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Using Tungsten disulfide WS2 nanoparticles as a nanolubricant additive could improve the 

lubrication performance. The main objective of the present work is to numerically study 

the effect of nanoparticle diameters on the friction reduction on two sliding surfaces in a 

lubrication system. The studied nanofluid is 5W-30 engine oil based on WS2 nanoparticles. 

In this study, the flow of confined nanofluid by two moving surfaces is simulated by the 

Lattice Boltzmann method with multiple relaxation times. The results show that the 

greatest friction reduction is always obtained for large diameter nanoparticles. 
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1. INTRODUCTION

Friction and wear are the main causes of energy loss and 

mechanical failure [1, 2]. Lubrication is one of the most 

effective solutions to reduce friction and wear. Therefore, 

providing better lubrication is essential to improve the 

reliability of mechanical systems and the efficiency of energy 

use. Improving tribological properties by adding nanoparticles 

to base oil is a promising solution. Dispersed in lubricating oil, 

the lubricating nanoadditives make it possible to achieve 

extremely low rates of friction and wear. 

In scientific research, studies have become more 

increasingly interested in nanofluids as a better alternative to 

improve the lubrication effects. In the field of lubrication, 

several researches have focused on metal disulfide MoS2 

(molybdenum disulfide) and WS2 (Tungsten disulfide) as 

additives for lubricants. Bartz [3] studied the influence on the 

lubrication efficiency of MoS2 particle diameters in the range 

0.7 to 7μm. It has been found that finer particles can improve 

wear performance of smooth surfaces only under high loads. 

The study conducted in reference [4] revealed an improvement 

in tribological properties by fullerene-like WS2 nanoparticles. 

This result can be attributed to the rolling effect on rubbing 

surfaces. 

There are few numerical studies on the improvement of 

lubrication by nanoparticles, this is due to the difficulty of 

modeling, following the deformation of these nanoparticles 

during the lubrication process. The study carried out in 

reference [5] shows that the addition of spherical W 

nanoparticle additives to synthetic base oil PAO6 has a 

reducing effect on the friction coefficient and wear. Molecular 

Dynamics simulation (MD) has shown that this effect can be 

attributed to their rolling and sliding in the tribological contact 

zone. In reference [6], a numerical study has carried out on the 

friction reduction effect of a fluid lubricant in Taylor-Couette 

System using WS2, MoS2 and diamond as nanoadditifs. This 

study has shown that WS2 were more effective in reducing 

friction. Numerical study on the reduction of friction by 

lubrication additives has carried in reference [7] where the 

studied nanofluid is 5W-30 engine oil based on WS2 or MoS2 

nanoparticles. It was found that MoS2 and WS2 nanoparticles 

have a greater friction-reducing effect in the laminar regime. 

Recently, the Lattice Boltzmann method has interested 

many researchers in various scientific domains. This method 

has been successfully applied as a new alternative to solve 

complex fluid flow problems as thermal flows [8], micro flows 

[9], multiphase flows [10] and fluid-interactions [11]. The 

LBM has been extended to simulate nanofluids flow [12, 13]. 

The present numerical study is motivated by the success of 

recent developments of nanofluid flow simulation by using the 

LBM method. In this work, the Lattice Boltzmann method 

with multi- relaxation time (MRT-LBM) is used to simulate 

the flow of confined nanofluid by two sliding surfaces. The 

main aim of this study is to determine the effects of 

nanoparticles diameter on friction reduction in a system of 

lubrication. 

2. PROBLEM DEFINITION AND MATHEMATICAL

MODEL

2.1 Problem statement 

Figure 1. Physical geometry of the problem 

In the present problem, the studied nanofluid is confined 

between two mobile parallel plates. The flow is conceived as 

two-dimensional. The geometry of the problem is presented in 

Figure 1. It is a two-dimensional cavity of height H and width 

L. The nanoadditive WS2 nanoparticles are dispersed in the
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base fluid 5W-30 engine oil. The top plate moves with a 

constant velocity 𝑈0, while the bottom plate can slide with the 

same velocity in opposite direction which imposes shear 

stresses on the fluid. In real situations where lubrication is 

treated, as in plain bearings, the distance between the two 

moving plates must be much smaller than their dimensions. In 

the simulation, we chose L=4.H. 

The temperature can be an important factor since it 

influences the thermophysical properties of the nanofluid. The 

heat transfer effects are neglected; fluid (5W30 engine oil) and 

solid (WS2 nanoadditive) are in thermal equilibrium at 60℃. 

Thermo physical properties (dynamic viscosity and density) 

are assumed constant. Densities of base fluid and nanoparticles 

at 60℃ are given in Table 1. 

 

Table 1. Densities of base fluid and nanoparticles 

 
Materials Density (kg.m-3) 

5W30 870 

WS2 7500 

 

The dynamic viscosity of 5W-30 engine oil at 60℃ is 

𝜇𝑏𝑓 =0.02697 kg.𝑚−1𝑠−1. 

The following relation [14] is used to calculate the nanofluid 

effective density 𝜌𝑛𝑓: 

 

𝜌𝑛𝑓 = (1 − 𝜑)𝜌𝑏𝑓 + 𝜑𝜌𝑠 (1) 

 

𝜌𝑠 is the nanoparticles density, 𝜌𝑏𝑓 is the base fluid density 

and 𝜑 is the volumetric concentration of nanoparticles.  

In various models proposed in the literature to formulate the 

nanofluids viscosity (Einstein's model [15], Brinkman's model 

[16], etc.), only the effect of the particles charge on the 

effective viscosity is taken into account. So, the viscosity 

depends only on volumetric concentration of the nanoparticles. 

A comparison with experimental measurements indicated that 

these models tend to underestimate the viscosity of nanofluids. 

Moreover, they neglected other influencing factors. To study 

the effect of nanoparticles diameter, we use in this work, the 

empirical correlation of Corcione [17] for the effective 

viscosity with nanoparticles of diameter varying from 25nm to 

200nm, temperatures ranging from 293 to 333 K and 

volumetric concentrations ranging from 0.01% to 7.1%. 

 

𝜇𝑛𝑓 =
𝜇𝑏𝑓

1 − 34.87(𝑑/𝑑𝑏𝑓)
−0.3𝜑1.03

 (2) 

 

where, 𝑑𝑏𝑓  is the equivalent diameter of the base fluid 

molecule given by: 

 

𝑑𝑏𝑓 = 0.1 (
6𝑀

𝑁𝜋𝜌𝑏𝑓0
)

1
3

 

 

𝜌𝑏𝑓0 is the base fluid density calculated at the temperature 

𝑇0=293 K, 𝑁 is the Avogadro number and 𝑀 is the molecular 

weight of the base fluid. We can predict the kinematic 

viscosity evolution of the nanofluid with volumetric 

concentration of nanoparticles, knowing that 𝑀 =
20𝑘𝑔.𝑚𝑜𝑙−1 and 𝜌𝑏𝑓0 = 880𝑘𝑔.𝑚−3. 

Unlike other models that always predict a decrease in the 

kinematic viscosity of the nanofluid when volumetric 

concentration of nanoparticles increases, Figure 2 first predicts 

a decrease in the kinematic viscosity. Then, an increase from 

a certain volumetric concentration which depends on the 

nanoparticles diameter. 

 

 
 

Figure 2. Evolution of Kinematic viscosity for WS2-Oil 

nanofluid with volumetric concentration 

  

2.2 Macroscopic governing equations 

 

The nanofluid flow is assumed incompressible and viscous. 

The flow is conceived as laminar and two-dimensional. Fluid 

and solid flow at the same velocity assuming there is no slip 

between fluid and nanoparticles.  

The governing dimensionless equations are as follows: 

Continuity equation:  

 
𝜕𝑈

𝜕𝑋
+
𝜕𝑈

𝜕𝑌
= 0 (3) 

 

Momentum equations: 

 

𝜕𝑈

𝜕𝑡′
+ 𝑈.

𝜕𝑈

𝜕𝑋
+ 𝑉.

𝜕𝑈

𝜕𝑌
= −

𝜕𝑃

𝜕𝑋
+ 𝜈𝑑 (

𝜕2𝑈

𝜕𝑋2
+
𝜕2𝑈

𝜕𝑌2
) (4) 

 

𝜕𝑉

𝜕𝑡′
+ 𝑈.

𝜕𝑉

𝜕𝑋
+ 𝑉.

𝜕𝑉

𝜕𝑌
= −

𝜕𝑃

𝜕𝑌
+ 𝜈𝑑 (

𝜕2𝑉

𝜕𝑋2
+
𝜕2𝑉

𝜕𝑌2
) (5) 

 

where, 𝜈𝑑 is the dimensionless kinematic viscosity given by: 

 

𝜈𝑑 =
𝜇𝑛𝑓

𝜇𝑏𝑓

𝜌𝑏𝑓

𝜌𝑛𝑓

1

𝑅𝑒
 

=
1

(1 − 34.87(𝑑𝑝/𝑑𝑏𝑓)
−0.3𝜑1.03)

.
1

((1 − 𝜑) + 𝜑 𝜌𝑠 𝜌𝑏𝑓⁄ )

1

𝑅𝑒
 

 

𝑅𝑒 is the Reynolds number defined by: 

 

𝑅𝑒 =
𝑈0. 𝐻

𝜈𝑏𝑓
 

 

𝑋, 𝑌, 𝑈, 𝑉, 𝑃, 𝑡′  are the dimensionless parameters defining 

as: 

𝑋 = 𝑥/𝐻 , 𝑌 = 𝑦/𝐻 , 𝑈 = 𝑢/𝑈0 , 𝑉 = 𝑣/𝑈0 , 𝑡′ = 𝑡. 𝑈0/𝐻 

and 𝑃 = 𝑝. 𝜌𝑛𝑓/𝑈0
2 . Where 𝑥  and 𝑦  represent the Cartesian 

coordinates,  𝑢  and 𝑣  are respectively, the horizontal and 
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vertical velocity and 𝑝 is the pressure. 

The considered parameters are the nanoparticles 

concentration 𝜑 , the flow Reynolds number 𝑅𝑒  and the 

nanoparticle diameter 𝑑. 

The macroscopic boundary conditions are: 𝑢(𝑥, 𝑜) =
𝑈0, 𝑢(𝑥, 𝐻) = 𝑈0 and 𝑢(0, 𝑦) = 𝑢(0, 𝐿) = 0.  

 

2.3 Friction factor  

 

The local skin friction at bottom surface (x=0) is defined by: 

 

𝐶𝑓 =
𝐹𝑑

1
2
𝜌𝑛𝑓 . 𝑈𝑟

2
 

 

where, 𝑈𝑟  is a reference velocity taken equal to 𝑈0 and 𝐹𝑑 is 

the local skin friction drag at the bottom surface expressed as:  

 

𝐹𝑑(𝑥) = −𝜇𝑛𝑓
𝜕𝑢𝑥
𝜕𝑦

(𝑥, 0) 

 

The local skin friction value at bottom surface is therefore 

expressed as: 

 

𝐶𝑓(𝑋) =
−2

𝑅𝑒
𝐹(𝜑, 𝑑)

1

(1 − 𝜑 + 𝜑
𝜌𝑠
𝜌𝑓
)

𝜕𝑈𝑋
𝜕𝑌

(𝑋, 0) (6) 

 

where, 𝑅𝑒  is Reynolds number of base fluid (𝜑 = 0)  and 

𝐹(𝜑, 𝑑) is function of 𝜑 and 𝑑 defined as:   

 

𝐹(𝜑, 𝑑) =
1

1 − 34.87(𝑑/𝑑𝑏𝑓)
−0.3𝜑1.03

 

 

The local skin friction 𝐶𝑓  is therefore a function of the 

following parameters: Reynolds number 𝑅𝑒 , volumetric 

concentration of nanoparticles 𝜑, nanoparticle diameter 𝑑 and 

horizontal velocity gradients at the bottom surface. 

The value of average friction factor at the bottom surface is 

calculated as: 

 

𝐶𝐹 =
1

𝐿
∫𝐶𝑓(𝑥)𝑑𝑥

𝐿

0

 

 

The friction reduction 𝑟𝑎𝑡𝑒 𝛿 is calculated as:  

 

𝛿% = |1 −
𝐶𝐹(𝜑)

𝐶𝐹(𝜑 = 0)
| × 100 

 

where, 𝐶𝐹(𝜑 = 0)  and 𝐶𝐹(𝜑) are respectively, the average 

friction factors of the base fluid and nanofluid flows. 

 

 

3. NUMERICAL METHOD  

 

3.1 Lattice Boltzmann method  

 

The lattice Boltzmann method uses a mesoscopic approach 

for modeling flows. In the context of the Boltzmann equation, 

we use the particle distribution function 𝑓 which governs the 

probability of existence of a large number of particles at a 

point x and at time t in the mesoscopic system. In lattice 

Boltzmann method, the fluid flow is described using two 

processes: The first phase is the streaming where there is a 

transfer of a group of particles on the lattice link according to 

the directional velocities by which the velocity space is 

described. The second phase is collision where particles on the 

same lattice redistribute and relax into their quasi-equilibrium. 

The application of lattice Boltzmann method uses two main 

collision models: The first model, in which all moments have 

the same relaxation rate, is called single relaxation time (SRT) 

or model (BGK) (Bhatnagar, Gross and Krook) [18]. It is 

considered the most popular model because of its simplicity. 

Despite this, the BGK model presents deficiencies in terms of 

numerical instability and imprecision in the implementation of 

boundary conditions [19]. In addition to the difficulties 

encountered in reaching high Reynolds number flows. The 

lattice Boltzmann equation model (SRT) is written as: 

 

𝑓𝑖(𝑥 + 𝑐𝑖∆𝑡, 𝑡 + ∆𝑡) − 𝑓𝑖(𝑥, 𝑡) = Ω𝑖  

= −
1

𝜏
(𝑓𝑖(𝑥, 𝑡) − 𝑓𝑖

𝑒𝑞(𝑥, 𝑡)) 
(7) 

 

where, 𝑓𝑖 is the particle distribution function with velocity 𝑐𝑖 
at lattice node, 𝑓𝑖

𝑒𝑞
 is the equilibrium distribution function, Ω𝑖  

is the discrete collision operator, and 𝜏 is the dimensionless 

relaxation time. 

The second model, called Lattice Boltzmann method with 

multi- relaxation time (MRT-LBM) introduced in reference 

[20], is more stable than the BGK because the different 

relaxation times can be individually adjusted to obtain optimal 

stability [21]. 

 

3.2 Multi-relaxation-time lattice Boltzmann model for flow 

field  

 

In the numerical implementation of the MRT Lattice 

Boltzmann model for the flow field, the collision step is 

operated in the moment space while the streaming step occurs 

in the velocity space. As in references [21, 22], the MRT-LB 

equation is expressed as follows: 

 

𝑓𝑖(𝑥 + 𝑐𝑖∆𝑡, 𝑡 + ∆𝑡) − 𝑓𝑖(𝑥, 𝑡) 

= 𝑀−1𝑆(𝑚𝑖(𝑥, 𝑡) − 𝑚𝑒𝑞) 
(8) 

 

where, S is the relaxation matrix and M is the orthogonal 

transformation matrix constricted from velocity. m and 𝑚𝑒𝑞  

are vectors of moments. 

In this work, the 𝐷2𝑄9 model is used (Figure 3).  

 

 
 

Figure 3. Discrete velocity vectors for 𝐷2𝑄9 model 

 

The nine discrete velocities 𝒄𝒊 {i=1, 2, ..., 9} are given by: 

1442



 

𝒄𝑖 =

{
 

 
(0,0)                                   𝑖 = 1

[𝑐𝑜𝑠(𝑖 − 1)
𝜋

2
, 𝑠𝑖𝑛(𝑖 − 1)

𝜋

2
] 𝑐        𝑖 = 2,3,4,5

[𝑐𝑜𝑠(2𝑖 − 9)
𝜋

4
, 𝑠𝑖𝑛(2𝑖 − 9)

𝜋

4
] 𝑐√2  𝑖 = 6,7,8,9

 

 

where the lattice speed 𝑐  is calculated as 𝑐 =
δx 

δt
, 𝛿𝑥 and 𝛿𝑡 

are respectively, the lattice spacing and time step ( 𝛿𝑡 =
𝛿𝑥 =1). 

The collision process will occur in terms of momentum 

rather than velocity. Therefore, the distribution functions 

based on velocity must be translated into the space of moments. 

This transformation is achieved through the matrix M, 

constructed via the Gram-Schmidt procedure [23]. In 𝐷2𝑄9 

lattice (two-dimensional nine-velocity), the matrix M can be 

written as: 

 

𝑀 =

(

 
 
 
 
 
 

1 1 1 1 1 1 1 1 1
−4 −1 −1 −1 −1 2 2 2 2
4 −2 −2 −2 −2 1 1 1 1
0 1 0 −1 0 1 −1 −1 1
0 −2 0 2 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1
0 0 −2 0 2 1 1 −1 −1
0 1 −1 1 −1 0 0 0 0
0 0 0 0 0 1 −1 1 −1)

 
 
 
 
 
 

 

 

The density distribution function 𝑓𝑖 can be projected on to 

the moment space with 𝑚 = 𝑓.𝑀 and 𝑓 = 𝑀−1. 𝑚. 

The nine components of the moment vector m are  

 

𝑚 = (𝑚1, 𝑚2, 𝑚3, 𝑚4, 𝑚5, 𝑚6, 𝑚7, 𝑚8, 𝑚9)
𝑇 

𝑚 = (𝜌, 𝑒, 𝜖, 𝑗𝑥 , 𝑞𝑥, 𝑗𝑦 , 𝑞𝑦 , 𝑝𝑥𝑥 , 𝑝𝑥𝑦)
𝑇 

(9) 

 

where, 𝜌 is the density, e is related to energy, 𝜖 is related to 

energy square, 𝑗𝑥 = 𝜌𝑢𝑥  and 𝑗𝑦 = 𝜌𝑢𝑦 are respectively the 

components of the momentum flux components along x and y 

directions, 𝑞𝑥 and 𝑞𝑦 correspond to the x and y components of 

the energy flux, 𝑝𝑥𝑥 and 𝑝𝑥𝑦  correspond to the symmetric and 

traceless components of the strain-rate tensor. 

In the spatial transformation of velocity into moment, the 

only hydrodynamic moments that are locally conserved are the 

scalar density 𝜌 and the moment 𝑗 = (𝑗𝑥, 𝑗𝑦), since all others 

are non-conserved kinetics moments. 

The equilibrium moments 𝑚𝑒𝑞  are given by: 

 

𝑚

{
 
 
 
 
 
 

 
 
 
 
 
 

𝑚1
𝑒𝑞
= 𝜌                    

𝑚2
𝑒𝑞
= 𝑒 = −2𝜌 + 3(𝑗𝑥

2 + 𝑗𝑦
2)

𝑚3
𝑒𝑞
= 𝜖 = 𝜌 − 3(𝑗𝑥

2 + 𝑗𝑦
2)   

𝑚4
𝑒𝑞
= 𝑗𝑥                     

𝑚5
𝑒𝑞
= 𝑞𝑥 = −𝑗𝑥              

𝑚6
𝑒𝑞
= 𝑗𝑦                    

𝑚7
𝑒𝑞
= 𝑞𝑦 = −𝑗𝑦             

𝑚8
𝑒𝑞
= 𝑝𝑥𝑥 = (𝑗𝑥

2 − 𝑗𝑦
2)       

𝑚9
𝑒𝑞
= 𝑝𝑥𝑦 = 𝑗𝑥 . 𝑗𝑦            

 (10) 

 

The collision matrix S, is a diagonal matrix containing the 

relaxation coefficients associated with each of the moments. 

The relaxation matrix has the following form: 

 

𝑆 = 𝑑𝑖𝑎𝑔(𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠5, 𝑠6, 𝑠7, 𝑠8, 𝑠9) 
 

where, the 𝑆𝐾  {𝑘=1, 2, ..., 9} are the relaxation parameters 

determined by a linear stability analysis [18]  (𝑆𝑘 ∈ ]0, 2[) . 

The coefficients 𝑠8 and 𝑠9 are related to the viscosity in lattice 

units 𝜈𝐿𝐵 by the relation: 

 

𝑠8 = 𝑠9 =
2

1 + 6𝜈𝐿𝐵
 

 

The other coefficients were chosen as follows: 𝑠1 = 𝑠4 =
𝑠6 = 1; 𝑠2 = 𝑠3 = 1.4; 𝑠5 = 𝑠7 = 1.2. 

From the moments of the distribution functions, the 

macroscopic fluid quantities, density ρ and velocity �⃗�  are 

obtained as follows: 

 

𝜌 =∑𝑓𝑖

9

𝑖=1

 (11) 

 

𝜌�⃗� =∑𝑐 𝑖

9

𝑖=1

. 𝑓𝑖 (12) 

 

3.3 Boundary conditions 

  

The unknown distribution functions pointing to the fluid 

zone at the boundaries nodes must be specified. For the right 

and left fixed vertical walls, a bounce-back boundary is used. 

After collision, the incoming boundary populations are equal 

to the out-going populations. For example, for the left 

boundary, the following conditions are imposed: 

 

{

𝑓6 = 𝑓8
𝑓2 = 𝑓4
𝑓9 = 𝑓7

 

 

For the top and bottom moving walls with a given speed, 

The Zou-He boundary conditions were applied. For example, 

for the top boundary, unknown density distribution functions 

can be determined by the following conditions: 

 

{
 
 

 
 

𝑓5 = 𝑓3                     

𝑓8 = 𝑓6 +
1

2
(𝑓2 − 𝑓4) −

1

2
𝜌𝑈0

𝑓9 = 𝑓7 +
1

2
(𝑓4 − 𝑓2) +

1

2
𝜌𝑈0

 

 

3.4 Numerical procedure 

 

The procedure for numerical resolution of the lattice 

Boltzmann equation includes the collision and streaming steps, 

application of boundary conditions, calculation of particle 

distribution function and finally calculation of macroscopic 

variables. The algorithm of resolution is specified as below: 

1. Discretization of physical domain and calculation of the 

simulation parameters.  

2. Initialization of distribution functions to their equilibrium 

value. 

3. Collision step:  

 

𝑓𝑖(𝑥 , 𝑡 + 1) = 𝑓𝑖(𝑥 , 𝑡) − 𝑴
−1𝑺[𝑚𝒊(𝑥 , 𝑡) − 𝑚𝑖

𝑒𝑞(𝑥 , 𝑡)] 

(𝛿𝑡 = 𝛿𝑥 = 1) 
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4. Application of boundary conditions;  

5. Streaming step: 𝑓𝑖(𝑥 + 𝑐𝑖⃗⃗ , 𝑡 + 1) = 𝑓𝑖(𝑥 , 𝑡 + 1); 
6. Calculation of macroscopic variables (Eq. (11) and Eq. 

(12)); 

7. Check the convergence criterion - if convergence reached, 

then finish the calculations - if not, repeat from 3 where 

convergence is considered reached if the following criterion is 

satisfied: 

 

|√(𝑢𝑥
2 + 𝑢𝑦

2)
𝑛+1

− √(𝑢𝑥
2 + 𝑢𝑦

2)
𝑛
|

√(𝑢𝑥
2 + 𝑢𝑦

2)
𝑛+1

≤ 10−8 

 

 

4. RESULTS 

 

4.1 Grid independency study and code validation 

 

A MATLAB code has been developed to run the simulation. 

To terminate the numerical simulation, a convergence 

criterion of 10−8 for velocity has been used. The present code 

was tested for grid independence by calculating the average 

friction factor at bottom surface. We choose a regular mesh of 

size 𝑁𝑥 × 𝑁𝑦. Different mesh combinations were explored for 

the case Re=100 and 𝜑=0. The result given in Table 2 showed 

difference is less than 1% betwen the studied grid size 

401×100 and 441× 110. The grid size 401 ×100 ensures a 

grid independent solution for the studied case. 

 

Table 2. Grid independence study for Re=100 and 𝜑 = 0 

 
Grid size CF ∆ 

241×60 0.477985 - 

321×80 0.493287 3.2% 

401×100 0.499276 1.2% 

441×110 0.500043 0.15% 

 

∆= 100 ×
𝐶𝐹𝑛+1 − 𝐶𝐹𝑛

𝐶𝐹𝑛
 

 

A similar study shows that grid size 441×120 provide a grid 

independent solution for Re=500. 

 

 
 

Figure 4. Horizontal and vertical velocities along their 

respective centerline of the cavity flow at Re=400 

The code performance is tested in the problem of the cavity 

doubly driven by upper and lower covers in case of opposite 

movements. It is a square cavity where top and bottom walls 

are moving with uniform velocity in the opposite direction. In 

Figure 4, the developed velocity profiles were compared with 

the results presented in reference [24]. A good agreement is 

observed as shown in this figure. 

 

4.2 Effect of nanoparticle diameter 

 

The various research works have attributed the exceptional 

properties of friction reduction by lubrication nanoadditives to 

intermolecular interactions and in particular to the 

modification of the viscosity. The local skin friction, being 

proportional to the viscosity, the average friction factor will 

practically follow the kinematic viscosity evolution. 

 

 

 
 

Figure 5. Average friction factor with volumetric 

concentration of nanoparticles (a) Re=100 and (b) Re=500 

 

Figure 5 represents the evolution of the average friction 

factor as a function of the volumetric concentration of 

nanoparticles for different diameters. This figure shows that 

evolution takes place in two phases: First a phase of decrease 

in CF which will take place for low values of the volumetric 

concentration. Then, a second phase where the average friction 

factor CF begins to increase from a certain value of volumetric 

concentration of nanoparticles which depends on the diameter 

of the nanoparticles. The figure, also, shows that low values of 

average friction factor are always obtained for large diameter 

nanoparticles. To verify their reliability, these results are 
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compared to the experimental results of reference [25] in 

which the tribological properties of nanoparticles of different 

sizes were tested. In this tribological test, silica nanoparticles 

with 100nm diameter performed better than silica 

nanoparticles with 20nm diameter. It could be concluded from 

the result of this experience that, with the increase of 

nanoparticle size, the average coefficient of friction CF 

decrease. 

 

 
 

Figure 6. Average friction factor with nanoparticles diameter 

at Re=500 

 

In Figure 6, the average friction factor evolutions for two 

values of the volumetric concentration of nanoparticles (φ=2% 

and φ=4%) are compared. This figure shows that by increasing 

the nanoparticles diameter, the average friction coefficient CF 

decreases and that the values of CF for the volumetric 

concentration φ=2% are always lower than those obtained for 

φ=4%. This trend is reversed above a diameter value of around 

180nm. 

Figure 7 represents the variations of friction reduction rate 

with the nanoparticles volumetric concentration of 

nanoparticles for two values of the nanoparticles diameter. The 

best reduction rate is always obtained with nanoparticles of 

large diameter = 200nm. The maximum reduction is obtained 

for volumetric concentration of nanoparticles φ=3%. The 

maximum reduction rate is 𝜏𝑚𝑎𝑥=4%. 

 

 
 

Figure 7. Friction reduction rate with volumetric 

concentration of nanoparticles at Re=500 

5. CONCLUSION 

 

In the present work, an incompressible D2Q9MRT model is 

used to simulate the flow of the 5W30 Oil-WS2 nanofluid 

confined by two moving surfaces. The effects of nanoparticles 

diameter on friction reduction have been studied. The obtained 

result has shown that the use of large diameter nanoparticles 

with a low volumetric fraction leads to the best friction 

reduction rate. It was found that the predict results agreed well 

with the published experimental results. 
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NOMENCLATURE  

 

𝑅𝑒  Reynolds number 

𝑢,𝑣 components of velocity (𝑚. 𝑠−1) 

U,V dimensionless of velocity component 

𝑥,𝑦 Cartesian coordinates (𝑚) 

𝑋,𝑌 dimensionless of Cartesian coordinates 

𝑝  pressure( 𝐾𝑔.𝑚−1𝑠−2) 

L length of the cavity (𝑚) 

H cavity height (𝑚) 

𝑓𝑖  density distribution function 

𝑓𝑖
𝑒𝑞

  equilibrium distribution function 

𝑐𝑖  discrete particle velocity 

𝑈0  uniform velocity of moving plates (𝑚. 𝑠−1) 

𝐶𝑓  local skin friction 

MRT  multiple relaxation time 

LB lattice Boltzmann 

𝐶𝐹  average friction factor 

𝑑  nanoparticle diameter (𝑚) 

 

Greek symbols 

 

𝜇𝑛𝑓  dynamic viscosity of nanofluid (𝐾𝑔.𝑚−1. 𝑠−1) 

𝜇𝑓  dynamic viscosity of base fluid (𝐾𝑔.𝑚−1. 𝑠−1) 

𝜌𝑛𝑓  effective density of nanofluid ( 𝐾𝑔.𝑚−1. 𝑠−1) 

𝜌𝑏𝑓  base fluid density (𝐾𝑔.𝑚−3) 

𝜌𝑠  nanoparticles density (𝐾𝑔.𝑚−3) 

𝜑  nanofluid volumetric concentration 

𝜈𝐿𝐵  viscosity in lattice units 

𝜏  dimensionless relaxation time 
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