model 

[13] is based on centralized and distributed IDSs in which the 

Anomaly Agent-based IDS (AA-IDS) and Specification 

Agent-based IDSs (SA-IDSs) are utilized in a combined 

manner. The hybrid model instructs the router nodes to 

monitor the data traffic and determines the potential attackers 

by employing the SA-IDS independently. It also uses the AA-

IDS to project with some clustering methods for anomaly 

detection. Finally, the hybrid model considers both the local 

detection results of SA-IDS and the global detection results of 

AA-IDS to make the final attack detection decision. 

 

2.2 Machine and deep learning-based solutions 

 

In recent years, several IoT applications have utilized 

machine learning methods. The work [14] determines multiple 

RPL attacks based on the machine learning method. It 

provides an analysis of two familiar OFs of RPL with machine 

learning strategies in the presence of combined attacks under 

diverse network scenarios. From the analysis, the results show 

that the machine learning models attain accurate results 

against combined attacks. Nevertheless, AMI reliability is 

suffered by various factors, and a single security model lacks 

to assure reliable IoT communication. Instead of utilizing a 

single model, the ensemble attack detection model [15] 

integrates multiple machine learning techniques such as 

Boosted Trees, Bagged Trees, Subspace Discriminant and 

RUS Boosted Trees to enhance the accuracy level of attack 

detection strategy. Further, it takes the attack decision based 

on the result generated by ensemble learning. The ensemble 

model provides security against diverse attacks such as 

Sinkhole, Blackhole, Sybil, and Clone ID. However, the 

ensemble learning model decreases the lifetime of smart 

meters owing to high resource dissipation. A Machine 

Learning-based secure RPL routing (MLRP) [16] employs a 

Cooja simulator to produce a complex RPL dataset with 

normal and malicious data. Further, it uses the SVM machine 

learning algorithm to detect the attackers effectively. The 

MLRP employs Principal Component Analysis (PCA) for 

feature dimensionality reduction and maximizes the learning 

accuracy of SVM.  

The work [17] integrates a radial basis function-based 

neural network RBFNN to measure the energy consumption 

over home smart metering applications. Further, deep learning 

models are used to identify the RPL attacks. The work [18] 

develops a highly scalable, deep-learning-based attack 

security strategy against multiple routing attacks such as 

decreased rank, hello-flood, and version number modification. 

The work [19] designs a deep learning-based gated recurrent 

unit network model to provide security against hello flooding 

attacks in an IoT environment. A deep learning IDS model 

[20] includes a multi-layer perceptron to detect the RPL rank 

attacks. The work [21] designs a deep learning-based 

intelligent intrusion detection system to detect IoT attacks with 

high accuracy. The utilization of the attack landscape model 

with deep learning effectively handles the dynamism of the 

IoT network. The intelligent deep learning strategy does not 

require pre-built traffic data, suspicious activities, and network 

payload affairs. Further, various attacks such as wormhole, 

sinkhole, blackhole, DDoS, and opportunistic services 

scenarios are used to analyze the effectiveness of the 

intelligent model. The work [22] proposes a new deep 

learning-based intrusion detection system (DL-IDS) to offer 

security against four various IoT attacks. The DL-IDS utilizes 

a spider monkey optimization algorithm to select an optimal 

feature set and employs a stacked deep polynomial network to 

classify the attacks under the categories like DoS, probe, user-

to-root, and remote-to-local. Moreover, the spider monkey 

optimization algorithm efficiently manages the vast IoT data 

and also increases the attack detection performance. The work 

[23] proposes a deep learning-based intrusion detection 

scheme to detect and categorize the attacks like DoS, 

distributed DoS, data theft, and surveillance. For effective 
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classification, the deep learning model develops a novel IoT 

dataset and uses a feed-forward neural classifier. Despite the 

deep learning model maximizes attack classification accuracy, 

it increases the error rate in large-scale IoT environments and 

is also not effective against combined attack scenarios. 

  

2.3 Reliable RPL methods 

 
A reliable and delay-aware RPL routing protocol has been 

proposed [24]. To create reliable and delay-aware RPL, such 

work introduces a novel metric, ETXDHC that is estimated 

based on the ETX, average delay, and hop count. By 

integrating multiple metrics in DODAG construction, the 

ETXDHC maximizes the RPL reliable performance. The work 

[25] proposes a reliable and energy-efficient RPL routing 

protocol, REFER, for mobile IoT applications. It exploits a 

novel neighbor replacement method with multiple link quality 

metrics and boosts reliable RPL performance. The neighbor 

replacement method uses the parent least time values to 

replace the neighboring nodes. Thus, the REFER maximizes 

the RPL reliability over mobile IoT scenarios. A downward 

traffic retransmission mechanism [26] enhances the RPL 

reliability in mobility supporting IoT application 

environments. A link reliable and trust aware RPL routing 

protocol [27] ensures trust among the IoT entities and offers 

reliability during RPL network construction. Such protocol 

assures the quality of service to the RPL against multiple 

attacks and considers variable link characteristics for secure 

and reliable RPL path construction. However, most of the 

existing reliable RPL models lack to consider both attacks and 

network vulnerability impacts on reliable DODAG path 

selection, resulting in reduced network performance. 

 

 

3. PROBLEM STATEMENT 

 

The IoT empowers novel services and offers business 

opportunities day by day even the number of smart devices is 

ultimately escalated. The RPL is the most suitable 

fundamental routing protocol that offers flexible 

communication among smart devices. However, the RPL 

protocol is vulnerable to several attacks, and its reliable 

performance depends on the objective functions. Some of the 

conventional works taking into account the objective function 

for AMI reliability improvement. However, they lack study on 

RPL reliability issues through vulnerability analysis of 

objective functions in RPL, especially with multiple intrusions 

against RPL in AMI. Also, they lack to cover all objective 

metrics in reliability performance improvement. The 

conventional solutions consider both reliability and security-

related metrics in RPL performance improvement. A little 

investigation has been done on machine or deep learning-

based IDS, but not for the multiple intrusions on AMI 

networks. However, a secure, energy-efficient, delay-aware, 

and reliable RPL routing is not implemented for AMI using 

the same existing security mechanism. It is also possible to use 

deep learning approaches for generating security measures and 

integrating it along with other reliability metrics, such as delay 

and ETX. However, the existing works lack in integrating 

multiple metrics for attack detection. Also, the Cooja based 

network traffic analysis is ineffective in a resource-limited IoT 

environment, whereas the machine learning traffic analysis 

model lacks multiple routing reliability metrics. To solve the 

issues associated with conventional solutions, the proposed 

ARR takes advantage of both HDL-IDS and MOR-RPL traffic 

analysis model with multiple objective function metrics to 

enhance the AMI routing reliability. 
 

 

4. OVERVIEW OF PROPOSED AMI RELIABILITY 
 

RPL routing attack is a serious threat against the AMI smart 

meters, and it shrinks the communication reliability of AMI-

IoT. To enhance the AMI-RPL reliability, the proposed work 

ARR employs multi OFs and decides the AMI routing 

decisions based on multi OF based rank value. For effective 

resource handling and to improve the lifetime of AMI devices, 

the ARR includes two RPL reliability improving methods 

referred to as HDL-IDS and MOR-RPL against RPL routing 

attacks. Figure 1 sketches the reliability against attacks of 

HDL-IDS and reliable RPL network construction of MOR-

RPL process of ARR with its steps.  
 

 
 

Figure 1. Design overview of ARR 
 

Firstly, the reliability against attacks using HDL-IDS of 

ARR estimates a security metric belief generated by the hybrid 

deep learning model. For attack classification, the HDL-IDS 

uses two types of deep learning algorithms, Auto Encoder 

(AE) and Gated Recurrent Unit (GRU), that categorize the 

data traffic and nodes into normal and malicious. The 

unsupervised AE effectively represents the features through 

labeling and it classifies the data traffic under normal and 

malicious. Further, the malicious traffic is classified under five 

categories that are hello flood, DoS, version, rank, and 

unknown. Consequently, the HDL-IDS only provides the 

normal data packets as input for measuring the OF, resulting 

in attack ignorance. Thus, the HDL-IDS accomplishes 

reliability of RPL against attacks. Secondly, the MOR-RPL 

orders the trusted parent nodes based on the reliable rank value 

during the DODAG building. The MOR-RPL exploits the 

reliability metrics such as belief, ETX, DI, EBF, NQSI, and TI 

with Belief to maximize the efficiency of reliable 

communication. The consideration of EBF attains a better 

tradeoff between energy consumption and reliability. 

However, most nodes may attain the same rank value in RPL 

DODAG, and an equality confusion state occurs. Hence, it is 

crucial to consider equality confusion state during attack 

classification for reliability enhancement. The equality 

confusion state includes multiple candidate parents with 

similar reliable rank values and diverse children number 

values. The ARR effectively handles the equality confusion 

state and takes reliable routing decisions by considering the 

number of children with their behavior. 
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4.1 Network and attack model 
 

In ARR, the AMI network is modeled as a communication 

graph G=(N, E), where N refers to the AMI smart meters, and 

E represents the straight communication link between any two 

smart meters. The smart meters, N, are tiny devices that are 

constrained with energy and processing power. The network 

G is installed a power grid, δ, located in the AMI network 

corner. The RPL structure is constructed in G, and the RPL 

based AMI communication is susceptible to multiple routing 

attacks. For instance: 

(1) Hello Flood Attack: There is a possibility for 

dropping the entire energy of legitimate smart 

devices connected with AMI by sending the hello 

messages drastically. 

(2) DoS Attack: By implementing Denial of Service 

(DoS) into AMI, the malicious users can trip the 

entire AMI network.  

(3) Rank Attack: The malicious nodes announce a very 

low-rank value for legitimate smart meters and drop 

their data packets forwarded to the gateway by acting 

as a parent node.  

(4) Version Number Attack: The attackers manipulate 

the DODAG version number and affect an entire 

Global Repair Mechanism in RPL.  

To diminish the effects of such attacks, the proposed ARR 

integrates the HL-IDS and MOR-RPL-based secure DODAG 

construction model. Initially, the HDL-IDS generates a dataset 

DS with normal and malicious behavior. The DS incorporates 

numerous relevant and irrelevant features, DS∈K, where K is 

the total number of features. Among them, only K’ numbers 

of relevant features are adequate to identify the RPL attacks, 

whereas the irrelevant features may increase the error rate and 

attack detection accuracy of IDS. To minimize the effect of 

irrelevant features in IDS performance, the HDL-IDS 

considers two various variability measures to retrieve K’ 

features from total K features. Consequently, the HDL-IDS 

splits the DS into training DSTr and testing DSTe to train and 

test the data using HDL. Finally, the summation of DSTr and 

DSTe, DSTr∪DSTe=DS. The HDL categorizes the data in DSTe 

into normal and malicious based on the DSTr. Furthermore, the 

HDL-IDS sends the number of normal packets to the smart 

meter for belief measurement. Generally, the rank value 

indicates the distance between the RPL nodes and gateway. In 

most RPL routing, the communication reliability of gateway is 

measured based on hop count, HC. Nonetheless, many factors 

are interrelated with the improvement of communication 

reliability. To account for such factors and improve reliable 

RPL routing, the proposed ARR includes various reliability 

metrics that are Belief, ETX, DI, EBF, NQSI, and TI in a 

combined manner. 

 

4.2 Hybrid Deep Learning based Intrusion Detection 

System (HDL-IDS) 

 

The attack classification of HDL-IDS includes the four 

steps such as data traffic collection, feature reduction using 

variability measurement, AE-GRU-based attack detection, 

and belief estimation for attack classification. 

 

4.2.1 Data traffic collection 

The primary step of HDL-IDS is to obtain the AMI-RPL 

dataset based on the AMI nodes and data transmissions. 

During initialization, the HDL-IDS collects the data samples 

from AMI-RPL using the Cooja simulator and executes the 

attack classification process by using the collected samples. 

The collected samples include both attack and benign data. For 

including the attack data into the data samples, the HDL-IDS 

changes a set of parameters in the RPL core. The collected 

sample is in raw packet capture (PCAP) file format, and they 

are transmuted into Comma Separated Values (CSV) for pre-

processing. The attack classification of the HDL model 

necessitates a set of features for training. The RPL routing 

layer attacks are highly correlated with the AMI network 

traffic. Hence, it is crucial to gather samples for a long duration 

to accurately distinguishing the malicious nodes from normal 

ones. The HDL-IDS collects the number of data samples from 

entire nodes at the sink for a long period, and it is adequate to 

the data samples gathered from a similar network for a short 

time. It ensures that the data collection has sufficient samples 

from multiple RPL attackers and helps to distinguish the 

attackers precisely from the legitimate ones. Thus, the HDL-

IDS instructs all nodes in AMI to gather the most relevant 

features and their corresponding values from the data traffic in 

CSV files and periodically send the collected data back to the 

sink for attack classification. The raw dataset consists of both 

relevant and irrelevant features, as shown in Table 1. 

Incorporating irrelevant and redundant features for attack 

classification does not contribute to maximizing the HDL 

accuracy. Thus, the HDL-IDS explores diverse variability 

measures to choose the relevant and important features. 

 

4.2.2 Feature reduction using variability measurement and 

labeling 

Feature reduction is the process of selecting the most 

relevant features by reducing the negative impacts of marginal 

values. Each packet has a set of features or variables associated 

with a label. By incorporating the irrelevant features in the 

classification minimizes the HDL-IDS performance. The 

HDL-IDS enables the sink node to collect the data samples 

from all nodes and to ignore the irrelevant features from the 

samples for accurate attack detection. The feature selection or 

irrelevant feature eradication not only enhances the HDL-IDS 

accuracy but also diminishes the computational time and 

complexity level. Moreover, the feature set reduction aids in 

sorting out the characteristics in network traffic and 

differentiates the normal node behavior from attacking ones. 

Instead of examining the whole packet information, an 

analysis of the header variables of the network layer packets 

of AMI assists in saving computational resources. Consider 

that the data points of the variables are referred to as X =
(x1, x2, … . , xi). .The HDL-IDS model integrates two 

statistical data variability measures, including the coefficient 

of variation and rate of change, to drop the irrelevant and 

redundant features in X for the class (C) that is ‘attacker’ (C1) 

and ‘normal’ (C2) nodes. 

Coefficient of Variation (CoV): In the proposed HDL-IDS 

methodology, the coefficient of variation measure computes 

the score for each feature (xi) regarding the class ‘C’ using Eq. 

(1). It is the ratio between Standard Deviation (SD) and the 

Mean (M) of the feature values within a particular class. In Eq. 

(1), ‘xi’ denotes ith packet in the xth feature and ‘NC’ refers 

to the ‘N’ number of total packets in the Cth class. The 

proposed HDL-IDS approach computes the coefficient of 

variation for both the ‘attack’ and ‘normal’ classes. 
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CoV(xi)C  =  ∑(
SD(xi)C
M(xi)C

)

NC

i=1

, ∀C1, C2 (1) 

 

Rate of Change (RoC): By applying Eq. (2), the HDL-IDS 

approach computes the rate of change for each feature with 

respect to the packets that belong to a particular class. 

RoC(xi)C =∑(
Uxi
C

Sxi
C
)

NC

i=1

, ∀C1, C2 (2) 

 

In Eq. (2), the terms Uxi
C and Sxi

C represents the unique 

values in a feature ‘xi’ and the total number of values in ‘X’, 

respectively.
 

K(xi) =

{
 

 
1,   if ([ ⋃ max

xi∈X
(CoV(xi)C)

C∈C1,C2

] && [ ⋃ max
xi∈X

(RoC(xi)C)

C=C1,C2

])

0,                                                                        Otherwise    

 (3) 

The HDL-IDS approach selects a subset of features based 

on the variability measurement score from Eqns. (1) and (2). 

By applying Eq. (3), it reduces the number of features with the 

high variance score based on the weighted parameter for two 

different variability measurements. The HDL-IDS model 

selects and retains the ‘K’ number of features based on the 

accumulated value of all static reliability measures. It selects 

the feature with a high variance score on both the coefficient 

of variation and rate of change measurements on both the 

classes. Thus, the high variability features in ‘K’ are selected 

as the final feature set ‘K’. Further, it labels the features. 

Moreover, Table 2 list outs the variability measurements based 

on selected features with labeling.

 

Table 1. Features in collected data set 

 
Sl. No K Feature set Description 

1 S Source node 

2 D 
Destination Node (Smart meter 

or sink) 

3 SAddr Address of source node 

4 DAddr Address of destination node 

5 N Number of nodes in AMI 

6 S_ID Sink identity 

7 N_ID Node identity 

8 NR Root node of DODAG 

9 NP Parent node of DODAH 

10 Nc Child node of DODAG 

11 V 
Version number (Similar to all 

nodes in a DODAG) 

12 VMax 
Maximum value of version 

number 

13 VMin 
Minimum value of version 

number 

14 
VD(DODAG1,D

ODAG 2) 

Version number value 

difference of DODAG 1 and 2 

15 R Rank Value 

16 RMax Maximum rank value 

17 RMin Minimum rank value 

18 RD Rank value difference 

19 PType 
Packet Type (DIO, DAO, DIS, 

ACK, and data) 

20 PLength Packet length 

21 PMaxlength Maximum length of a packet 

22 PMinlength Minimum length of a packet 

23 Srate 
It is the packet sending count of 

S 

24 T Packet sending time 

25 TMax Maximum packet sending time 

26 TMin Minimum packet sending time 

27 IDN Number of intermediate devices 

28 EC 
Energy consumption level of 

nodes 

29 PForward Number of forwarding packets 

30 PReceived Number of received packets 

31 PDropped Number of dropped packets 

32 PSuccess 
Number of successfully 

delivered packets 

33 H Number of hops 

34 ETX Expected transmission count 

35 L Label-normal and attack 

36 Ta Type of attack 
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Table 2. Selected K’ feature set and labeling 

 
Sl. No K’ Feature Set Hello Flood DoS Rank Version Labeling 

1 S √ √    

2 D √ √    

3 PType √ √    

4 Srate √     

5 EC  √    

6 T  √    

7 PForward  √    

8 PReceived  √    

9 ETX √     

10 R   √   

11 RMax   √   

12 RMin   √   

13 RD   √   

14 V    √  

15 VMax    √  

16 VMin    √  

17 VD(DODAG1,DODAG 2)    √  

18 L     √ 

19 Ta     √ 

4.2.3 HDL attack classification 

The proposed HDL-IDS approach provides the raw input 

dataset for the AE model to generate the representation for the 

feature-values of both the attacker and non-attacker nodes. The 

HDL-IDS straightly inputs the feature set to AE for 

unsupervised representation and takes the labeled ‘K’ as an 

input feature set to the GRU for supervised categorization. The 

deep learning algorithms can retrieve the additional features 

themselves based on the prime features provided by the 

algorithm. Thus, it improves the DL learning process as more 

accurate. Also, the advent of the graphics processing unit in 

DL minimizes the learning duration of DL considerably. The 

deep learning models include multiple consecutive layers in 

which the output of the previous layer is taken as input by the 

current layer. The HDL-IDS model incorporates an AE-GRU 

deep learning model that considers the advantages of 

unsupervised AE and supervised GRU. Thus, the AE and GRU 

are the unsupervised and supervised deep learning models that 

effectively classify unknown and multiple RPL attacks.  

The HDL-IDS trains the AE by taking the entire features (M) 

as the inputs for the deep representation of K ⊆ M. The HDL 

architecture with AE and GRU is sketched in Figure 2. The 

HDL-IDS divides the data traffic into DSTr =
{x1, x2, … . xn−1}  and and DSTs = {xn, x2, … . xT}  for 
training and testing the attack classification. 

 

 
 

Figure 2. HDL architecture 

Feature Representation Using AE. The AE is an 

unsupervised deep learning classification algorithm that learns 

the normal behavior of the nodes during the training process. 

The AE is the type of artificial neural network that includes 

two parts that are encoder and decoder. The encoder maps the 

input into the code, and the decoder is utilized to map the code 

to the input reconstruction. The main advantage of the AE is 

to facilitate the learning model to recognize the unknown 

attacks in dynamic network scenarios through the latent 

representation of the input data. In the subsequence of 

variability measurement-based feature reduction, the proposed 

HDL-IDS approach employs the AE model to generate the 

high-level abstraction of the input data. The AE takes the ‘M’ 

features with data traffic as input and inherently analyzes the 

relations among the feature-values for resulting in the latent 

representation of the input feature-values. By validating the 

reconstructed input with the original input features, the AE 

model results in a final representation for the feature values in 

an unsupervised manner. With the target of enhancing the 

intrusion detection performance in the GRU, the proposed 

HDL-IDS approach utilizes the latent representation along 

with the reduced relevant feature set for training the GRU 

model. The learned representations from the AE greatly assist 

the feature extraction without discrepancies or complex noise 

in the data, which also facilitates the detection of intrusions. In 

essence, the HDL-IDS approach generates the latent 

representation for the packet behavioral patterns in the class-

specific packets to avoid the wide coverage in the feature 

representation and potentially influence the significance of the 

feature values in a particular class. The proposed work retains 

the AE representation output for the reduced number of 

features alone with the knowledge extracted from the entire 

features. Moreover, the feature reduction in the HDL-IDS 

heavily relies on both the variability measurement and the 

deep AE model. Instead of mitigating the features using either 

the AE alone or the variability measurement, the proposed 

approach removes the irrelevant features from the input 

feature set through the knowledge of variance score and the 

deep representation for enriching the intrusion detection in the 

GRU model.  

Attack Detection Using GRU Classifier. The architecture of 
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GRU includes a reset and update gate with multiple hidden 

layers. The main intention of the reset gate is to combine the 

new entries with the previous one effectively. The update gates 

provide the information about the previous entries, which are 

stored in GRU memory. Further, it uses such data to take the 

attack detection output decision. In HDL-IDS, the GRU takes 

the DSTr with labeled attack features as input for the learning 

process. Further, it exploits the learned input to classify the 

attacks of DSTs. Finally, the HDL-IDS classifies the data 

traffic in DSTs into normal and attack based on the output 

results generated by the GRU model. Thus, the HDL-IDS 

approach detects intrusions from the training knowledge using 

the following equation. 

 

Sn = {
S < 0.5;    𝑁𝑜𝑟𝑚𝑎𝑙
S ≥ 0.5;     Attacker

 (4) 

 

To classify the data traffic into the attack and normal, the 

HDL-IDS fixes a score value ‘S’ that lies between 0 and 1. In 

Eq. (4), the term Sn is the score value of node ‘n’. In HDL-

IDS, the nodes that have an ‘S’ value equal to or less than 0.5 

are classified as normal ones. Otherwise, they are classified as 

attackers. Further, the attack traffic is classified under the four 

categories such as DoS, hello flood, rank, and version by using 

algorithm 1. In Eq. (4), the term (Ta)n is the type of attack 

that occurred at node n. Moreover, the normal traffic results 

are used for measuring the belief security metric. 

Belief Estimation. The HDL-IDS reduces the features with 

high variability as a prominent feature set. Exploiting such 

features, the HDL-IDS trains the HDL and classifies the 

collected packet samples into normal and malicious. Further, 

it forwards the number of normal packets values to the sink to 

decide the belief value of data forwarding. The HDL-IDS 

computes the belief of a node as follows.  

 

BI =
Normal_Senti

Total_Senti
⁄  (5) 

 

where, the term Normal_Senti refers the number of packets 

sent by a node as well as categorized under the normal and the 

term Total_Senti refers to the total number of packets sent by 

node i to the gateway. Algorithm 1 explains the belief 

measurement of HDL-IDS. The belief of normal nodes in 

HDL-IDS is equal to one, as they transmit all the packets 

successfully to the sink without any packet loss. Therefore, the 

HDL-IDS decides that the nodes have a belief value equal to 

one according to Eq. (5) as trusted nodes and takes the trusted 

nodes as input for the attack classification process. 

 

Algorithm 1. Belief measurement using HDL-IDS 

classification 

 
 

5. MULTI OBJECTIVE FUNCTION BASED 

RELIABLE RPL (MOR-RPL) 

 

In AMI-RPL, the incorporation of novel AMI smart meters 

into the network has great importance in enhancing the 

efficiency of ARR owing to inherent dynamic network 

characteristics. Therefore, the ARR includes periodic 

execution of HDL-IDS based attack classification and 

accurately categorizes the data traffic as normal and malicious. 

Nevertheless, the node classification should have to be 

performed to construct the reliable DODAG effectively. 

Therefore, it considers the multiple reliability metrics and 

selects reliable parents using the MOR-RPL mechanism. The 

MOR-RPL of ARR includes two sections that are OF 

estimation and multi OF based rank decision making. 

 

5.1 OF estimation  

 

The prime intention of MOR-RPL is to maximize the 

communication reliability and balance the workload and 

lifetime differences of all smart meters. Therefore, the MOR-

RPL considers multiple reliability metrics in reliable DODAG 

construction. The reliability metrics are ETX, DI, EBF, NQSI, 

and TI. To guarantee communication reliability, the MOR-

RPL employs ETX that represents the number of data 

transmissions by a meter to deliver a packet to the gateway 

successfully. The MOR-RPL expresses the ETX as follows.  

 

ETX = 1 (Df ∗ Dr)
⁄  (6) 

 

In Eq. (6), Df and Dr refer to the measured probability of 

packet delivery to the neighbor and measured probability that 

the acknowledgment packet is successfully received. The 

high-quality paths of DODAG have a low value of ETX. 

Instead of employing a single metric in the parent selection 

process, the proposed MOR-RPL incorporates multiple 

metrics and successfully meets the AMI reliability 

requirements. Also, it prolongs the lifetime of smart meters 

without compromising transmission reliability. Along with the 

ETX measurement, the delay, battery depletion at nodes, node 

queue status, and throughput metrics are significant factors in 

AMI reliability and lifetime performance improvement. The 

MOR-RPL measures the delay index DI at a node n as follows. 

 

DIn = Pfd + Qd + Ld (7) 

 

The terms Pfd, Qd,and Ppd refer to the packet forwarding 

delay, queue delay, and link delay at node n, respectively. 

Further, the EBF is measured as follows: 

 

BFi = (Lifetimemax − Lifetimemin)for rank k      (8) 

 

EBFi =
Energyi − BFi

Energyi
⁄  (9) 

 
where, the terms BFi, Lifetime_max, and 

Lifetime_minrepresent a node balancing factor, maximum 

lifetime of a node in a particular rank value, and the minimum 

lifetime of a node in a particular rank value, respectively. If 

the energy difference of the nodes is high in a specified rank 

value, the value of BFi is also high. It enforces the MOR-RPL 

to choose a node with Lifetime_maxor nodes closer 

toLifetime_max. To satisfy such requirements, the MOR-RPL 

computes the EBF value for each neighbor to choose the 

Belief Measurement 

For every packet i in a sample, do { 

 HDL obtains the values of features;  

Classifies the packet under normal (No) or malicious 

(Ma) category} 

For No category do { 

 Group the packets with the same node 

identity; 

 Count packets with each node identity; 

 Execute the belief measurement using the 

Eq. (5)} 

1723



 

parent and builds a prolonged DODAG structure of AMI. 

Consequently, the node value mainly depends on the queue 

status of the corresponding node, which directly reflects the 

traffic load of the RPL network. The NQSI is computed using 

the following equation.  

 

NQSIn =
∑ qp(i) + ∑ 2 ∗ qp(i)

maxqs
i=11

10
i=1

Max qs
 (10) 

 

In the above Eq. (10), the term I is varied from 1 to 

maximum queue limit (Max qs) of the node n. The metric 

NQSIn is estimated periodically for every second in MOR-

RPL. Thus, it effectively reduces the impact of high network 

traffic on routing reliability and enhances the AMI-RPL 

performance. Finally, the MOR-RPL measures the TI using 

the following Eq. (11). 

 

TIp =
DSize ∗ TDT

TR
 (11) 

 

where, the term TI_p is the throughput index of a packet p. The 

terms DSize, TDT,and TR represent the data packet size, time 

taken to transmission, and response time, respectively. 

Moreover, the MOR-RPL assigns dynamic weights to the 

abovementioned five metrics and evaluates the OF using the 

following equation. 

 

OF = (W1 ∗ ETX) + (
1

W2
∗ DIn) + (

1

W3
∗ EBFi)

+ (W4 ∗ NQSIn) + (W5 ∗ TIp) 
(12) 

 

In Eq. (12), the ETX, NQSI, and TI are positive indicators 

of reliability improvement. Therefore, they get high-weight 

values. The DI and EBF are negative indicators of reliability 

enhancement, and they get minimum weight values. Moreover, 

the MOR-RPL provides the OF as input to a multi OF-based 

rank decision-making model. 

 

5.2 Multi OF based rank decision making 

 

Using the Belief above and OF measures, the proposed 

ARR calculates the reliable rank value of node i by exploiting 

the following Eq. (13).  

 

Reliable Ranki = 
α ∗ OF

β ∗ BI 
⁄  (13) 

 

Each node selects the path upward in its DODAG with the 

minimum value of reliable rank. The lowest value of reliable 

rank defines the best security, quality, and long-life links. 

Furthermore, varying α and β assists the ARR to differentiate 

the importance between metrics. Finally, the control parameter 

values should satisfy the condition of α + β = 1. For furnishing 

equitable importance to both communication reliability 

against attacks and RPL network, the ARR assigns both values 

as 0.5. The smart meters with similar reliable rank value 

creates confusion in the decision making. In such a case, the 

proposed work chooses the parent node with a minimum 

number of children as the final one for reliable data 

transmission. Moreover, the traffic analysis of MOR-RPL 

enhances the reliability against attacks by considering the 

belief measure and assures the reliability against network 

vulnerabilities by incorporating the OF measure. 

6. PERFORMANCE EVALUATION 

 

The ARR categorizes the performance evolution into two 

parts such as python based HL-IDS and Cooja based MOR-

RPL. 

 

6.1 Performance results of python based HL-IDS 

 

The HDL-IDS efficiency analysis is performed using 

python libraries. To show the performance of the hybrid deep 

learning model, the HDL-IDS is compared with the existing 

two deep learning algorithms that are MLP-IDS [20] and 

RBFNN-IDS [17]. The HDL-IDS efficiency is analysed for 

the following metrics. 

• Accuracy: It is the percentage of attackers correctly 

identified as attackers.  

• Precision: It is the percentage of exactness of correctly 

predicted attackers from the total number of attackers.  

• Recall: It is the number of correct positive predictions to 

the total number of positive predictions. 

• F-Measure: It is the combination of precision and 

sensitivity.  

• Specificity: It is the ratio of true negatives to the true 

negatives and false positives. 

 

Figure 3 depicts the performance results of HDL-IDS by 

comparing it with MLP-IDS and RBFNN-IDS. From the 

results of figure 3, the deep learning model is highly suitable 

for solving attack classification problems due to the multi-

layer structure. The deep learning algorithms can retrieve the 

additional features based on the key features furnished by the 

algorithm, resulting in more accuracy. Also, the advent of the 

graphics processing unit in deep learning significantly shrinks 

the learning duration. The architecture of multiple consecutive 

layers in deep learning assists in enhancing the classifier 

performance. For example, in Figure 3 (a), the MLP-IDS, 

RBFNN-IDS, and HLD-IDS accomplish 75.6%, 84.9%, and 

94.1% accuracy, respectively. However, the accuracy of HDL 

is high than the other two models. For instance, the HDL-IDS 

increases the accuracy value by 23.3% and 17.6% than MLP-

IDS and RBFNN-IDS, respectively, as shown in Figure 3(a). 

It is caused due to the consolidation results of two deep 

learning models in HDL-IDS. The single learning models 

learn inaccurate data due to noise in many situations, and the 

hybrid model rectifies such issues. Thus, the hybrid model 

attains superior performance than single deep learning models. 

For example, Figures 3(b) and 3(c) show that the HDL-IDS 

attains the precision and recall values of 94.1% and 95.8%, 

respectively. Thus, the precision of HDL-IDS is high in the 

range of 18.5% and 9.2%, and the recall is increased by 23.9% 

and 20.5%, respectively, than the MLP-IDS and RBFNN-IDS. 

Albeit the MLP-IDS and RBFNN uses multiple layers for 

classification, they necessitate accurate learning data without 

noise. The HDL-IDS solves the issues of single learning 

models by integrating multiple deep learning algorithms. From 

Figures 3(d) and 3(e), the F-measure and specificity values of 

HDL-IDS are obtained by 94.7% and 95.8%, respectively. 

Moreover, considering two variability measurements for 

feature selection and auto encoder-based latent feature 

representation maximizes the GRU classification accuracy of 

the HDL-IDS model. The F-measure values of HDL-IDS are 

increased by 22.2% and 17.8%, and the specificity values of 

HDL-IDS are varied in the range of 23.9 and 20.5 compared 

with DT-IDS RF-IDS demonstrated in Figure 3(d) and 3(e). 
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(b) 

 
(c) 

 
(d) 

 
(e) 

 

Figure 3. Classification performance results of HDL-IDS 

6.2 Performance results of Cooja based MOR-RPL 
 

The efficiency of the proposed MOR-RPL performance is 

evaluated using Contiki/Cooja Simulator. The performance of 

RPL reliability performances against attacks and network 

failure is measured in terms of the following performance 

metrics.  

• Packet Delivery Ratio: The ratio of the total number of 

packets received at the sink to the total number of 

forwarded packets.  

• Throughput: It is the rate of successful data delivery. 

• Average ETX: It is the average expected count of 

transmissions to deliver a packet successfully at a 

destination.  

• Average Delay: It is the average time taken to deliver a 

packet from a source to the destination. 

• Energy Consumption: It is the total amount of energy 

spent by the network nodes to perform network functions. 

• Overhead: It is the number of extra packets utilized to 

accomplish security and reliability. 
 

6.2.1 RPL reliability performance results against attacks 

In this section, the RPL reliability performance is evaluated 

without HDL-IDS and with HDL-IDS to depict the reliability 

improvement against attacks. The simulation parameters are 

described in Table 3. 

To show the superior performance of the HDL-IDS traffic 

analysis model, the results are obtained in two ways that are 

the attack reliability without HDL-IDS and the attack 

reliability with HDL-IDS with diverse node density scenarios. 

Figure 4 depicts the reliability performance results of HDL-

IDS obtained in terms of PDR, throughput, average ETX, 

average delay, overhead, and energy consumption under 20 

and 40 node density scenarios. To show the superiority of 

HDL-IDS, it is compared with the attack reliability results 

without the HDL-IDS model. From the results of figure 4, the 

deep learning model is highly suitable for solving attack 

classification problems due to the multi-layer structure. The 

deep learning algorithms can retrieve the additional features 

based on the key features furnished by the algorithm, resulting 

in more accuracy. Also, the advent of the graphics processing 

unit in deep learning significantly shrinks the learning duration. 

The architecture of multiple consecutive layers in deep 

learning enhances the attack elimination performance and 

belief estimation accuracy level. 

For instance, in Figure 4 (a), the PDR of attack reliability 

without HDL-IDS and with HDL-IDS are 6.9 and 27.2 under 

40 nodes scenario. The PDR of attack reliability with HDL-

IDS is increased by 74.6% than the attack reliability without 

HDL-IDS. The main reason is that the HDL-IDS only takes 

the normal packets in belief estimation and eliminates the 

attack packets completely from DODAG construction. Thus, 

it improves the PDR and throughput of attack reliability with 

HDL-IDS than attack reliability without HDL-IDS under all 

scenarios. For example, the attack reliability with HDL-IDS 

accomplishes throughput of 325.3 and 768 for 20 and 40 node 

density scenarios, as shown in Figure 4 (b). The attack 

reliability with HDL-IDS improves the throughput by 67% 

than without HDL-IDS when 40 nodes are present in the 

network. 

Similarly, Figure 4 (c) shows that the attack reliability with 

HDL-IDS attains average ETX 179.4 and 215.2 for 20 and 40 

node density scenarios, respectively. The reason is that the 

nodes may cause failure due to high energy depletion or the 
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nodes are busy with many links due to node competition for 

link access under high-density scenarios. Thus, it maximizes 

the average ETX under a high-density scenario than the low-

density scenario. However, the attack reliability with HDL-

IDS improves the average ETX performance by 18.3% than 

attack reliability without HDL-IDS under a high node density 

scenario. Figure 4 (d) shows that the attack reliability with 

HDL-IDS accomplishes 33.13 ms and 71.75 ms of average 

delay results for 20 and 40 node densities, as eliminating attack 

packets using HDL-IDS needs some time to execute the deep 

learning algorithm at sinks. Thus, it increases the delay of 

attack reliability with HDL-IDS by 23.5% than attack 

reliability without HDL-IDS for 40 node density scenarios. 

Further, the energy consumption and overhead results of attack 

reliability with HDL-IDS are superior under 20 and 40 node 

density scenarios. For example, the overhead and energy 

consumption of attack reliability with HDL-IDS are reduced 

by 88.9% and 90% than without HDL-IDS under 40 node 

density scenarios, as shown in Figures 4 (e) and (f). The 

execution of the HDL algorithm at sinks considerably 

minimizes the energy consumption at network nodes. 

 
Table 3. Simulation parameters of reliability measure against 

attacks 

 
Parameters Values 

Routing Protocol RPL 

Total Number of Nodes 20, 40 

Number of Attacker Nodes 
20 topology -> 4 

40 topology -> 8 

Number of Attacker Nodes 20% of the total density 

Simulation Area 200m x 200m 

Transmission Range 50 m 

Simulation Time 1 Minute 

Physical Layer IEEE 802.15.4 

Radio Medium UDGM 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 

Figure 4. RPL reliability performance results against attacks 

 

6.2.2 MOR-RPL network reliability performance 

In this section, the MOR-RPL is compared with the existing 

IRPL [7] to analyze its reliability efficacy against network 

vulnerabilities. The simulation parameters are described in 

Table 4. 
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Table 4. Simulation parameters of network reliability 

measure 

 
Parameters Values 

Routing Protocol RPL 

Total Number of Nodes 30,60 

Number of Death Nodes 
10% of the total 

density 

Number of Death Nodes due to Energy 

Depletion 

30 topology -> 3 

60 topology -> 6 

Simulation Area 200mx200m 

Transmission Range 50m 

Simulation Time 1 minute 

Physical Layer IEEE 802.15.4 

Radio Medium UDGM 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 

Figure 5. Network reliability performance results 

 

Figure 5 illustrates the reliability performance comparative 

results of MOR-RPL and IRPL in terms of PDR, throughput, 

average ETX, average delay, energy consumption, and 

overhead under 30 and 60 node density scenarios. Figures 5 (a) 

and 5 (b) illustrate that both methods escalate the PDR and 

throughput by adjusting the node density from low to high. 

The reason is that the network connectivity is better when a 

large number of nodes are present in the network. For instance, 

the MOR-RPL attains 518.1 and 651.7 PDR for 30 and 60 

node densities, respectively. The results of Figures 5 (a) and 5 

(b) show that the PDR and throughput of MOR-RPL are 

improved compared with the existing IRPL. Albeit both 

models incorporate multiple metrics in DODAG construction, 

the incorporation of reliability metrics with security metrics 

assists the MOR-RPL to maximize the PDR and throughput 

values than the existing IRPL. The multi OF reliable rank-

based parent selection in MOR-RPL also boosts the PDR and 

throughput of MOR-RPL. For example, the PDR results of 

MOR-RPL and IRPL are 651.7 and 220.5, respectively, for 60 

nodes scenario, since the PDR of MOR-RPL is escalated by 

66.2% more than that of IRPL. Also, the consideration of ETX 

and NQSI in MOR-RPL accomplishes a better tradeoff 

between hop count and congestion under dense network 

scenarios. Thus, it assists the MOR-RPL in enhancing the data 

delivery speed. For instance, the throughput of MOR-RPL is 

2580 bits/second and 4644.7 bits/second under low and high 

node densities, respectively, whereas it is high in the range of 

69.3% and 65.8% compared with the existing IRPL when 30 

and 60 nodes present in the network. 

Figures 5 (c) portrays the comparative results of average 

ETX of MOR-RPL and IRPL obtained for 30 and 60 node 

density scenarios. Both protocols increase the ETX by varying 

the number of nodes from low to high. For example, the MOR-

RPL accomplishes 237 and 279.8 ETX values for 30 and 60 

number of nodes scenarios, respectively. However, the results 
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of Figure 5 (c) show that the average ETX results of the 

proposed MOR-RPL are reduced compared with the existing 

IRPL. For example, Figure 5(c) shows that the average ETX 

of MOR-RPL and IRPL are 279.8 and 684.3 when 60 nodes 

are present in the network. Figure 5(d) demonstrates that the 

average delay results of MOR-RPL and IRPL protocols. Both 

models escalate the delay with increasing the number of nodes, 

as the nodes compete to access the same channel under a high-

density scenario, resulting in high delay. For instance, the 

MOR-RPL accomplishes 12.2 ms and 22.7 ms for 30 and 60 

node density scenarios, respectively, as shown in Figure 5 (d). 

However, eliminating attackers and secure DODAG 

construction with multiple metrics in MOR-RPL enables the 

shortest and secure path to packet delivery. Thus, it minimizes 

the delay of MOR-RPL when compared to IRPL. For instance, 

the MOR-RPL minimizes the delay by 71.6% than IRPL, 

when 30 nodes are presented in the network. 

Figures 5 (e) and (f) plot the energy consumption and 

overhead of MOR-RPL and IRPL models by adjusting the 

number of nodes from 30 to 60. The MOR-RPL increases the 

overhead and energy consumption by increasing the number 

of nodes from low to high. For example, the MOR-RPL 

accomplishes 1.3 joules and 2.4 joules energy consumption for 

30 and 60 nodes, respectively, in Figure 5 (e). The results of 

Figures 5 (e) and 5 (f) demonstrate that the energy 

consumption and overhead of MOR-RPL are reduced 

compared with the existing IRPL. The reason is that the MOR-

RPL takes the most important reliability metrics like Belief, 

ETX, DI, EBF, NQSI, and TI in DODAG construction. Thus, 

the consideration of EBF effectively balances the energy 

consumption among the smart meters and improves the energy 

consumption performance of MOR-RPL. For example, the 

energy consumption of MOR-RPL and IRPL is 2.4 joules and 

5.9 joules for 60 nodes scenario, respectively. The energy 

consumption of MOR-RPL is reduced by 59.3% than the 

existing IRPL under a high node density scenario of 60. 

Further, Figure 5 (f) shows that the MOR-RPL attains 146 and 

280.3 packets of overhead for 30 and 60 nodes, respectively. 

However, the overhead of MOR-RPL is diminished by 53.3% 

and 28.4% than the existing IRPL under 30 and 60 number of 

nodes scenarios. 

 

 

7. CONCLUSIONS 

 

This paper proposed AMI-RPL reliability improvement 

methods such as HDL-IDS and MOR-RPL to solve the attack 

reliability and network issues in the DODAG construction of 

AMI-RPL routing. Firstly, the HDL-IDS based attack 

classification obtains a belief metric by using the normal 

packet classification results of the hybrid classifier, resulting 

in multiple attack elimination. The consideration of two 

different variability measurements in feature reduction 

significantly diminishes the learning time and improves the 

accuracy level of the classifier. Secondly, the MOR-RPL 

considers various network reliability metrics such as ETX, DI, 

EBF, NQSI, and TI with a belief in OF estimation. Finally, the 

reliable path is constructed by employing the multi OF-based 

reliable rank value. The HDL-IDS and MOR-RPL based data 

traffic classification with multiple metrics significantly 

improves the security and reliability performance of AMI-RPL 

routing. Moreover, the performance evaluation with python 

libraries and Contiki Cooja-based simulation model is 

employed to validate the effectiveness of the proposed HDL-

IDS and MOR-RPL reliability improvement methods. Firstly, 

the HDL-IDS performance evaluation using python 

demonstrates that the HDL-IDS maximizes the accuracy value 

by 23.3% and 17.6% than existing MLP-IDS and RBFNN-IDS. 

Secondly, the MOR-RPL performance evaluation with Cooja 

simulation shows that the RPL reliability performance against 

attacks is maximized by 74.6% with HDL-IDS, and the RPL 

network reliability performance is improved by 66.2% with 

optimal resource handling. 
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