
Optimization of the Pressure Drop Prediction Model of Wellbore Multiphase Flow Based on 

Simultaneous Perturbation Stochastic Approximation 

Donghui Zhou1,2,3*, Ruiquan Liao1,2,3, Wei Wang4, Bin Ma4, Wei Luo1,2,3 

1 College of Petroleum Engineering, Yangtze University, Wuhan 430100, China 
2 Laboratory of Multiphase Pipe Flow, Gas Lift Test Base of CNPC, Wuhan 430100, China 
3 Key Laboratory of Drilling and Production Engineering for Oil and Gas, Hubei Province, Wuhan 430100, China 
4 Gas Lift Test Base of CNPC, Shanshan 838202, China 

Corresponding Author Email: 202071256@yangtzeu.edu.cn

https://doi.org/10.18280/ijht.400606 ABSTRACT 

Received: 3 September 2022 

Accepted: 25 October 2022 

In the process of gas lift design and condition diagnosis, the accuracy and timeliness of 

wellbore multiphase flow model prediction results are the basis for all subsequent work. 

However, for the commonly used wellbore multiphase flow pressure drop prediction 

models, there is a big deviation between the predicted value and the measured one, and the 

optimization based on the measured data is time-consuming, and it is difficult to obtain the 

optimal parameters of the model. Therefore, based on the well bore pressure distribution 

data measured quickly in area R of an oil field in Kazakhstan, a better prediction model of 

multiphase flow in the well bore was selected at first. Then, the simultaneous perturbation 

stochastic approximation (SPSA) algorithm was incorporated in the wellbore multiphase 

flow model to optimize the liquid holdup, which is the leading factor in the model. After 

repeated single well optimization and greedy selection, the optimal parameters suitable for 

the whole block were obtained. The example shows that the optimization speed is 10 times 

faster than that of Particle Swarm Optimization (PSO). After that, the optimized model was 

used to predict the wellbore pressure distribution, and it was found that the relative error 

between the measured value and the predicted one was less than 15%.  
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1. INTRODUCTION

In the artificial lifting stage of an oil/gas field development, 

the prediction of the pressure gradient of multiphase pipe flow 

in a wellbore plays an extremely important role. Accurate 

prediction of wellbore pressure distribution is the basis for the 

gas distribution of gas lift valves, diagnosis of gas lift 

conditions and gas distribution optimization of gas lift pipe 

network. Since the 1950s, multiphase pipe flow has developed 

rapidly from theory to practical methods, and along with this, 

a number of wellbore pressure drop prediction models have 

been established. By the principle of model derivation, the 

models can be divided into semi-empirical models, empirical 

models [1-11] and mechanism models. However, different 

models have different levels of adaptability, so the selection 

and optimization of the wellbore multiphase flow model is the 

basis for all work. In the field application, the first step is to 

select a relatively good model, and then to optimize the model 

appropriately. When there are no sufficient measured wellbore 

pressure distribution data and only a limited number of wells, 

it does not take much time to manually revise the model 

through experiments. With the continuous development of 

equipment and technologies, the amount of measured data is 

constantly accumulating, so it is possible to optimize the 

model by using the measured data in the field. However, the 

traditional manual optimization of the model can no longer 

meet the actual needs with such large amount of measurement 

data, as it takes a lot of time, and what is more, it is not easy 

to find the optimal model. Despite this, it would be a good 

choice to optimize the pressure distribution prediction model 

of wellbore multiphase flow by using the optimization 

algorithm.  

In the petroleum industry, the SPSA algorithm is mainly 

used to optimize the production of oil and gas reservoirs. Zhao 

et al. [12] improved the SPSA algorithm by introducing the 

variable covariance matrix, and put forward a GSPSA 

algorithm with simple calculation and fast convergence speed, 

which achieved good results in reservoir production 

optimization. Zhang et al. [13] used the improved SPSA 

algorithm to optimize the polymer flooding, and based on this, 

determined the total dosage of polymer and surfactant and the 

optimal injection time. In other fields [14], the application of 

the SPSA algorithm has also achieved good results. 

The optimization of the multi-phase wellbore pressure drop 

prediction model is multidimensional, and the model requires 

multiple iterations in the process of predicting wellbore 

pressure. For this reason, it will take the traditional manual 

method a lot of time to optimize the model, making it no longer 

able to meet the current optimization requirements considering 

the massive data. The gradient-free optimization algorithms, 

such as particle swarm optimization, cannot meet the 

requirement of fast convergence. The SPSA algorithm uses 

two objective function estimates to determine the direction of 

the gradient without having to consider the dimension, which 

can speed up the convergence. At the same time, judging from 

its application effects in other fields, its optimized result can 

meet the actual engineering needs. However, there has been 

little research either at home or abroad on optimizing the 
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wellbore multiphase flow model based on field measured data 

with the aid of an optimization algorithm. To this end, this 

paper made such an attempt. It used the SPAS optimization 

algorithm to optimize six parameters that affect the calculation 

accuracy of liquid holdup. Finally, it used the greedy algorithm 

to select the optimal parameters suitable for the block to 

optimize the wellbore pressure prediction model. This study 

provided a faster and more accurate way of optimization for 

gas-lift design, gas-lift condition diagnosis and other fields 

that required prediction of the pressure drop of wellbore 

multiphase flow. 

 

 

2. OPTIMIZATION OF MULTIPHASE FLOW MODEL 

IN WELLBORE 

 

Most wells were designed with a non-optimized model in 

the R area of an oil field in Kazakhstan, which leads to 

unreasonable depths of the gas lift valves, making it 

impossible to reach the designed output or gas injection depth. 

Due to the large number of gas-lift wells in this block, it is not 

feasible to select a wellbore multiphase flow for each well. 

Therefore, it is urgent to work out a model with small 

relatively errors for all wells in this block. At present, the 

commonly used methods for predicting the pressure gradient 

of wellbore multiphase flow include [1-9]. The adaptability of 

such methods is different due to the different methods and 

experimental conditions. Therefore, it is often necessary to 

find an optimal model to meet the requirements in the actual 

use process. In order to choose a relatively good model for this 

block, firstly, according to the measured physical parameters 

of all sample wells, different models are adopted to predict the 

pressure gradient. Then, the average of the relative errors 

between the measured values of pressure gradient and the 

predicted ones in all sample wells is used to evaluate the 

different models, so that the optimal pressure gradient 

prediction model suitable for this block can be identified. 
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Figure 1. Comparison of the mean variances of different 

models 

 

In practical application, it is necessary to select the optimal 

one from different models. Through comparison and screening, 

the model with better adaptability to the actual situation can be 

found. As can be seen from Figure 1, among the different 

pressure gradient prediction models, the Mukherjee-Brill 

model achieved the smallest relative error (46%) for all sample 

wells. On this basis, it is easier to obtain the optimal model 

suitable for the current block through optimization. The 

Mukherjee-Brill model can also be used to calculate the liquid 

holdup [2]. Considering that the liquid holdup model obtained 

by fitting of experimental data is not necessarily in line with 

the actual situation of the current block, optimizing the liquid 

holdup would be a better practice. For this reason, this method 

was chosen as the basic model for optimization. 

 

 

3. SPSA ALGORITHM AND MODEL OPTIMIZATION 

 

3.1 Basic principle of the SPSA algorithm 

 

Particle Swarm Optimization (PSO) originated from the 

simulation of birds’ foraging process in a simple social system. 

In the PSO algorithm, each generation produces a new 

individual through cooperation and competition among 

individuals. Here each member is called a “particle”, which 

represents a potential feasible solution, and the location of the 

food is considered to be the global optimal solution. PSO has 

some disadvantages, such as low precision and easy 

divergence. If the parameters such as acceleration coefficient 

and maximum speed are too large, the particle swarm may 

miss the optimal solution and the algorithm will not converge. 

However, in the case of convergence, all the particles tend to 

be the same (lose their diversity) as they fly towards the 

optimal solution, which makes the convergence speed in the 

late stage significantly slow down. When the algorithm 

converges to a certain accuracy, the optimization will not be 

able to continue, which makes the accuracy relatively low [16]. 

The SPSA algorithm is improved by Spall [10, 11] on the basis 

of the Kiefer-Wol-forwitz finite difference gradient stochastic 

approximation algorithm (SA). Compared with the SA 

algorithm, for a P-dimensional problem, it needs 2P estimates 

of objective functions in each gradient approximation, while 

the SPSA algorithm only needs two estimates of objective 

functions to determine the gradient directions of all variables, 

regardless of the vector dimension. This method has the 

advantages of fast convergence speed and high precision when 

solving high-dimensional problems and carrying out large-

scale stochastic system optimization.  

The SPSA algorithm calculates the approximate gradient 

directions of all variables by slightly disturbing all variables at 

the same time, as shown below. 

 

𝒈̂𝑘(𝒖𝑘) =
𝐽(𝒖𝒌 + 𝜀𝑘𝜹𝑘) − 𝐽(𝒖𝑘 − 𝜀𝑘𝜹𝑘)

𝟐𝜀𝑘

[
 
 
 
 
𝜹𝑘,1

−1

𝜹𝑘,2
−1

⋮
𝜹𝑘,𝑁

−1 ]
 
 
 
 

=
𝐽(𝒖𝑘 + 𝜀𝑘𝒖𝑘) − 𝐽(𝒖𝑘 − 𝜀𝑘𝜹𝑘)

𝟐𝜀𝑘

× 𝜹𝑘
−1 

(1) 

 

where, 𝒖𝑘 is the optimal control vector corresponding to the 

k-th step; 𝜀𝑘 is the disturbance step; 𝜹𝑘  is an N-dimensional 

random disturbance vector, in which the elements 

𝜹𝑘,𝑖(1,2⋯𝑁)  obey the Gaussian distribution with the 

parameter (0,1). Since 𝜹𝑘,𝑖 is -1 or +1, and the expected value 

of 𝜹𝑘,𝑖 is 0, and 𝜹𝑘 = 𝜹𝑘
−1, the SPSA disturbance gradient can 

be further expressed as: 

 

𝒈̂𝑘(𝒖𝑘) =
𝐽(𝒖𝑘 + 𝜀𝑘𝜹𝑘) − 𝐽(𝒖𝑘 − 𝜀𝑘𝜹𝑘)

2𝜀𝑘

× 𝜹𝑘 (2) 

 

After the disturbance gradient is obtained, the control 

variables are iteratively solved. The variables updated after the 

k-th iteration are as follows:  

1398



 

𝒖𝑘+1 = 𝒖𝑘 + 𝑎𝑘𝒈̂𝑘(𝒖𝑘) (3) 

 

The specific steps are as follows:  

(1) Carry out initialization. Set the iterator initial value 𝑘 =
0, and select the initial estimate as 𝒖0 = (𝑢0,1 ⋯𝑢0,𝑝). 

(2) Generate the gain value 𝑎𝑘 and disturbance steps 𝑐𝑘 and 

𝛿𝑘 ; 𝑎𝑘 = 𝑎/(𝐴 + 𝑘 + 1)𝛼 , and 𝑐𝑘 = 𝑎/(𝑘 + 1)𝛾 , 

where (𝐴, 𝑎, 𝑐, 𝛼, 𝛾) are optional non-negative scalars.  

(3) Generate two measured values 𝐿(𝒖𝑘 ± 𝑐𝑘𝜹𝑘) with the 

disturbance strategy in the loss function;  

(4) Generate an estimate 𝒈̂𝑘(𝒖𝑘 ± 𝑐𝑘𝜹𝑘)  of the gradient 

function;  

(5) Calculate the new estimated value 𝒖𝑘+1 = 𝒖𝑘 + 𝑎𝑘𝒈̂𝑘;  

(6) If the stop condition is not met, then 𝑘 = 𝑘 + 1, and go 

to step 2 until the optimal solution is obtained. 

 

3.2 Model optimization 

 

The total pressure drop of gas-liquid two-phase flow 

consists of heavy pressure drop, frictional pressure drop and 

acceleration pressure drop, that is, 

 

−
𝑑𝑝

𝑑𝑧
= (

𝑑𝑝

𝑑𝑧
)
𝑔

+ (
𝑑𝑝

𝑑𝑧
)
𝑓

+ (
𝑑𝑝

𝑑𝑧
)

𝑎
 (4) 

 

where, 
𝑑𝑝

𝑑𝑧
 is the total pressure drop, MPa/m; (

𝑑𝑝

𝑑𝑍
)
𝑔

 the heavy 

pressure drop, MPa⁄m; (
𝑑𝑝

𝑑𝑍
)
𝑓

 the frictional pressure drop, 

MPa/m; and (
𝑑𝑝

𝑑𝑍
)

𝑎
 the acceleration pressure drop, MPa/m. 

In the wellbore multiphase flow model, the flow patterns 

can be divided into four types， including bubble flow, slug 

flow, annular flow and fog flow. The large pressure drop plays 

a dominant role in the bubble flow to annular flow stage, 

followed by the frictional pressure drop. However, the 

acceleration pressure drop is only significant in the case of fog 

flow. In this study, the gas-liquid ratio is between 100 and 

5000 m3/m3, which is a very low ratio, so the acceleration 

pressure drop is not considered here, and the total pressure 

drop consists of only heavy pressure drop and frictional 

pressure drop, specifically as follows: 

 

(
𝑑𝑝

𝑑𝑧
)
𝑔

= 𝜌𝑚𝑔𝑠𝑖𝑛𝜃 (5) 

 

(
𝑑𝑝

𝑑𝑧
)
𝑓

=
𝑓𝑚𝜌𝑚𝑣2

2𝐷
 (6) 

 

𝜌𝑚 = 𝜌𝑙𝐻𝑙 + 𝜌𝑔(1 − 𝐻𝑙) (7) 

 

where, 𝜌𝑚  is the density of the mixture; 𝑓𝑚  the friction 

coefficient of the gas-liquid two-phase mixture; and 𝐻𝑙  the 

liquid holdup. 

Under the low gas-liquid ratio, the gravity pressure drop is 

dominant, and the density 𝜌𝑚  of the mixture is used to 

calculate the gravity pressure drop and frictional pressure drop. 

Under a certain gas-liquid density, the density 𝜌𝑚  of the 

mixture is closely related to the liquid holdup 𝐻𝑙 . Therefore, 

in the optimization process of multiphase flow in a vertical 

wellbore, the liquid holdup is regarded as the optimization 

target. By re-fitting of the liquid holdup calculation formula, 

the wellbore pressure drop model is more accurate. In the 

Mukherjee-Brill model, the liquid holdup is calculated as 

follows [1, 2]:  

 

𝐻𝑙 = 𝑒𝑥𝑝 [(
𝑐1 + 𝑐2𝑠𝑖𝑛𝜃 +

𝑐3𝑠𝑖𝑛𝜃2 + 𝑐4𝑁𝑙
2)

𝑁𝑣𝑔
𝑐5

𝑁𝑣𝑙
𝑐6

] (8) 

 

Since the coefficient C is all fitted based on experimental 

results, it may not be suitable for the current oilfield block. 

Therefore, according to the measured data of each well in the 

current block, the coefficient C was re-fitted, to obtain a more 

accurate prediction model for wellbore multiphase flow 

pressure drop in the current block. In the fitting process of 

coefficient C by the SPSA algorithm, five parameters of liquid 

holdup are used as the initial parameters [1, 2], and the mean 

square error (MSE) as the objective function. The smaller the 

MSE, the higher the precision. At the same time, when MSE 

converges, the best correction parameters can be obtained.  

 

𝑚𝑖𝑛MSE(𝑐𝑘) =
1

𝑛
∑(𝑦̅𝑖 − 𝑦𝑖)

2

𝑛

𝑗=1

 (9) 

 

where, 𝑦̅𝑖is the measured value; 𝑦𝑖  the predicted value; and n 

the number of measuring points.  

In view of the problems existing in the SPSA algorithm, in 

order to obtain the optimal correction parameters for the whole 

block and avoid unsatisfactory optimization results caused by 

the local optimal solution of the algorithm, the single-well 

parameters were optimized for a number of times (at least 50 

times), and then several groups of parameters with a relative 

error of less than 15% between the predicted values and the 

measured ones were selected from the results obtained after 

repeated fitting. On this basis, according to the greedy 

principle, a combination of parameters suitable for this block 

was selected to avoid the impact of the local optimal solution 

as much as possible. 

 

3.3 Determination of optimal parameters 

 

In order to ensure that the optimal parameters can be 

screened out in the subsequent parameter screening process 

applicable to all wells in the current block, it is necessary to 

ensure that the optimization error of each single well is within 

a reasonable range (15%). This also ensures that the prediction 

errors of all wells in the process of parameter screening for the 

subsequent blocks are under control.  
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Figure 2. Relative errors of multiple single-well 

optimizations 

 

As can be seen from Figure 2, the relative error of MSE of 

1 is less than 0.08, that is, less than 8%. Statistics show that 
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the errors between the predicted values and the measured ones 

obtained from many wells and measuring points are around 

0.28 MPa. In 24 sample wells, the relative errors at all 

measuring points in 21 wells are less than 1%, that is, the errors 

at the measuring points in 87.5% of the wells are within 0.1 

MPa. On the basis of this error range, the optimal parameters 

suitable for all wells in the block were selected, to ensure that 

the errors of the wells calculated from the selected parameters 

would be within a reasonable range. 

There are six parameters involved in the optimization of 

liquid holdup 𝐻𝑙 . After the above-mentioned repeated single-

well optimization, there are many sets of reasonable 

parameters for single wells, but applying a certain set of 

parameters for a certain well to the whole block will result in 

big errors. In order to obtain a set of reasonable parameters 

suitable for the current block, firstly, the six parameters 

obtained from multiple optimizations performed on all the 

sample wells were processed respectively. In the processing of 

C1, the values of C1 obtained from multiple optimizations on 

all the wells were sorted from large to small, and the set with 

the smallest MSE was selected from the sorted parameters, 

that is, the red curve shown in Figure 3(a), which is the best 

set for the 24 wells in the block, fluctuating within a certain 

numerical range. The remaining five parameters are processed 

in the same way.  

In the screening process of the six parameters applicable to 

this block, it is impossible to obtain them all at the same time 

due to multiple optimizations. Therefore, these six parameters 

were selected according to the greedy principle. Moreover, in 

the selection process of the optimal parameters by the greedy 

lgorithm, due to factors such as different physical parameters 

of single wells, noise of measured data, and local convergence  

 

of the optimization algorithm, etc., if C1 is set at a single value, 

there may be no corresponding optimal correction coefficient 

in the selection process of C1-C6. To solve this problem, as 

shown in Figure 3(b), C1 values taken from both sides of a 

certain range were regarded as the optimal set of C1 values, 

and the set with the smallest MSE with respect to the above 

coefficient C1 as the center. The principle for determining the 

range is to ensure that at least one value can be obtained for 

the next correction coefficient. According to the greedy 

principle, other parameters were obtained in the same manner. 

The steps of how to screen all the coefficients are shown below. 

(1) Sort the coefficients C1-C6 obtained through multiple 

optimizations on different wells in descending order 

respectively;  

(2) Calculate the MSEs of all single optimization results for 

different coefficients of all the sample wells;  

(3) Take a set of coefficient values with the smallest MSE 

as the center, select the values from both sides within a 

certain range of MSE, as the optimal result series for a 

certain correction coefficient.  

(4) According to the greedy principle, starting from C1, 

select all the coefficients from C1 to C6 successively. 

Make sure that one or more corresponding coefficient 

combinations can be selected for each well. 

Through the above screening, a set of optimal parameter 

series of C1-C6 suitable for the current block can be obtained, 

and each parameter contains 24 parameters suitable for all 

wells. The average value of 24 parameters is taken as the 

optimal value, that is to say, the optimal set of the six 

parameters is obtained. After screening and optimization, the 

optimal coefficient combination is as follows: C1 =-032, C2 =-

0.060, C3 = 0.077, C4 = 2.36, C5 = 0.378, and C6 = 0.155.  
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Figure 3. (a) Statistical results of coefficient C1 after multiple optimizations on all the wells. (b) MSE of coefficient C1 after 

multiple optimizations 
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3.4 Verification and analysis 

 

Considering that the production parameters of different 

wells vary greatly even in the same block, with the changes of 

production parameters, the non-optimized multiphase flow 

model may often suffer from very large prediction errors. In 

this case, whether the model can well adapt to the great 

changes in the production parameters of the block is the 

criterion for evaluating the robustness of the model. In order 

to test the applicability of the optimized model to the 

corresponding block and strata, five wells were randomly 

selected in the same block and strata at first, and wellbore 

pressure gradient tests were carried out on the selected wells 

to test the applicability and accuracy of the model. Meanwhile, 

the production parameters of the selected five wells were quite 

different. After several rounds of screening, the well depths of 

the selected five wells ranged between 3027m-3515m, the 

maximum wellhead pressure was 2.78 MPa, the minimum 

wellhead pressure 1.53 MPa, and the measured bottom hole 

pressure between 4.5 MPa -10 MPa. Accordingly, the gas-

liquid ratio, which has great impact on the accuracy of the 

multiphase flow model in the wellbore, was between 200 and 

5000 m3/m3. The optimization speed was also considered. 

Since the traditional method is manual and inefficient, it was 

not considered in this study. The effectiveness of the algorithm 

was verified mainly through comparison of the optimization 

speeds of SPSA and PSO [15]. 
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Figure 4. (a) Comparison of running time between PSO and SPSA; (b)-(f) Model accuracy verification; (g) Maximum and 

minimum relative errors 

 

In order to verify the efficiency of SPSA in the process of 

multiphase flow optimization, the SPSA and PSO algorithms 

were optimized 18 times each, and the average optimization 

time of multiple optimizations was taken as the optimization 

time of the algorithm, provided that the convergence 

conditions and other hardware conditions were the same. As 

shown in Figure 4 (a), the average convergence time of PSO 

was 34,000 ms, while that of SPSA 3400 ms, which was about 

1/10 of the former. So when there is massive amount of 

measured data, the optimization efficiency can be increased.  

In the process of gas lift design in area R of an oilfield in 

Kazakhstan, the relative errors in the prediction of the 

wellbore multiphase flow model should be no more than 15%, 

based on the field experience of multi-well gas lift design. 

When applied to gas lift design, the relative errors of the 

predicted values were within the desired range, and the design 

results could meet the actual needs and helped achieve a 

reasonable gas injection depth and high lifting efficiency. In 
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order to ensure the properness of the verification results, four 

wells other than the sample ones were selected as the 

verification set, and the accuracy of the optimized model was 

verified by comparison of the prediction results obtained from 

the pre-optimized model and the optimized model and the 

measured ones.  

As shown in Figures 4(b)-(f), regarding the prediction 

results of the Mukherjee-Brill model before optimization, only 

those obtained at the first three measuring points in Figure 4(d) 

and Figure 4(f) had an error of less than 15%. In Figure 4(d), 

the relative error at the fourth measuring point was not desired, 

and the predicted value was smaller than the measured one. 

The gas-lift valve designed based on this result will have a 

greater depth. The results obtained at the measuring points 

below 1000m in the well shown in Figure 4(b), (c) and (e) did 

not meet the precision requirements. Moreover, the predicted 

value at each measuring point was generally too large. 

Applying this result to the gas lift design will lead to an 

excessively small depth of a gas lift valve, which will result in 

an increase in the number of gas lift valves, and thus increase 

in cost and difficulty of operation. At the same time, it will 

also affect the lifting efficiency and make the output unable to 

meet the design requirement.  

As shown in Figure 4(g), the results obtained from the 

optimized model all met the requirement that the relative error 

should be less than 15%. The maximum relative error of the 

four wells was 7.13%, with the predicted value being 0.158 

MPa higher than the measured one, and the minimum 

relatively error was 0.01%, with the predicted value being 

0.0003 MPa lower than the measured one. Gas lift design and 

gas lift condition diagnosis based on such predicted values can 

meet the prediction accuracy requirement for the multiphase 

flow model. Therefore, the SPSA algorithm can improve the 

efficiency, meet the accuracy requirement, and provide a fast 

and effective optimization solution for the field application.  

 

 

4. CONCLUSIONS 

 

(1) The optimization of the wellbore multiphase flow model 

based on the SPSA algorithm was studied in this paper. By 

optimizing the main influencing factors in the model, the 

efficient optimization of the model was realized. In 

practical application, it is able to meet the accuracy 

requirement of less than 15% for relative errors, which 

provides a feasible way for solving the optimization of the 

model based on massive measured data. 

(2) The results show that the SPSA optimization algorithm has 

higher optimization efficiency than the traditional manual 

method and the PSO algorithm. Its optimization speed is 

about 10 times faster than that of the PSO algorithm, which 

can effectively ensure the timeliness of gas lift diagnosis 

and design.  

(3) Through multiple optimizations and with the aid of the 

greedy algorithm in the selection of the optimal parameters 

for a block, the local convergence of SPSA algorithm can 

be effectively reduced, which makes the optimization 

result satisfactory. 
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NOMENCLATURE 

 

SPSA 
Simultaneous Perturbation Stochastic 

Approximation 

PSO Particle Swarm Optimization 

SA Stochastic Approximation 

𝒈̂𝑘 Disturbance gradient 

𝒖𝑘 

 

Optimal control vector corresponding to the 

k-th step 

𝜀𝑘 Disturbance step 

𝜹𝑘 N-dimensional random disturbance vector 

𝑎𝑘 Gain value 

𝑐𝑘 Disturbance steps 

𝑑𝑝 𝑑𝑧⁄  Total pressure drop, MPa/m 

(𝑑𝑝 𝑑𝑧⁄ )𝑔 Heavy pressure drop, MPa⁄m 

(𝑑𝑝 𝑑𝑧⁄ )𝑓 Frictional pressure drop, MPa/m 

(𝑑𝑝 𝑑𝑧⁄ )𝑎 Acceleration pressure drop, MPa/m 

𝑓𝑚 
Friction coefficient of the gas-liquid two-

phase mixture 

C1~C6 Coefficient combination 

𝑣 Average velocity of mixture, m/s 

D Pipe diameter 

𝐻𝑙  Liquid holdup, m3/m3 

𝑁𝑣𝑙 Liquid phase velocity criterion 

𝑁𝑣𝑔 Gas phase velocity criterion 

𝑁𝑙 Liquid viscosity criterion 

MSE Mean Square Error 

𝑦̅𝑖 Measured value 

𝑦𝑖  Predicted value 

n Number of measuring points 

 

Greek symbols 

 

𝜌𝑚 Density of the mixture,Kg/m3 

𝜌𝑚 Liquid-phase density, Kg/m3 

𝜌𝑔 Gas phase density, Kg/m3 

 

Subscripts 

 

 

𝑘 Number of iterations 

𝑚 Mixture 

𝑙 Liquid phase 

𝑔 Gas phase 

𝑣𝑙 Liquid phase velocity 

𝑣𝑔 Gas phase velocity 

𝑎 Acceleration 

𝑓 Friction 

𝑔 Gravitational acceleration 
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