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The greenhouse climate is a non-linear system that contains multiple inputs (predictors) and 

multiple outputs (responses). This project aimed to provide a solution, aided by artificial 

intelligence, to the issue of variations in time, input and output factors in a greenhouse 

internal climate that can adversely affect tomato seedlings. Machine learning 

Methodologies such as fuzzy inference and neural networks have been applied to mimic 

idealistic behavior. This paper proposes an adaptive system based on artificial neural 

networks technique embedded with fuzzy logic technique calls Adaptive Neuro Fuzzy 

Inference System (ANFIS) to predict air humidity, air temperature, internal radiation, and 

CO2 concentration while the seeds grow, in order to produce favorable greenhouse climate 

conditions. The input parameters include ten meteorological and control actuators that 

majorly influence tomato plants during their growth process in the greenhouse climate. This 

discussion revolves around a linguistic ANFIS model that will operate during the 48 days 

that it takes for the seedlings to grow. It will provide estimates of the greenhouse climate 

using meteorological data along with control actuators rooted in trained neural networks 

with back propagation optimization algorithm, and 500 iterations of the least square 

algorithm. Simulations have revealed the efficiency of this model. 

Keywords: 

ANFIS, artificial neural network, control, 

fuzzy logic, greenhouse climate, machine 

learning, modeling, neuro-fuzzy 

1. INTRODUCTION

The latter forty years have seen significant development in 

simulation, management and control methods for crop growth 

and optimal greenhouse climate [1, 2]. Greenhouse climate 

control aids in providing plants with enhanced environmental 

conditions that result in a more efficient production process [3]. 

A controlled greenhouse climate constructs perfect 

environmental conditions for plants or yields, along with 

automation. While it's applied originally to shelter plants from 

undesirable climatic conditions, it's promoted to provide 

increased production, maximizing profits, disease and pest 

prevention, year-round growing, increased stability and 

security and reduced labor and resource costs using sensors to 

monitor conditions and automation to perform menial tasks 

based on the data. Mass balance (CO2 concentration and water 

vapor flows) and energy transfer (heat and radiation) are the 

physical processes that cause fluctuations in the greenhouse’s 

internal microclimate [4]. Factors that impact these processes 

include the greenhouse structure, external environmental 

conditions, and plant type and state. Beyond that, control 

actuators also have an effect, which usually includes 

modifying humidity and temperature through 

heating/ventilation, humidity enrichment with 

cooling/fogging, driving photosynthesis with CO2 injections, 

and changes in internal radiation through artificial light/shades. 

Due to the variety of parameters and strong combination, 

developing a physical model based on thermodynamic 

principles is quite difficult and leads to insufficiently 

misleading results. The primary goal here is to use real data to 

implement the Adaptive Neuro-Fuzzy Inference Systems and 

create a model of greenhouse internal radiation, air humidity, 

CO2 levels and air temperature that will enable the prediction 

of greenhouse behavior. The benefits derived from an 

automated climate regulatory system are mainly an improved 

productivity, energy conservation and reduced need for human 

management [5]. 

Complex processes are necessary to create a greenhouse 

model. It consists of a multi-input multi-output (MIMO) 

nonlinear system with time variants, and it can be influenced 

by various changes that occur in meteorological conditions. 

This volatility creates challenges in using analytic models or 

conventional controllers to simulate a greenhouse [6, 7].  

Greenhouse climates often fail to be effectively regulated 

through conventional means due to the use of either PID or on-

off control systems. This issue can be a waste of labor and 

energy that leads to reduced productivity [8]. A more intricate 

control model is therefore necessary to sustain a balanced 

microclimate [5]. Currently, several papers can be found 

presenting a long horizon and short-term climate control 

models, since targets like maximizing profits or reducing 

energy consumption have motivated many researchers to focus 

on this niche. Oueslati [6] is a presentation of a greenhouse 

with an energy balancing system. In this model, a simulation 

then carries out optimal control of the temperature and 

humidity in a greenhouse for some time during the day. Souissi 

[9] also accounts for crop transpiration in the greenhouse

model. Later, a comparison was made between predictive and

real climate control for some part of the day. A description of

the model predictive control (MPC) when it is applied to

regulate temperature in greenhouses can be found in Reference

[10]. To detect and manage certain multidimensional systems,

the authors suggest applying fuzzy logic [11]. This proposed

method is applied on an actual greenhouse after reducing the
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fuzzy controller’s complexity. In the study [12], an Elman 

structure [13, 14] is used as the basis for a recurrent neural 

network that is programmed to imitate greenhouse dynamics 

directly. The presentation [15] deals with the use of fuzzy c-

means clustering to build a fuzzy greenhouse climate model is 

compared against an artificial neural network (ANN) model 

and an adaptive neuro-fuzzy inference system (ANFIS) model. 

The authors use the adaptive neuro-fuzzy inference system to 

present a representation of the greenhouse design and control 

in the study [16].  

There has been considerable development in modern 

control techniques for various areas [17, 18]. The previous 

couple of decades saw significant advancement in greenhouse 

climate and crop technologies for improved management, 

simulation and control [19, 20]. To have adequate control over 

a greenhouse climate necessitates the application of an 

effective model [21, 22]. There are two ways to design this 

model; either by using the physical laws of this process or by 

analyzing input-output data received from it. The first 

approach utilizes the thermodynamic properties found in the 

greenhouse, but it hinders the ability to create an accurate 

mathematical microclimate model due to equations that are 

based on fluctuating weather and time parameters. The second 

method utilizes the system recognition theory [21]. ARX and 

other conventional identification systems are unable to 

accurately mimic the nonlinear patterns of a greenhouse 

climate. This makes intelligent models more suitable for 

modeling these processes [3]. They are able to emulate 

nonlinear systems due to universal approximation capabilities, 

using data compiled from the arbitrary fitness function.  

As opposed to neural network identifiers, there are some 

advantages of using fuzzy identifiers: a fuzzy logic model can 

process both linguistic and numerical data to predict, which 

controlling decision would be ideal for the greenhouse climate. 

The ANFIS model was applied on tomato plants grown in a 

greenhouse for this paper in order to collect information on 

how air humidity, temperature, internal radiation and CO2 

concentration are impacted by control actuators and 

meteorological variables. A neural network initially captures 

how the internal climate properties and sensor signals interact, 

which is then shown linguistically via an algorithm based on 

fuzzy logic. Training examples from the input which is used 

to create the output of fuzzy logic if–then conditions and the 

fuzzy logic sets’ membership functions. The estimator was 

tested with a range of internal environmental conditions after 

the training was done. Application of test data derived from 

control actuators and meteorological conditions over 48 days 

of seed growth assisted the estimator in determining the levels 

of humidity, temperature, radiation and CO2 concentration in 

the greenhouse. The results obtained by an ANFIS simulation 

have been described in this paper, with the intention of 

constructing an optimized linguistic model that uses the least 

square algorithm and back-propagation to provide projections 

about greenhouse climate. The ANFIS model has fitted our 

real data very well and showed minimal residuals variation, 

high significance and very good normal distrubtion for all our 

inputs (predictors). The results obtained of our fitted Neuro-

Fuzzy model shows an excellent prediction accuracy for our 

outputs (responses) of 98%. In contrast, the Neural Networks 

model shows 92% prediction accuracy. 

2. EXPERIMENTAL SET-UP

The nursery where the tomato seedlings were being 

prepared was at BENOMOR, Guelma (Algeria). Observations 

were recorded between February 20th to April 7th, 2020. The 

experimental observations were recorded in a multi chapel, 

inflatable wall greenhouse made of plastic with a surface area 

of 1000 m2 and a volume of 3600 m3. Its primary axis parallels 

the East-West side. The side walls and roof consist of 

polythene. The greenhouse schematic can be seen in Figure 1 

with its input/output climatic vectors.  

Three sections were made out of the data collected over 48 

days. The first section contained the values that were to be 

used as training data from the first 16 days, the second section 

was to carry out checks and the last was meant for tests. 

Figure 1. Greenhouse climate schema 

3. ANFIS ARCHITECTURE

The ANFIS model utilizes the available input/output data 

set to build a fuzzy inference system. The parameters of 

membership function for this FIS can either be adapted with 

just the back-propagation algorithm or submerged with the 

least squares algorithm. The fuzzy system is able to train itself 

by modeling data this way. The structure of an FIS is 

comparable to a neural network, since it uses input 

membership functions with relevant parameters to chart inputs, 

and output membership functions with its relevant parameters 

to chart outputs [23].  

The ANFIS model in this simulation has a four-layer neural 

network operating along the principles that run a fuzzy 

inference system [23]. The layer one linguistic node signifies 

the input linguistic variable, and the layer four node signifies 

the output variable. The layer two nodes are period nodes that 

act as membership functions for the input data. In layer three, 

a fuzzy rule is represented by each neuron, and preconditions 

for the rule are determined by input connections while their 

consequences are signified through the output connection. In 

the beginning, every possible rule is given representation 

through fully connected layers. 

The ten variable inputs chosen for the ANFIS consist of: 

external temperature, ventilation, external humidity, heating, 

artificial light, shading, fogging/cooling, wind speed, CO2 

injection and global radiation. Each semantic variable is given 

three trapezoidal membership functions. The proposed ANFIS 

model can be seen in Figure 2. 

The fuzzy rule construct of ANFIS can be seen with the 

implementation of the trapezoidal membership function. 

There are 40 fuzzy rules present in this structure. Initial 

experiments revealed it to have adequate capability for 

greenhouse climate modeling through the extraction of 
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meteorological data and control actuators. The flowchart 

depicting ANFIS predictions of internal climate can be seen in 

Figure 3.  

Figure 2. Greenhouse climate ANFIS model 

Figure 3. The prediction of ANFIS system 

ANFS system of order zero is represented by the following 

equations: 
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First order ANFIS system’s conclusion parameters (p, q, 

and r) of nth rule are connected linearly by a first order 

polynomial in the following form: 

1 2n n n nf p x q x r= + + (5) 

If the output of the nodes in each respective layer is 

represented by: Oi
l, where i is nth node of the layer l. 

Layer 1: generation of the degree of membership: 

( )1

ii Ao x= (6) 

Layer 2: generation of the weight of rules i: 

( )2

1
i

m

i i A

j

o w x
=

= = (7) 

Layer 3: aggregation of the weights of rules: 

3

1 2

i

i i

w
o w

w w
= =

+
(8) 

Layer 4: calculating the output of the rules according to the 

conclusion parameters: 
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In this last layer the conclusion’s parameters can be 

optimized using the least squares algorithm. The above 

equation becomes in the following form: 
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T
y w x w x w w x w x w p q r q r XW= = (12) 

4. ANFIS MODELING, TRAINING AND TESTING

The ANFIS model begins the process of training, testing 

and checking after it receives a data set of input-output data. 

A batch of inputs-outputs form the training data, which is then 

normalized so that it is appropriate for training. This was 

achieved with the Min, moderate and Max approach that 

helped map each vector to a value between 00, 01 and 10. The 

inputs (meteorological data, control actuators) and outputs 

(internal climate) that trained the ANFIS were subsequently 

derived from the normalized data. So, for the ANFIS training, 

two vectors needed to be formed (see Figure 4). Input vector 

= [external temperature, wind speed, global radiation, shading, 

ventilation, CO2 injection, heating, artificial light, 

fogging/cooling and external humidity]. The output vector = 

[CO2 concentration, internal temperature, internal radiation 

and internal humidity]. The data consisting of control actuators, 

internal and external greenhouse climate needs to be converted 

into numerical code since input data can only be registered 

with the ANFIS in numerical form. 

Figure 4. Fuzzy rules architecture 

With the help of training data, initial base parameters for 

trapezoidal membership functions can be discovered. This 

necessitates equal spacing between the membership functions. 

Then, a threshold is set as the margin of error between desired 

and real output. The resulting parameters are determined with 

the least-squares algorithm.  

For every data pair an error is appeared. If the error 

surpasses threshold value, the base parameters need to be 

updated with the gradient decent approach; (Qnext=Qnov+ηd, 

where the parameter Q decreases the error, d is the vector 

direction and η is the learning rate). The end of this process 

occurs as soon as the error falls below the determined 

threshold values. A comparison is made between the model 

and actual system using the checking data set. The threshold is 

lowered if the system fails to be represented accurately by the 

model. 

Figure 5. Testing error for ANFIS configuration with 

Gaussian Mf and Traingular Mf 

Figure 6. Trainning, checking and testing data of the internal 

temperature 

While ANFIS is configured during testing using gaussian 

Mf and triangular Mf, there is uniformity in the way testing 

error values, ETest fall according to the number of iterations, 

as evident in Figure 5. Iteration 107 (Gaussian Mf) and 

iteration 145 (triangular Mf) is the point where the lowest 

testing error (ETest) occurs. It is observed in Figure 5 that the 

error does not fall to zero, but rather converges at 8% and 2%. 

The reason for this phenomenon is some values in the training 

and testing data that were contradictory. 

There are two approaches to ending ANFIS training. The 

first way it will stop learning is when testing errors are below 
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the tolerance limit that would already be specified when the 

training began. An ANFIS trained with lesser tolerance will 

perform greater than it would with higher tolerance parameters. 

The training time in this approach is dependent on the ANFIS 

architecture. The second way to end learning is by limiting the 

number of training iterations. In order to have an adequate 

trainning process for our ANFIS model, we splitted our 

internal temperature/humidity data into 60% trainning, 20% 

checking and 20% testing (see Figure 6 and Figure 7). This 

study had a cap of 500 learning iterations in place after which 

the ANFIS model would stop training.  

Figure 7. Trainning, checking and testing data of the internal 

humidity 

5. DISCUSSION OF RESULTS

In this section, the outcomes of the experiments are 

analyzed and presented, along with a comparison between the 

results of the ANFIS versus the experimental model based on 

parameters determined for the greenhouse microclimate. The 

graphical representations in Figure 8 diagrams show the values 

and/or results of CO2 concentration, internal humidity, 

temperature and radiation in connection with the seedlings’ 

growth period. Parallels are evident between the predicted 

values and the data collected from experiments.  

Statistics have been used to display the aptitude of ANFIS 

versus neural networks, which make it clear that predictions 

received from ANFIS for the internal humidity (Etest_Hint = 

0.557), CO2 concentration (Etest_CO2 = 0.520), inner 

radiation (Etest_Rint = 0.387) and inner temperature 

(Etest_Tint = 0.725) were 2% nearer the measurements in the 

experiment, in contrast to 8% when just neural networks were 

used. 

6. CONCLUSION

Couple maching learning techniques have been used aiming 

to build an efficient model to control the green house climate 

in the last forty years but unfortunately due to the non-

stationarity and non-seasonality of enviremental conditions 

time series process, the non-linearity of inputs/outputs, non-

normal distributions, we couldn’t really get to an efficient 

robust model for a greenhouse climate. This paper successfully 

employs the ANFIS to simulate greenhouse climate while 

tomato seedlings are grown. An assessment of results derived 

from the experimental model alongside the ANFIS model 

brings us to the conclusion that ANFIS is an accurate and 

efficient prediction method for greenhouse climates. This 

system can yield accuracy as high as 98% in all of the four 

components when trained with the least square algorithm and 

back propagation. Chances of error in predicting internal 

climate values in combination with gaussian and sigmoidal 

membership function is just 2%. Accuracy with the adoption 

of the triangular membership function would be 92% with an 

average error chance of 8%. 

Figure 8. Measured versus predicted greenhouse internal 

climate models 
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