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This contribution investigates the thermosolutal convection phenomenon around a thin 

wall, vertically immersed in a fluid saturating a porous medium of non-uniform 

permeability, taking into account the thermal conditions of the wall which is exposed 

to a fluid suction/injection. The conservation equations with boundary conditions have 

been transformed by the similarity method into a set of nonlinear differential equations. 

The resulting equations are numerically resolved using a fifth-order Runge-Kutta 

scheme coupled with the shooting technique. A graphical and physical interpretation of 

the found results as a function of the control parameters was performed. It is noticed 

that the heat transfer rate and the mass transfer rate at wall, are intensified for free 

convection and for significant permeability.  
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1. INTRODUCTION

Thermosolutal convection is the phenomenon of fluid flow 

caused by the coupled influences of thermal and concentration 

gradients. Due to many important industrial and 

environmental applications including geothermal and 

petroleum recovery, contaminant transport in saturated soils, 

moisture migration in fibrous insulation, and others, 

thermosolutal convection in porous media has aroused 

significant interest from academic researchers and concerned 

organizations. Extensive theoretical, numerical, and 

experimental studies on the phenomenon of double diffusive 

convection in media porous are detailed in the works carried 

out by Nield and Bejan [1], Ingham and Pop [2, 3] and Vafai 

[4]. 

An experimental study of doubly diffusive free convection 

in a saturated porous medium was first conducted by Murray 

and Chen [5]. The authors showed a good agreement between 

the experimental and theoretical results. Then, Postelnicu and 

Pop [6], Postelnicu et al. [7] and Achemlal et al. [8] used the 

similarity transformations to study free thermal convection 

through a vertical or horizontal planar wall inserted in a 

saturated porous medium, in the presence of variable heat 

source with suction/injection of fluid. The impacts of thermal 

radiation and inside heat source on thermal convection along 

a vertical thin wall, with non-uniform temperature, have been 

realized by Cortell [9] and recently by Flilihi et al. [10] who 

used the Darcy-Brinkman law with the convective term, by 

taking into account the orientation of the plate. Alhumoud [11] 

studied the conjugate free convective heat transfer behavior in 

an enclosure with two solid thick surfaces. The results show 

that increasing all of controlling parameters results in 

increasing the heat transfer in the cavity. Belhadj et al. [12] 

investigated both heat transfer and fluid flow in a cavity filled 

with porous media using Darcy Brinkman-Forcheimer 

formulation. The authors found that increasing Rayleigh and 

Darcy numbers resulted in enhancing the convective heat 

transfer rate, which decreases with increasing porosity of the 

medium. Anghel et al. [13], Postelnicu [14] and Alam and 

Rahman [15] have studied the Soret-Dufour conjugate 

influences on thermosolutal convection within a saturated 

porous medium. Furthermore, Postelnicu [16] and El Haroui 

et al. [17] considered the existence of a chemical reaction 

when studying double-diffusive convection through a vertical 

wall of variable temperature. The authors showed the 

reduction of the concentration boundary layer and the increase 

in the mass transfer rate at wall when the chemical reaction is 

significant. 

Harfash and Meften [18] studied the influence of various 

flow controlling parameters on the stability of binary mixture 

in a fluid layer by using linear, nonlinear and weighted energy 

analysis. Recently, Mahajan and Tripathi [19] analysed the 

variable temperature and concentration gradient effects on the 

behavior of heat and mass transfer problems. 

To our knowledge, in the works cited above and many 

others, the permeability of the medium is considered to be 

constant. However, experimental measurements made by 

Roblee et al. [20] and Benenati and Brosilow [21] show that 

permeability varies from the wall to the ambient medium. 

Mohammadein and El-Shaer [22] and Singh [23] introduced 

variable permeability to study thermal convection in porous 

media and they noted a crucial effect of permeability variation 

on velocity and temperature profiles. 

This work is a numerical study of mixed thermosolutal 

convective flow caused by a heated wall, vertically immersed 

in a fluid saturating a porous medium with non-uniform 

permeability. The study carried out takes into account the 

thermal state of the wall, with a lateral fluid flow 

(suction/injection), and aims to show the evolution of the 

velocity, thermal and species concentration profiles near the 
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wall and also to quantify the rates of heat and mass transfer for 

various controlling parameters. 

 

 

2. MATHEMATICAL FORMULATION  

 

In this work, we study the phenomenon of doubly diffusive 

convection, around a heated vertical permeable wall, 

embedded in a fluid saturated porous medium. Figure 1 shows 

the geometric model of the problem studied. The x and y 

coordinates are measured, respectively, along and normal to 

the wall. The temperature Tw(x) of the wall surface is assumed 

to be variable, while its concentration Cw is maintained 

constant. The wall is subjected to a fluid suction/injection, 

which is proportional to 𝑥(𝜆−1)/2 expression. Away from the 

wall, the reference values for temperature and concentration 

are, respectively, 𝑇∞ and 𝐶∞. As simplifying assumptions, we 

assume that the flow is laminar, permanent, and bidirectional, 

the local thermal equilibrium between the fluid and the porous 

medium is verified, the permeability of the porous medium 

does not depend on the wall temperature, the Darcy’s law is 

valid and the fluid density varies according to the following 

Boussinesq approximation: 

 
(1 ( ) ( ))T cT T C C     = − − − −  (1) 

 

where, βT and βc are, respectively, the thermal expansion 

coefficient and the concentration expansion coefficient, 𝜌∞ is 

the reference fluid density away from the wall. 

In this study, we consider low flow velocities and small 

permeability of the medium in order to reduce the Navier-

Stokes equation to the Darcy model after calculations. 

 

 
 

Figure 1. Physical configuration and coordinate system 

 

By considering the above mentioned assumptions and the 

Boussinesq model for the fluid density, the conservation 

equations governing the studied phenomenon are given by: 
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This studied problem is governed by the following 

boundary conditions: 
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Here u and v represent the Darcian velocity coordinates, T 

is the temperature of binary fluid, C is the species 

concentration, v is the kinematic viscosity, a is the thermal 

diffusivity, ρ is the density of binary fluid, K is the 

permeability of the porous medium, g is the gravitational 

acceleration, DT is the thermal diffusion coefficient and DM is 

the mass diffusion coefficient.  

The temperature Tw(x) along the wall and the velocity fluid 

suction/injection across it Vw(x) are, respectively, expressed as 

follows: 

 

( )wT x T A x= + 

 
(7) 

 
( 1)/2( )wV x B x −= 

 
(8) 

 

A and B are constants where λ is the temperature exponent 

charactering the thermal condition of the wall such as: λ =1 for 

linear temperature distribution along the wall, λ=1/3 for 

uniform heat flux through the wall and λ = 0 for uniform 

temperature (isothermal wall).  

We assume that the permeability of the medium fluctuates 

in the range of validity of Darcy's law according to the 

following model of Ress and Pop [22]: 

 

( ) ( )
−

 = + −

y

L
wK y K K K e

 

(9) 

 

where, Kw is the permeability at wall, K∞ is the permeability 

away from the wall (ambient medium) and L is the size of the 

area in which the permeability varies. 

Due to coupling and non-linearity of equations, the direct 

analytical resolution of the mathematical model together with 

boundary conditions proves to be delicate. For this, we have 

adopted a semi-analytical method, called similarity, to convert 

the two-dimensional mathematical model of the problem into 

a model based on differential equations.  

We then propose the following dimensionless variables: 
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where, η is the similarity variable, θ is the dimensionless 

temperature of the fluid in the boundary layer area, ϕ is the 

dimensionless species concentration of fluid in the boundary 

layer area, Rax is the local thermal Rayleigh number and ψ 

represents the stream function that satisfies the continuity Eq. 

(2) which is expressed by: 
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From 𝐿 = 𝑥. 𝑅𝑎𝑥

−
1

2  in Eq. (9), the non-dimensional 

permeability is purely function of η and given by: 

 

( ) (1 ( 1) )K K p e  −
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(12) 

 

𝑝 =
𝐾𝑤

𝐾∞
 being the permeability parameter. Since porous 

media are, generally, packed near solid walls, we restrict 

attention to values of permeability parameter p which must be 

greater than 1 (Kw> K∞) and less than 10 (See [24]). For this, 

the permeability is uniform for p=1 and non-uniform in the 

case of 1<p<10.  

By injecting the transformations given by the system (10) 

into the Eqns. (3)-(5) and using the Boussinesq approximation, 

we find the following local similarity equations: 
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With the boundary conditions: 
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where, f is the dimensionless stream function, 𝛾 =
𝑅𝑎𝑥

𝑃𝑒𝑥
 is the 

mixed convection parameter, 𝑃𝑒𝑥 =
𝑈∞𝑥

𝑎
 is the local peclet 

number, 𝑈∞ =
𝑔𝛽𝑇𝐾∞(𝑇𝑤−𝑇∞)

𝜈
 corresponds to the uniform 

velocity away from the plate, N and Le are, respectively, 

buoyancy ratio number and Lewis number, 𝑓𝑤 =

−2𝐵 (
𝜈

𝑎𝑔𝛽𝑇𝐾(𝑇𝑤−𝑇∞)
)

1/2

 is the suction/injection parameter 

such as: fw>0 for suction, fw<0 in the case of injection and fw 

= 0 for impermeable wall. 

It is important to note that N and Le numbers are fixed at 

N=1 and Le=1. Their effects have already been discussed in 

our previous work [25]. 

The local heat flux 𝑞𝑇 and the local mass flux 𝑞𝑚 through 

the wall are expressed as: 
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The heat transfer rate and the mass transfer rate at the wall 

are expressed, respectively, by the local Nusselt number and 

the local Sherwood number. These two numbers are given by: 
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After calculation, we find their expressions in 

dimensionless form as follows: 

 
1/2'(0)x xNu Ra=−

 
(21) 

 
1/2'(0)x xSh Ra=−

 
(22) 

 

 
3. NUMERICAL RESOLUTION PROCEDURE 

 

The second-order nonlinear ordinary differential Eqns. (13), 

(14) and (15), coupled with the boundary conditions (Eq. (16)) 

are numerically solved using the fifth-order Runge-Kutta 

scheme associated with the shooting iteration technique. For 

various values of temperature exponent λ, the wall thermal and 

concentration gradients, consecutively, θ'(0) and ϕ'(0), are 

predicted and Eqns. (13) to (15) are integrated until the 

boundary conditions 𝑓′(0) , θ(0) and ϕ(0) are verified. 

Otherwise, the numerical process uses the calculated 

corrections to the estimated the values of 𝜃′(0) and 𝜙′(0) then 

iteratively repeated up to the boundary conditions 𝑓′(∞), θ(∞) 

and ϕ(∞) are satisfied. A uniform calculation step of 𝛥𝜂 =
10−3 is found adequate to ensure convergence with an error 

𝛥𝜂 = 10−3.  

 

 
4. RESULTS ANALYSIS 

 

In this section, we present for various thermal states of the 

plate. the found numerical results in the form of figures, which 

illustrate the influence of suction/injection parameter fw, mixed 

convection parameter  and permeability parameter p on the 

wall heat and mass transfer rates that are represented by the 

local Nusselt number (Nux) and the local Sherwood number 

(Shx), respectively. However, only three values of  

representing physical solutions were considered: λ=(0, 1/3, 1). 

As already mentioned, we distinguish between three cases for 

the suction/injection parameter: fw< 0 for injection, fw> 0 for 

suction and fw = 0 for impermeable wall. The Regime transfer 

is characterized by the mixed convection parameter  such that: 

<1 for forced convection regime, =1 for mixed convection 

regime and >1 for free convection regime.  

To validate the computational code developed in the context 

of this paper, we present in Table 1 a comparison of our results 

with the previously published data in terms of the thermal 

gradient at the surface for various values of fw at p=1 and γ→∞, 

when the plate is exposed to a uniform heat flux (λ=1/3). We 

note a good agreement which justified by a maximum relative 

error (RE) not exceeding 0.88%. 
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Table 1. Wall thermal gradient −𝜃′(0) = 𝑁𝑢𝑥𝑅𝑎𝑥
−1/2

 for 𝝀 =
𝟏

𝟑
, 𝒇𝒘 ≠ 𝟎, 𝒑 = 𝟏 𝒂𝒏𝒅 𝜸 → ∞ 

 
λ fw Present results Postelnicu et al. [7] RE (%) Cortell [9] RE (%) 

1/3 

-1 - 0.0663 - 0.0662 0.15 -0.066178 0.18 

- 0.6 - 0.00944 - 0.0094 0.42 - 0.009357 0.88 

0.6 0.2877 0.2869 0.28 0.286887 0.28 

1 0.4288 0.4289 0.02 0.428891 0.02 

 

Figure 2 presents dimensionless velocity profiles in the 

boundary layer area over an isothermal and impermeable plate 

at p=2 and various values of  . It is very remarkable here; that 

the velocity profiles are amplified while passing from the 

forced convection regime to the free convection regime. This 

shows that the free convection promotes the fluid flow near the 

plate in comparison with forced convection. This can be 

justified by the influence of the high permeability near the 

plate which favors more the flow in the boundary layer area 

and by the effect of the imposed flow velocity away from the 

plate. We also note a stabilization of the velocity at an 

equilibrium state far from the plate (f’()=). 
 

 
 

Figure 2.Velocity profiles at =0, fw=0, p=2 and various 

values of  
 

Figure 3 shows for =1, the effect of permeability parameter 

p on dimensionless velocity evolution in the boundary layer 

thickness of an impermeable plate subject to a linear 

distribution of the temperature ( = 1). Here, it is clearly seen 

that the flow is important near the surface when the porous 

medium is more permeable (Kw>K∞) in comparison with the 

case where the permeability is uniform (Kw=K∞). Outside the 

boundary layer area, the flow is no sensitive to the 

permeability parameter variation. It is therefore concluded that 

the high permeability in the dynamic boundary layer promotes 

the flow compared to the case of a uniform permeability. In 

addition, for all selected values of p, the velocity profiles tend 

to an equilibrium state which is controlled by the boundary 

condition (f’(∞)=).  
 

 
 

Figure 3. Velocity profiles at =1, fw=0,  =1 and various 

values of p 

Figure 4 illustrates the dimensionless temperature profiles 

in the thermal boundary layer along an isothermal and 

impermeable plate for p=2 and different values of mixed 

convection parameter . Here, the thermal profiles are more 

amplified in the case of forced convection regime ( <1) and 

are reduced for free regime convection. Physically, the 

increase in buoyancy forces for free convection generates 

significant flow velocities, which leads to the rapid cooling 

observed all near the wall, leading to a reduction of the thermal 

boundary layer thickness. It can also be concluded that the 

dominance of the forced convection regime in the mixture 

promotes the heat transfer in the thermal boundary layer area, 

unlike the free convection which leads to the evacuate it. 

 

 
 

Figure 4. Temperature profiles at =0, fw=0, p=2 and 

various values of  
 

The effect of the permeability parameter p, for  = 1, on 

dimensionless thermal profiles of an impermeable plate 

subjected to a linear distribution of the temperature (= 1) is 

presented in Figure 5. We notice that increasing the 

permeability of the porous medium near to the surface reduce 

the thermal boundary layer thickness. Therefore, the high 

permeability allows the evacuation of heat in the boundary 

layer area. 

 

 
 

Figure 5. Temperature profiles at =1, fw=0,  =1, and 

various values of p 
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In Figure 6 we illustrate over an isothermal and 

impermeable plate, the dimensionless concentration profiles 

for p=2 and various values of . It is notable that the forced 

convection (<1) amplifies the profiles concentration, while 

the free convection reduces them. This can be explained by the 

effect of buoyancy forces generating significant flow 

velocities when forced convection regime is dominant, which 

leads to a rapid solute transfer near the plate and therefore a 

reduction in the concentration boundary layer thickness, 

unlike the case of the free convection regime dominance. 

The effect of the permeability parameter p, for =1, on 

dimensionless concentration profiles in the boundary layer 

area of an impermeable plate at =1 is shown in Figure 7. 

Form this graph, we observe that increasing the permeability 

of porous medium near the surface, makes it possible to reduce 

the concentration boundary layer thickness. 

 

 
 

Figure 6. Concentration profiles at =0, fw=0, p=2 and 

various values of  
 

 
 

Figure 7. Concentration profiles at =1, fw=0, γ=1 and 

various values of p 

 

 
 

Figure 8. Nux and Shx distributions versus  at =1/3, fw=0 

and p=1 

 
 

Figure 9. Nux and Shx distributions versus p at =1/3, fw=0 

and  =1 

 

 
 

Figure 10. Nux distributions versus fw at  =1 and p=5 for 

=(0,1, 1/3) 

 

 
 

Figure 11. Shx distributions versus fw at  =1, p =5, for =(0, 

1, 1/3) 

 

The variation of the heat transfer rate and the mass transfer 

rate at an impermeable wall, subjected to a uniform heat flux 

(=1/3) is presented, consecutively, on Figure 8 for different 

values of  at p=2, and in Figure 9 at  =1 for various values 

of p. From Figure 8 we observe, firstly, that the wall heat and 

mass transfer rates increase almost linearly in passing from the 

forced convection to the free convection, on the other hand, 

the wall heat transfer rate is more significant compared to the 

wall mass transfer. These two quantities are positive for all 

selected values of p. From Figure 9, an increase in wall heat 

and mass transfer rates is noted as p increases. For the values 

of p less than a critical value (p=1.76), the mass transfer rate 

is predominant. Beyond this value, the trends are reversed. 

Figure 10 and Figure 11 show for =1 and p=5, respectively, 

the evolution of the wall heat transfer rate and the wall mass 
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transfer rate as a function of the suction/injection parameter fw, 

for three thermal conditions of wall (=0, =1, =1/3). It is 

very remarkable from these tow graphs that the fluid injection 

reduces the wall heat and mass transfer rates, while the suction 

favors them for the three values of λ. In addition, this transfer 

rates are important for the case where the temperature plate is 

linearly distributed and less significant for an isothermal plate. 

 

 

5. CONCLUSION 

 

Thermosolutal mixed convective flow past a vertical wall, 

immersed in a saturated porous medium with non-uniform 

permeability has been studied and analyzed in this paper. The 

studied wall was exposed to different thermal conditions and 

a lateral fluid suction or injection. The similarity method was 

used to convert the governing conservation equations into 

nonlinear ordinary differential equations, which are then 

numerically solved by the fifth order Runge-Kutta scheme 

coupled with shooting iteration technique. A graphic 

presentation and physical interpretations of the obtained 

results are included. From this study, it was found that free 

regime convection and high permeability of medium reduce 

the thicknesses of thermal and concentration boundary layers, 

involving the intensification of wall heat and mass transfer 

rates. In addition, for the different wall thermal conditions, the 

injection of the fluid decreases the wall heat and mass transfer 

rates, while the suction favors them. 
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