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The differential transform technique (DTM) looks promise for dealing with functional 

problems. Recent articles have demonstrated the DTM's efficiency in tackling a wide 

range of issues in many disciplines. In this paper, (DTM) is used to develop 

approximate, and exact solutions for some nonlinear diffusion equations. Nonlinear 

diffusion equations are used to describe processes and behaviours in fields of biology, 

heat transfer, chemical reactions, and mathematical physics. The differential transform 

method linked with Laplace transform and Pad’e approximation is used to improve 

some known results. The obtained solutions are compared with the exact known 

solutions, showing excellent agreement. The differential transformation method was 

used in conjunction with the use of the Laplace transform and the Pad’e approximation 

method, for the purpose of improving some calculations in the hope of obtaining a more 

accurate solution. The results were presented in the form of tables or graphics for the 

purpose of comparing the calculated solution and comparing it with some of the precise 

solutions presented previously. The results showed the accuracy of the agreement 

between the two solutions. This gives us the opportunity to use the method under 

consideration to find solutions to unknown problems and thus ensure the credibility of 

the calculated solution. 
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1. INTRODUCTION

Nonlinear phenomena have substantial applications in 

applied mathematics, physics, and engineering concerns. 

Nonlinear phenomena have substantial applications in applied 

mathematics, physics, and engineering concerns. In the 

following, we highlight some of the significant applications of 

nonlinear diffusion equations [1]: 

1. Phonon transport [2]:

It is possible to investigate phonon transport in silicon

structures that generate internal heat. The linear heat diffusion 

equation, according to the data, severely underestimates 

temperature distribution at nanoscales in the presence of an 

external heat source. It is addressed how the temperature 

distribution inside a silicon thin film changes when heated by 

a pulsed laser, an electron beam, or due to near-field thermal 

radiation effects. 

2. Biology [3]:

Mathematical biology is a rapidly expanding and well-

known field that corresponds to the most fascinating current 

application of mathematics. As biology grows more 

quantitative, the application of mathematics will become more 

prevalent. The biological sciences complexity necessitates 

multidisciplinary participation.  

3. Archeology [4]:

Both archeological evidence and Homer's Iliad indicate to a

nonlinear mathematical model of the Trojan War, which 

occurred approximately 1180 BC. The number of warriors, the 

fighting rate factors, and so on, people per hectare, and other 

pertinent statistics are approximated. 

4. Galactic civilizations [5]:

Potential theory investigates galactic civilizations'

interstellar diffusion. For nonlinear partial differential and 

difference equations that describe a number of relevant models 

drawn from blast wave physics, soil science, and notably 

population biology, numerical and analytical solutions are 

developed. In this paper, we study the approximate solutions 

via the use of differential transform method (DTM) to the 

nonlinear diffusion equation. 

𝑢𝑡 = (𝐷(𝑢)𝑢𝑥)𝑥 (1) 

where, 𝐷(𝑢) is the diffusion term, which plays a prominent 

role in many engineering or physical applications. In general 

equation (1) suggested as mathematical models of physical 

problems in many fields for which the diffusion coefficient 

𝐷(𝑢)  plays a great importance in identifying and studying 

many phenomena and qualities, such as, applications of fluid 

flows [6], mathematical model for some physical phenomena 

[7], ground water modelling [8], industrial processes [9], 

mathematical biology [10], oil pollutions [11], and diffusion 

dynamics [12, 13], all of these applications can be represented 

as a mathematical model by Eq. (1) by changing the type of 

diffusion function 𝐷(𝑢), including exponential, polynomial 

powers 𝐷(𝑢) = 𝑢𝑛 , or even rational functions 𝐷(𝑢) = 1/
(𝑢2 + 1). It is worth noting that these above-mentioned forms

of 𝐷(𝑢)  represent solutions to mathematical models with 
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interesting engineering or physical applications, which may be 

new, and it may be difficult to study their characteristics, as 

we will see in the last section of the numerical applications. 

Therefore, it is important in this research to find approximate 

solutions for Eq. (1) in order to study some engineering or 

physical phenomena by changing the diffusion coefficient 

D(u). There are many previous studies that discuss different 

methods with the aim of obtaining solutions to the nonlinear 

equation in Eq. (1), some of them are approximate and others 

are exact and obtained in a closed form solutions [14]. These 

solutions include different formulas for the diffusion 

coefficient D(u). We are having difficulty locating their 

analytical solutions. Recently, various intriguing approximate 

analytical solutions, such as references [15-17], have been 

offered. An approximate solution of nonlinear fractional 

diffusion equation using the q-homotopy analysis transform 

method used [18]. A novel method called variational iteration 

method is proposed to solve nonlinear partial differential 

equations [19-21]. Because of the many types that the 

diffusion coefficient takes, we will focus on three types. 

1. A situation that represents a rapid diffusion represented 

in the case of 𝐷(𝑢) = 𝑢𝑛, 𝑛 < 0. For 𝑛 =
−1

2
, Eq. (1) is used 

as a model in thermal expulsion of liquid helium for studying 

the behaviour and diffusion mechanisms of helium in nuclear 

ceramics [22]. For n=-1, Eq. (1) appeared in Carleman’s 

model in the thermal limit approximation [23]. In addition, the 

isothermal Maxwellian distribution describes the growth of a 

thermalized electron cloud into a vacuum [24, 25]. 

2. The second type, which is concerned with the slow 

diffusion, where 𝐷(𝑢) = 𝑢𝑛, 𝑛 > 0. The case when n=1 that 

arises as a mathematical model which discuss isothermal 

percolation for gas that is through a porous medium that is 

micro [26, 27]. While the case when n=2, Eq. (2) models the 

behaviour of metals after melting and evaporation [23, 25]. 

3. Other diffusion processes included the exponential case 

and its generalization, to include a diffusion function, that take 

one of the following forms: 

 

𝐷(𝑢) =
1

1+𝑢2 , 𝐷(𝑢) =
1

1−𝑢2, 

 

for more details see [24, 28, 29], we also mention here some 

numerical methods similar to ours, in which mathematical 

models with physical and engineering applications were 

processed [30-33]. Our goal in this paper is to find 

approximate solutions, via the use of a promising technique 

called DTM, based on the Taylor series expansion, which 

generates an analytical solution in the form of a polynomial 

Symbolic computing is required for the classic high order 

Taylor series technique. DTM, on the other hand, derives a 

polynomial series solution by an iterative approach. The 

strategy decreases the size of the computational domain and is 

easily adaptable to a wide range of situations. Because its 

fundamental benefit is that it can be applied directly to 

nonlinear ordinary and partial differential equations without 

the need for linearization, discretization, or perturbation, it has 

been widely researched and utilized during the last two 

decades. DTM has been used to solve ordinary differential 

equations, partial differential equations, eigenvalue issues, 

differential algebraic equations, integral equations, and other 

problems. As an improvement on the method under 

consideration, we use the Laplace transform linked with the 

Pade’ approximation in order of obtaining accurate solutions 

in a closed form. We used the proposed amendment after 

getting a series solution using the DTM, which can boost the 

convergence rate of the truncated series solution produced 

from the DTM. The phases of our method are summarized 

below: 

1. First, we use the Laplace transform to convert the 

shortened series generated by DTM to the s-domain 

function, where s is the Laplace parameter. 

2. Second, we approximate the obtained result in the 

above by a rational s-function using the Pad'e 

approximant. 

3. Finally, we convert the output function back to the time-

domain using the inverse Laplace transform. 

The following is how the current paper is arranged. New 

theorems have been added to the theory in section 2, which is 

devoted to the description of the two-dimensional differential 

transform. Section 3 presents numerous numerical 

experiments as the application of DTM to several variants of 

the model Eq. (1), and Section 4 presents the conclusion. 

 

 

2. TWO-DIMENSIONAL DIFFERENTIAL 

TRANSFORM METHOD 

 

In 1986, Zhou [34] proposed a new method called the 

differential transformation method (DTM), which is 

considered to be one of the best numerical methods used to 

solve both ordinary and partial differential equations. Chen 

and others [35-37] they developed the method for solving 

partial differential equations. To review the previous studies 

in detail, and in order to avoid repetition, we draw the readers' 

attention to a comprehensive study on the use of DTM [38]. In 

this method, the solution is written in the form of a series of 

polynomials, with the assumption that the series of the 

imposed solution is differentiable as many times as needed. 

This makes it easy to calculate the approximate solution as a 

higher order series. The technique under discussion can be 

applied for solving more difficult differential equations such 

as nonlinear equations, as we will see in this paper. It is worth 

noting that Hassan [39] used the same method to solve partial 

differential equations, both linear and nonlinear. Below we 

present some necessary definitions and transformations 

resulting from the application of the differential transform 

method.  

Definition 1 [34] To handle the 2 − D  differential 

transformation of w(x, y) we use:  

 

𝑊(𝑘, ℎ) =
1

𝑘!ℎ!
[

𝜕𝑘+ℎ𝑤(𝑥,𝑦)

𝜕𝑥𝑘𝜕𝑦ℎ ](0,0)  (2) 

 

where, 𝑤(𝑥, 𝑦) is the original function, while the transformed 

function that result after applying the transformation is 

𝑊(𝑘, ℎ).  

Definition 2 The inverse differential transform of W(k,h) 

can be defined as follows:  

 

𝑤(𝑥, 𝑦) = ∑∞
𝑘=0 ∑∞

ℎ=0 𝑊(𝑘, ℎ)𝑥𝑘𝑦ℎ .  (3) 

 

From Eqns. (2) and (3) it can be concluded that:  

 

𝑤(𝑥, 𝑦) = ∑∞
𝑘=0 ∑∞

ℎ=0
1

𝑘!ℎ!
[

𝜕𝑘+ℎ𝑤(𝑥,𝑦)

𝜕𝑥𝑘𝜕𝑦ℎ ](0,0)𝑥𝑘𝑦ℎ .  (4) 

 

A differential equation in the domain of interest can be 

translated to an algebraic equation using the differential 
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transformation. From Eqns. (2) and (3), the following 

theorems 1-12 may be inferred (3). The proofs are well-known 

in the literature [40] and will not be discussed further here. 

Theorem 1 If 𝑤(𝑥, 𝑦) = 𝑐1𝑢(𝑥, 𝑦) + 𝑐2𝑣(𝑥, 𝑦) , then 

𝑊(𝑘, ℎ) = 𝑐1𝑈(𝑘, ℎ) + 𝑐2𝑉(𝑘, ℎ), for some constants 𝑐1, 𝑐2.  

Theorem 2 If 𝑤(𝑥, 𝑦) =
𝑑𝑤(𝑥,𝑦)

𝑑𝑥
, then 

 

𝑊(𝑘, ℎ) = (𝑘 + 1)𝑊(𝑘 + 1, ℎ)  

 

Theorem 3 If 𝑤(𝑥, 𝑦) =
𝑑𝑤(𝑥,𝑦)

𝑑𝑦
, then 

 

𝑊(𝑘, ℎ) = (ℎ + 1)𝑊(𝑘, ℎ + 1) 

 

Theorem 4 If 𝑤(𝑥, 𝑦) =
𝑑(𝑟+𝑠)𝑢(𝑥,𝑦)

𝑑𝑥𝑟𝑑𝑦𝑠 , then 

 

𝑊(𝑘, ℎ) = (𝑘 + 1)(𝑘 + 2). . . (𝑘 + 𝑟)(ℎ + 1)(ℎ + 2). . . (ℎ +
𝑠)𝑈(𝑘 + 𝑟, ℎ + 𝑠)  

 

Theorem 5 If w(x,y)=u(x,y)v(x,y), then 

 

𝑊(𝑘, ℎ) = ∑𝑘
𝑟=0 ∑ℎ

𝑠=0 𝑈(𝑟, ℎ − 𝑠)𝑉(𝑘 − 𝑟, 𝑠).  

 

Theorem 6 If 𝑤(𝑥, 𝑦) = 𝑥𝑚𝑦𝑛 , then 

 

𝑊(𝑘, ℎ) = 𝛿(𝑘 − 𝑚, ℎ − 𝑛) = 𝛿(𝑘 − 𝑚)𝛿(ℎ − 𝑛). 

where,  

𝛿(𝑘 − 𝑚, ℎ − 𝑛) = {
1,    𝑘 = 𝑚, ℎ = 𝑛
0,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

 

Proof: From the definition of differential transform, we 

have  

𝑊(𝑘, ℎ) =
1

𝑘!ℎ!
[

𝜕𝑘+ℎ(𝑥𝑚𝑦𝑛)

𝜕𝑥𝑘𝜕𝑦ℎ ](0,0) =
1

𝑘!ℎ!
[

𝑑ℎ(𝑦𝑛𝑑𝑘𝑥𝑚

𝑑𝑥𝑘 )

𝑑𝑦ℎ ](0,0).  

 

Substituting 
𝑑𝑘𝑥𝑚

𝑑𝑥𝑘 =
𝑚!

(𝑚−𝑘)!
𝑥𝑚−𝑘, we get  

 

𝑤(𝑘, ℎ) =
1

𝑘!ℎ!
[

𝑑ℎ

𝑑𝑦ℎ (𝑦𝑛 𝑚!

(𝑚−𝑘)!
𝑥𝑚−𝑘)](0,0).  

 

Also, substituting 
𝑑ℎ𝑦𝑛

𝑑𝑦ℎ =
𝑛!

(𝑛−ℎ)!
𝑥𝑛−ℎ, we get  

 

𝑊(𝑘, ℎ) =
1

𝑘!ℎ!
[

𝑛!

(𝑛−ℎ)!

𝑚!

(𝑚−𝑘)!
(𝑦𝑛−1𝑥𝑚−𝑘)](0,0) = 𝛿(𝑘 −

𝑚, ℎ − 𝑛).  
 

Theorem 7 If 𝑤(𝑥, 𝑦) =
𝑑𝑢(𝑥,𝑦)

𝑑𝑥

𝑑𝑣(𝑥,𝑦)

𝑑𝑥
, then  

 

𝑊(𝑘, ℎ) = ∑𝑘
𝑟=0 ∑ℎ

𝑠=0 (𝑟 + 1)(𝑘 − 𝑟 + 1)𝑈(𝑟 + 1, ℎ −
𝑠)𝑉(𝑘 − 𝑟 + 1, 𝑠).  

 

Theorem 8 If 𝑤(𝑥, 𝑦) =
𝑑𝑢(𝑥,𝑦)

𝑑𝑦

𝑑𝑣(𝑥,𝑦)

𝑑𝑦
, then  

 

𝑊(𝑘, ℎ) = ∑𝑘
𝑟=0 ∑ℎ

𝑠=0 (ℎ − 𝑠 + 1)(𝑠 + 1)𝑈(𝑟, ℎ − 𝑠 +
1)𝑉(𝑘 − 𝑟, 𝑠 + 1).  

 

Theorem 9 If 𝑤(𝑥, 𝑦) =
𝑑𝑢(𝑥,𝑦)

𝑑𝑥

𝑑𝑣(𝑥,𝑦)

𝑑𝑦
, then  

𝑊(𝑘, ℎ) = ∑𝑘
𝑟=0 ∑ℎ

𝑠=0 (ℎ − 𝑠 + 1)(𝑠 + 1)𝑈(𝑟, ℎ − 𝑠 +
1)𝑉(𝑘 − 𝑟, 𝑠 + 1).  

 

Theorem 10 If 𝑤(𝑥, 𝑦) = 𝑢(𝑥, 𝑦)𝑣(𝑥, 𝑦)𝜔(𝑥, 𝑦), then  

 

𝑊(𝑘, ℎ) = ∑𝑘
𝑟=0 ∑𝑘−𝑟

𝑡=0 ∑ℎ
𝑠=0 ∑ℎ−𝑠

𝑝=0 𝑈(𝑟, ℎ − 𝑠 − 𝑝)  

𝑉(𝑡, 𝑠)Ω(𝑘 − 𝑟 − 𝑡, 𝑝).  
 

For the proof, see ([31]). 

Theorem 11 If 𝑤(𝑥, 𝑦) = 𝑢(𝑥, 𝑦)
𝑑𝑣(𝑥,𝑦)

𝑑𝑥

𝑑𝜔(𝑥,𝑦)

𝑑𝑥
, then  

 

𝑊(𝑘, ℎ) = ∑𝑘
𝑟=0 ∑𝑘−𝑟

𝑡=0 ∑ℎ
𝑠=0 ∑ℎ−𝑠

𝑝=0 (𝑡 + 1)(𝑘 − 𝑟 − t 

+1)𝑈(𝑟, ℎ − 𝑠 − 𝑝)𝑉(𝑡 + 1, 𝑠)Ω(𝑘 − 𝑟 − 𝑡 + 1, 𝑝). 
 

Proof: The proof is just a simple applications for Theorems 

10 and 2, where is Theorem 10, we take 𝑢 = 𝑢, 𝑣 = 𝑣𝑥 , 𝜔 =
𝜔𝑥, then apply Theorem 2 to find the differential transform of 

𝑣𝑥, and 𝜔𝑥 to get the desired result. 

Theorem 12 If 𝑤(𝑥, 𝑦) = 𝑢(𝑥, 𝑦)𝑣(𝑥, 𝑦)
𝑑2𝜔(𝑥,𝑦)

𝑑𝑥2 , then  

 

𝑊(𝑘, ℎ) = ∑𝑘
𝑟=0 ∑𝑘−𝑟

𝑡=0 ∑ℎ
𝑠=0 ∑ℎ−𝑠

𝑝=0 (𝑘 − 𝑟 − 𝑡 + 2)(𝑘 − 𝑟 −

𝑡 + 1)𝑈(𝑟, ℎ − 𝑠 − 𝑝)𝑉(𝑡, 𝑠)Ω(𝑘 − 𝑟 − 𝑡 + 2, 𝑝).  
 

Proof: The proof is just a simple applications for Theorems 

10 and 4, where is Theorem 10, we take 𝑢 = 𝑢, 𝑣 = 𝑣𝑥 , 𝜔 =
𝜔𝑥𝑥, then apply Theorem 4 to find the differential transform 

of 𝜔𝑥𝑥 to get the required result. 

 

3. NUMERICAL APPLICATIONS AND THEIR 

OUTCOMES 

 

In this section, we will use DTM linked with Laplace 

transform and Pad’e technique to approximate the solutions of 

some nonlinear diffusion equations of known exact solutions. 

Four important cases of the nonlinear term D(u) appeared in 

Eq. (1). Our technique will be used to explore several real-

world physical processes. One of the cases 𝐷(𝑢) = 𝑢𝑛  that 

plays a significant role in diffusion process applications. The 

fast and slow processes of the diffusion is based on n>0 and 

n<0 respectively. 

Here, we will solve Eq. (1) with D(u) that has the form 

𝑢−1, 𝑢−2, 𝑢−2 and 
1

1+𝑢2. The author illustrates the use of DTM 

to approximate the solution of (1), where the DTM was used 

for the diffusion term 𝐷(𝑢) = 𝑢𝑛  for 𝑛  positive [31]. Here, 

with the same analysis [31] we will use Laplace transform 

linked with Pad’e to improve the results [31] when 𝑛  is 

positive. Also we extend the use of ADM to solve Eq. (1) for 

negative values of 𝑛. In the last example, we consider the case 

where 𝐷(𝑢) =
1

1+𝑢2 , while the cases 𝐷(𝑢) =
1

𝑢2−1
, 𝐷(𝑢) =

1

1−𝑢2 can be approached in a similar fashion.  

 

Example 1 Consider the nonlinear diffusion equation  

 

𝑢𝑡 = (𝑢𝑢𝑥)𝑥 (5) 

 

subject to the initial condition 

  

𝑢(𝑥, 0) =
𝑥2

𝑐
  (6) 

 

where, x>0 and the constant c>0 is arbitrary. The exact 
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solution [25, 41] is 𝑢(𝑥, 𝑡) = 𝑥2

𝑐−6𝑡
. Following the discussion in 

section (10) we will solve this equation with c=1. Taking the 

two-dimensions differential transform of Eq. (5) we obtain 

(ℎ + 1)𝑈(𝑘, ℎ + 1 = ∑𝑘
𝑟=0 ∑ℎ

𝑠=0 (𝑟 + 1)(𝑘 − 𝑟 + 1)𝑈(𝑟 +
1, ℎ − 𝑠)𝑈(𝑘 − 𝑟 + 1, 𝑠) + + ∑𝑘

𝑟=0 ∑ℎ
𝑠=0 (𝑘 − 𝑟 + 1)(𝑘 −

𝑟 + 2)𝑈(𝑟, ℎ − 𝑠)𝑈(𝑘 − 𝑟 + 2, 𝑠).  

The differential inverse transform of U(k,h) is defined by 

𝑢(𝑥, 𝑡) = ∑∞
𝑘=0 ∑∞

ℎ=0 𝑈(𝑘, ℎ)𝑥𝑘𝑡ℎ =
∑∞

𝑘=1 ∑∞
ℎ=1 𝑈(𝑘, ℎ)𝑥𝑘𝑡ℎ + ∑∞

𝑘=1 𝑈(𝑘, 0)𝑥𝑘 +
∑∞

ℎ=1 𝑈(0, ℎ)𝑥ℎ + 𝑈(0,0).
(7) 

Applying the initial condition Eq. (6) into Eq. (7) gives 

𝑢(𝑥, 0) = ∑∞
𝑘=0 𝑈(𝑘, 0)𝑥𝑘 = 𝑥2 (8) 

Therefore, U(k,0)=0 for k=0,1,3,... and U(2,0)=1. Plugging 

back and by recursive method, the following results are 

obtained U(2,1)=6, U(2,2)=36, U(2,3)216, U(2,4)=1296. 

Substituting the resulting values of U(k,h) into Eq. (7), we get 

the following approximate series solution  

𝑢𝑎(𝑥, 𝑡) = 𝑥2(1 + 6𝑡 + 36𝑡2 + 216𝑡3 + 1296𝑡4 +
7776𝑡5+. . . ).

(9) 

Which is the same solution obtained [31], and it is the partial 

sum of the Taylor series of the exact solution around t=0. To 

improve this result, apply Laplace transform to Eq. (9), with 

respect to the time variable t, gives 

𝐿[𝑢𝑎(𝑥, 𝑡)](𝑠) = 𝑥2(
933120

𝑠6 +
31104

𝑠5 +
1296

𝑠4 +
72

𝑠3 +
6

𝑠2 +
1

𝑠
) . 

(10) 

Now replace 𝑠 by 1/𝜔, we arrive at 

𝐿[𝑢𝑎(𝑥, 𝑡)](𝜔) = 𝑥2(𝜔 + 6𝜔2 + 72𝜔3 +
1296𝜔4 + 3110𝜔5 + 933120𝜔6)

(11) 

The associated [
4

2
] Pad’e approximation of Eq. (11) with 

respect to 𝜔 is 

[
4

2
](𝑥, 𝜔) =

𝑥2𝜔−42 𝑥2𝜔2+216  𝑥2𝜔3+432 𝑥2𝜔4

1−48 𝜔+432 𝜔2
(12) 

Replacing back 𝜔  by 1/𝑠 , we obtain the [
4

2
]  Pad’e 

approximation in terms of 𝑠 as 

[
4

2
](𝑥,

1

𝑠
) =

432  𝑥2

𝑠4 +
216  𝑥2

𝑠3 −
42  𝑥2

𝑠2 +
𝑥2

𝑠

1+
432

𝑠2 −
48

𝑠

. (13) 

Taking the inverse Laplace transform of the above equation, 

we obtain the modified approximate solution 𝑢𝑚(𝑥, 𝑡), given

by  

𝑢𝑚(𝑥, 𝑡) =
𝑥2

72
(44 + 27𝑒12𝑡 + 𝑒36𝑡 + 72 𝑡)

A comparison between our modified solution 𝑢𝑚(𝑥, 𝑡), and

the solution obtained [41], is depicted in Table 1. It can be 

easily seen from the results in Table 1  that our modified 

solution is better than the solution [41]. 

Table 1. A comparison between our modifiedDTM and DTM 

[41] 

Point (𝑥, 𝑡)  Absolute error |𝑢(𝑥, 𝑡) −
𝑢𝑎(𝑥, 𝑡)| [31]

 Modified error |𝑢(𝑥, 𝑡) −
𝑢𝑚(𝑥, 𝑡)|

(0.1,0.1) 1.16640 × 10−3 3.55362 × 10−4

(0.2,0.1) 4.66560 × 10−3 1.42145 × 10−3

(0.3,0.1) 1.04976 × 10−2 3.19826 × 10−3

(0.4,0.1) 1.86624 × 10−2 5.68580 × 10−3

(0.5,0.1) 2.91600 × 10−2 8.88406 × 10−3

(0.6,0.1) 4.19904 × 10−2 1.27930 × 10−2

Example 2 In this example, we consider Eq. (1), with 

𝐷(𝑢) =
1

𝑢
. Differentiating the right hand-side with respect to

x, we obtain the following nonlinear diffusion equation: 

𝑢𝑡 =
1

𝑢
𝑢𝑥𝑥 −

1

𝑢2 𝑢𝑥𝑢𝑥.

Multiply both sides of the above equation by 𝑢2, we obtain

the following equation  

𝑢2𝑢𝑡 = 𝑢𝑢𝑥𝑥 − 𝑢𝑥𝑢𝑥 . (14) 

Apply DTM to both sides of Eq. (14), we obtain 

∑𝑘
𝑟=0 ∑𝑘−𝑟

𝑡=0 ∑ℎ
𝑠=0 ∑ℎ−𝑠

𝑝=0 (𝑝 + 1)𝑈(𝑟, ℎ − 𝑠 − 𝑝)𝑈(𝑡, 𝑠)𝑈(𝑘 −

𝑟 − 𝑡, 𝑝 + 1) = ∑𝑘
𝑟=0 ∑ℎ

𝑠=0 (𝑟 + 1)(𝑘 − 𝑟 + 1)𝑈(𝑟 + 1, ℎ −
𝑠)𝑈(𝑘 − 𝑟 + 1, 𝑠) + ∑𝑘

𝑟=0 ∑ℎ
𝑠=0 (𝑘 − 𝑟 + 1)(𝑘 − 𝑟 +

2)𝑈(𝑟, ℎ − 𝑠)𝑈(𝑘 − 𝑟, 𝑠).

We solve Eq. (14) subject to the initial condition 

𝑢(𝑥, 0) =
2

(1+𝑥)2 , (15) 

where the exact solution is given by 

𝑢(𝑥, 𝑡) =
2+2𝑡

(1+𝑥)2 . (16) 

The differential transform inverse of 𝑈(𝑘, ℎ) is defined by 

𝑢(𝑥, 𝑡) = ∑∞
𝑘=0 ∑∞

ℎ=0 𝑈(𝑘, ℎ)𝑥𝑘𝑡ℎ  (17)

Substituting 𝑡 = 0  into Eq. (17), we obtain 𝑢(𝑥, 0) =
∑∞

𝑘=0 ∑∞
ℎ=0 𝑈(𝑘, ℎ)𝑥𝑘. Note that the variable 𝑥 appears in the

denominator in the initial condition (15), while it appears in 

the numerator in the expression (17). To make sense of using 

the initial condition, expand 
2

(1+𝑥)2  into it’s Taylor series 

abound 𝑥 = 0, we get  

𝑢(𝑥, 0) =
2

(1+𝑥)2 = ∑∞
𝑘=0 2(−1)𝑘(𝑘 + 1)𝑥𝑘. (18) 

Comparing the above equation with 𝑢(𝑥, 0) =
∑∞

𝑘=0 𝑈(𝑘, 0)𝑥𝑘, the following equations are obtained

𝑈(𝑘, 0) = 2(−1)𝑘(𝑘 + 1)𝑥𝑘, 𝑘 = 0,1,2, . .. (19) 

Substituting Eq. (19) into Eq. (15), and by recursive method, 

the following results are obtained  

1511



 

𝑈(0,0) = 2, 𝑈(1,0) = 4, 𝑈(0,1) = 2, 𝑈(1,1) = −4,
𝑈(2,1) = 6, 𝑈(2,0) = 6.  

 

Substituting the resulting values of U(k,h) into Eq. (17), we 

have the following approximate series solution  

 

𝑢𝑎(𝑥, 𝑡) = 2 + 2𝑡 − 4𝑥 − 4𝑥𝑡 + 6𝑥2 + 6𝑥2𝑡 −
8𝑥3 − 8𝑥3𝑡.  

(20) 

 

To check the validity and accuracy of our approximate 

solutions, we consult Table 2, which shows that the 

approximate solution converges to the exact solution in the 

region near to the point (0,0), and the error increases as we get 

away from (0,0). 

  

Table 2. The difference between the approximateand exact 

solutions for Example 2 

 
Point (𝑥, 𝑡)  |𝑢𝑎(𝑥, 𝑡) − 𝑢(𝑥, 𝑡)|  
(0.2,1.5)  3.222 × 10−02  

(0.2,1.0)  2.577 × 10−02  

(0.2,0.75)  2.225 × 10−02  

(0.2,0.5)  1.933 × 10−02  

(0.1,1.5)  2.231 × 10−03  

(0.1,1.0)  1.785 × 10−03  

(0.1,0.75)  1.561 × 10−03  

(0.1,0.5)  1.338 × 10−03  

(0.1,0.1)  9.818 × 10−04  

(0.01,0.01)  9.980 × 10−08  

(0.001,0.001)  9.998 × 10−12  

 

Example 3 Consider the nonlinear fast diffusion equation  

 

𝑢𝑡 = (𝑢−2𝑢𝑥)𝑥 (21) 

 

subject to 

  

𝑢(𝑥, 0) =
1

√𝑥2+1
  (22) 

 

The exact solution is 𝑢(𝑥, 𝑡) = (𝑥2 + 𝑒2𝑡)−1/2 . By 

differentiating the right hand-side of Eq. (21) with respect to 

𝑥, we get 𝑢𝑡 = −2𝑢−3𝑢𝑥𝑢𝑥 + 𝑢−2𝑢𝑥𝑥. Upon multiplying both 

sides by 𝑢−3, we obtain  

 

𝑢3𝑢𝑡 = −2𝑢𝑥𝑢𝑥 + 𝑢𝑢𝑥𝑥 (23) 

 

Now, take the differential transform to both sides of Eq. (23), 

we obtain 

 

∑𝑘
𝑟=0 ∑ℎ

𝑠=0 [(∑𝑟
𝑛=0 ∑𝑟−𝑛

𝑡=0 ∑ℎ−𝑠
𝑚=0 ∑ℎ−𝑠−𝑚

𝑝=0 𝑈(𝑛, ℎ − 𝑠 − 𝑚 −

𝑝)𝑈(𝑡, 𝑚)𝑈(𝑟 − 𝑛 − 𝑡, 𝑝))((𝑠 + 1)𝑈(𝑘 − 𝑟, 𝑠 + 1))] =
−2 ∑𝑘

𝑟=0 ∑ℎ
𝑠=0 (𝑟 + 1)(𝑘 − 𝑟 + 1)𝑈(𝑟 + 1, ℎ − 𝑠)𝑈(𝑘 −

𝑟 + 1, 𝑠) + ∑𝑘
𝑟=0 ∑ℎ

𝑠=0 (𝑘 − 𝑟 + 1)(𝑘 − 𝑟 + 2)𝑈(𝑟, ℎ −
𝑠)𝑈(𝑘 − 𝑟 + 2, 𝑠).  

 

The differential inverse transform of 𝑈(𝑘, ℎ) is  

 

𝑢(𝑥, 𝑡) = ∑∞
𝑘=0 ∑∞

ℎ=0 𝑈(𝑘, ℎ)𝑥𝑘𝑡ℎ.  (24) 

 

Expanding the function appeared in Eq. (22) into its Taylor 

series, we get 

  

𝑢(𝑥, 0) =
1

√1+𝑥2
= 1 −

𝑥2

2
+

3𝑥2

8
−

5𝑥6

16
+ ⋯  

Upon substituting 𝑡 = 0 into Eq. (24) and comparing it with 

the above equation, we obtain  

 

𝑢(𝑥, 0) = ∑∞
𝑘=0 = 𝑈(𝑘, 0)𝑥𝑘 =

1

√1+𝑥2
= 1 −

𝑥2

2
+

3𝑥2

8
−

5𝑥6

16
+ ⋯  

 

From the above, we get  

 

𝑈(0,0) = 1, 𝑈(1,0) = 0, 𝑈(2,0) =
−1

2
, 𝑈(3,0) = 0,

𝑈(4,0) =
3

8
, 𝑈(5,0) = 0, 𝑈(6,0) =

−5

16
.  

 

And so on, we may compute coefficients as much as we 

need. Substituting the above values into Eq. (24), and by 

recursive method, the first few results are obtained,  

 

𝑈(0,1) = −1, 𝑈(1,1) = 0, 𝑈(3,1) = 0, 𝑈(2,1) =
9

2
,

𝑈(0,2) = 1, 𝑈(1,2) = 0.  
 

Upon using all these values of U(k,h), we get the 

approximate solution, and after regrouping polynomials to 

their original function, our approximate solution has the form  

 

𝑢𝑎(𝑥, 𝑡) =
𝑡2(1−2𝑥2)

2(1+𝑥2)5/2 −
𝑡

2(1+𝑥2)3/2 +
1

(1+𝑥2)1/2 −

𝑡3(1−10𝑥2+4𝑥4)

6(1+𝑥2)7/2 +
𝑡4(1−36𝑥2+60𝑥4−8𝑥6)

24(1+𝑥2)9/2   
(25) 

 

Table 3 presents the absolute error, which again show that 

our approximate solution is good enough for values close to 

the origin. 

 

Table 3. For varying values of t, the error for the 

approximate solution in Example 3 

 
𝑡𝑖   |𝑢𝑎(5, 𝑡𝑖) − 𝑢(5, 𝑡𝑖)|    |𝑢𝑎(3, 𝑡𝑖) − 𝑢(3, 𝑡𝑖)|   

 0.1   2.55015 × 10−07   1,99652 × 10−08  

0.2   7.67731 × 10−08   6.89257 × 10−07  

0.3   5.39100 × 10−07   5.62998 × 10−06 

0.4   2.05292 × 10−06   2.54295 × 10−05 

0.5   5.48313 × 10−06   8.28379 × 10−05 

0.6   1.13898 × 10−05   2.18984 × 10−04 

0.7   1.90335 × 10−05   5.00138 × 10−04 

0.8   2.47680 × 10−05   1.02425 × 10−03 

0.9   1.97262 × 10−05   1.92627 × 10−03 

1.0   1.32231 × 10−05   3.38110 × 10−03 

 

Example 4 Consider the nonlinear diffusion Eq. (1) with 

𝐷(𝑢) =
1

1+𝑢2, which can be written in the form:  

 

𝑢𝑡 =
−2𝑢𝑢𝑥𝑢𝑥

(1+𝑢2)2 +
𝑢𝑥𝑥

(1+𝑢2)
.  

 

Multiplying both sides by (1 + 𝑢2)2 and simplify more, we 

obtain 

 

𝑢𝑡 + 2𝑢2𝑢𝑡 + 𝑢4𝑢𝑡 = −2𝑢𝑢𝑥𝑢𝑥 + 𝑢𝑥𝑥 + 𝑢2𝑢𝑥𝑥  (26) 

 

We solve Eq. (26) subject to the initial condition  

 

𝑢(𝑥, 0) = tan(𝑥). (27) 

 

Taking the DTM to both sides of Eq. (26), we get 
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(ℎ + 1)𝑈(𝑘, ℎ + 1) + 2 ∑𝑘
𝑟=0 ∑𝑘−𝑟

𝑡=0 ∑ℎ
𝑠=0 ∑ℎ−𝑠

𝑝=0 (𝑝 +

1)𝑈(𝑟, ℎ − 𝑠 − 𝑝)𝑈(𝑡, 𝑠)𝑈(𝑘 − 𝑟 − 𝑡, 𝑝 + 1) +
∑𝑘

𝑟=0 ∑ℎ
𝑠=0 [(∑𝑟

𝑛=0 ∑𝑟−𝑛
𝑡=0 ∑ℎ−𝑠

𝑚=0 ∑ℎ−𝑠−𝑚
𝑝=0 𝑈(𝑛, ℎ − 𝑠 − 𝑚 −

𝑝)𝑈(𝑡, 𝑚)𝑈(𝑟 − 𝑛 − 𝑡, 𝑝)) × (∑𝑘−𝑟
𝑛=0 ∑𝑠

𝑚=0 (𝑚 + 1)𝑈(𝑛, 𝑠 −
𝑚)𝑈(𝑘 − 𝑟 − 𝑛, 𝑚 + 1))] =

−2 ∑𝑘
𝑟=0 ∑𝑘−𝑟

𝑡=0 ∑ℎ
𝑠=0 ∑ℎ−𝑠

𝑝=0 (𝑡 + 1)(𝑘 − 𝑟 − 𝑡 + 1)𝑈(𝑟, ℎ −

𝑠 − 𝑝)𝑈(𝑡 + 1, 𝑠)𝑈(𝑘 − 𝑟 − 𝑡 + 1, 𝑝) + (𝑘 + 2)(𝑘 +
1)𝑈(𝑘 + 2, ℎ) + ∑𝑘

𝑟=0 ∑𝑘−𝑟
𝑡=0 ∑ℎ

𝑠=0 ∑ℎ−𝑠
𝑝=0 (𝑘 − 𝑟 − 𝑡 +

2)(𝑘 − 𝑟 − 𝑡 + 1)𝑈(𝑟, ℎ − 𝑠 − 𝑝)𝑈(𝑡, 𝑠)𝑈(𝑘 − 𝑟 − 𝑡 +
2, 𝑝)  

 

The differential inverse transform of 𝑈(𝑘, ℎ) is  

 

𝑢(𝑥, 𝑡) = ∑∞
𝑘=0 ∑∞

ℎ=0 𝑈(𝑘, ℎ)𝑥𝑘𝑡ℎ.  (28) 
 

Substitute 𝑡 = 0  into Eq. (28), we obtain 𝑢(𝑥, 0) =
∑∞

𝑘=0 𝑈(𝑘, 0)𝑥𝑘. Comparing with the above equation with the 

initial condition 𝑢(𝑥, 0) = 𝑡𝑎𝑛(𝑥) = 𝑥 +
𝑥3

3
+

2𝑥5

15
+. .. , we 

obtain  
 

𝑈(0,0) = 0, 𝑈(1,0) = 1, 𝑈(2,0) = 0, 𝑈(3,0) =
1

3
,

𝑈(4,0) = 0, 𝑈(5,0) =
2

15
.   

 

Substituting the obtained values of U(k,h), we obtain 

U(k,h)=0,  k=0,1,2,..., and h=1,2,.... From Eq. (28), we have  
 

𝑢(𝑥, 𝑡) = ∑∞
𝑘=0 ∑∞

ℎ=0 𝑈(𝑘, ℎ)𝑥𝑘𝑡ℎ = ∑∞
𝑘=0 𝑈(𝑘, 0)𝑥𝑘 +

∑∞
𝑘=0 ∑∞

ℎ=1 𝑈(𝑘, ℎ)𝑥𝑘𝑡ℎ = 𝑢(𝑥, 0) +
∑∞

𝑘=0 ∑∞
ℎ=1 𝑈(𝑘, ℎ)𝑥𝑘𝑡ℎ.  

 

Now, substituting the results that U(k,h)=0,  k=0,1,2,..., and 

h=1,2,... in the above equation, we obtain u(x,t)=tan(x), which 

is the exact solution. 
 

 

4. CONCLUSIONS 
 

DTM was effectively employed in this research to get 

approximate and accurate solutions to nonlinear diffusion 

equations, which has various applications in engineering and 

physical sciences. For acceptable beginning conditions, the 

solution given by differential transform technique is an infinite 

power series, which may be used to describe the precise 

solutions in a closed form. The Laplace transform was utilized, 

along with the DTM and Pad'e approximation, and the results 

were compared to findings from earlier studies, revealing that 

our technique is quicker and better. The reliability of the 

differential transform technique, as well as the reduction in the 

size of the computing domain, increase its use. DTM is 

definitely a powerful and efficient method for solving a wide 

range of nonlinear problems analytically. It is worth 

mentioning that this method produces rapid convergence of 

responses. As a result, we think that the suggested method may 

be extended to solve a broad variety of PDEs with variable 

coefficients encountered in physical and engineering 

applications, and that DTM provides extremely accurate 

numerical solutions for nonlinear problems. As a result, 

without the requirement for linearization, discretization, or 

perturbation, this technique may be used to a wide range of 

complicated linear and nonlinear PDEs. 
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