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Recognizing real visual textures in the nature have been a challenging task since they are 

complex and stochastic. In spite of several decades of research, classifying the real world 

color textures are still challenging because of the intricate nature of the textures and the lack 

of substantial improvement of accuracy in benchmark datasets. Deep Learning techniques 

have found to be effective in identifying and classifying the texture patterns to a larger 

extent, but it could not capture spectral information and achieve excellent results for natural 

images. In this paper, we propose a deep convolutional neural network architecture, 

WaveTexNeT that combines Wavelet convolutional neural networks (WaveletCNN) and 

Xception model with luminance information for classifying real-world natural textures. 

Spectral and spatial features are extracted from WaveletCNN and Xception model. The 

highlight of the work is the utilization of spectral and spatial information along with 

luminance for texture classification. A color space image data augmentation technique is 

proposed that use luminance images from YIQ model for color texture classification. This 

work also throws light into the significance of luminance information for texture 

classification. Experimental analysis of the work reports that WaveTexNeT captures better 

feature representations and outperforms the accuracy obtained using the state-of-the-art 

methods. WaveTexNeT obtained an accuracy of 90.34% and 95.01% for the describable and 

material perception texture datasets DTD and FMD respectively.  
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1. INTRODUCTION

The visual real world is comprised of rich diverse textures 

present in the nature from histopathological images from cells, 

tissue abnormalities, defect classification, natural visual 

scenes. Texture [1, 2] depicts the image surface characteristics 

such as roughness, irregularity, coarseness, smoothness and it 

can be used for texture classification. Classifying real life 

textures have wide applications in machine vision and visually 

textured object recognition. Even though color is an important 

cue in interpreting images, we cannot identify a natural image 

without analyzing the texture. Textures serve as a vital and 

robust cue in classifying and recognizing regions or objects. 

The prominent applications include classifying forest species, 

rocks, wood species, fabrics, satellite images, natural images, 

food grains, textural defect and tumors. Different color spaces 

have distinct color representation patterns [3]. The 

significance of the color spaces other than RGB for better color 

representations in texture is not often investigated. Better 

human perception can be modelled by considering the 

luminance obtained from the different color models. In spite 

of several decades of research, classifying the real-world color 

textures are still challenging task because of the complex 

nature of the textures and the less improvement in accuracy in 

benchmark datasets [4]. It is challenging to distinguish the 

texture classes that we encounter in the daily life.  

Representing real life textures can be challenging and 

tedious. Due to the advancements in technology, deep learning 

and machine learning approaches continue to grab better 

attention in texture classification research. Machine learning 

and Deep learning based methods capture the discriminative 

features in an image. Deep learning can address the challenges 

of texture classification to a great extent. But still there is a 

need for better texture representations. This research gap is 

addressed in the proposed approach. Wavelet based 

approaches can be effectively used for color texture 

classification. But this area is still largely unexplored and 

needs investigation [5]. Van de Wouwer et al. [6] discussed 

that color along with texture capture more discriminative 

information and the choice of the color space is very important. 

So it is better to propose a model that takes advantage of 

texture features captured in spatial and spectral domain with a 

color space information for better classification. 

WaveTexNeT, the proposed work is developed based on 

deep learning and wavelet based approaches. This method has 

good generalization ability and better feature representations 

that improves the performance of the texture classification. 

Wavelet based representations [7] generated with 

Convolutional Neural Network (ConvNet/ CNN) improves the 

classification accuracy. Wavelets exhibit multiresolution 

property. So, wavelet texture representations extract features 

through multilevel wavelet decomposition from high and low 

frequency components. The innovation of the work is two fold. 

First objective is to make use of luminance information in deep 

architectures for classifying color textures. Second objective is 

to develop a deep architecture that incorporates spectral and 
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the spatial feature representation along with the luminance 

information for classifying real world textures. 

The contribution of the work is summarized as follows: 

• A deep neural network WaveTexNeT is proposed which

extracts the spectral and the spatial feature representation

along with the luminance information for classifying real

world textures.

• A new color space data augmentation technique is

proposed which augments luminance images obtained

from YIQ color model along with RGB images to perform

texture classification.

• Wavelet CNN and Xception are combined in this work to

capture the spectral frequency features and spatial

information using depth wise separable convolution and

skip connections. This model has lesser number of

trainable parameters.

• Performance analysis reveals that WaveTexNeT produces

excellent results than the state -of- the- art methods in

color texture classification in benchmark datasets DTD

and FMD.

Section 2 discusses prior literature related to texture 

representations and wavelet based deep learning 

methods.Section 3 provides the details regarding the 

methodology adopted in this research work. Section 4 

demonstrates the experimental work and analysis conducted. 

Section 5 sums up the highlights of the work. 

2. LITERATURE SURVEY

With the progress of the hardware infrastructure and

computational facilities, various deep learning and machine 

learning approaches have been discussed in the research field 

of color texture classification. We have explored CNN based 

and wavelet based deep learning methods in color texture 

classification. 

2.1 Texture representations using deep learning 

Computer vision tasks have widely used different ConvNet 

deep algorithms for obtaining better evaluation results. Tivive 

et al. [8] is one of the early works in which the CNN-based 

texture classification is discussed which focuses on classifying 

texture patterns in an image. This CNN network preserves the 

spatial arrangement of the input image and uses the sigmoid 

function for classification. Dixit et al. [9] discussed an 

optimized CNN for texture classification. Deep feature-based 

optimization is performed to optimize CNN features using the 

nature-inspired Whale Optimization Algorithm for texture 

classification. Liu et al. [10] proposed genetic algorithm-based 

CNN, GANet, to handle scale variations in classifying textures. 

Genetic algorithm adaptively changes the filters applied in 

CNN hidden layers, for learning more prominent texture 

patterns. Zhang et al. [11] designed Deep Texture Encoding 

Network, where the encoding layer transfers the CNN features 

from pre-trained models thereby capturing domain-specific 

texture features. Deep neural network architectures, PCANet, 

RandNet, LDANet [12] are proposed for the classification. It 

simplifies the processing by utilizing Cascaded PCA, hashing, 

and block histogram construction. This CNN does not require 

regularization parameters and optimizers. Dai et al. [13] 

presented a Bilinear CNN model, FASON that captures the 

first order and second-order information within the features 

from the deep network. Tan and Le [14] presented a work 

EfficientNet architecture by scaling in the network depth, 

width and resolution which obtained good results. Sajjadi et al. 

[15] performed single image super resolution through

exploiting automated synthesis of texture content by

EnhanceNet which focused on creating realistic textures.

Gowda et al. [16] discussed a ColorNet model which

investigates the significance of color spaces and deep learning

model DenseNet for image classification. Roy et al. [17]

presented a fusion based deep learning method TexFusionNet

for texture classification where AlexNet and VGG features are

fused.

2.2 Wavelet based representations for texture classification 

Wavelets are of interest to researchers. A wavelet is a 

mathematical representation useful for solving problems in 

signal and image processing domain. 2D-wavelets are used for 

image processing applications. The concept of wavelet has 

been successfully implemented for better texture analysis. 

Deep Wavelet representations are gaining prominence since it 

can exhibit spectral characteristics of an image. Wavelet based 

texture representations are found to be efficient for 

classification tasks for the three decades. Wavelet analyses a 

texture image into different frequency components at different 

resolution scales (i.e multiresolution). Multiresolution 

techniques [5] intend to transform texture images into a 

representation in which both spatial and frequency information 

are present. Wavelet decomposition provides a complete 

texture image representation and performs decomposition 

based on scale and orientation. During the last decade, 

multiresolution techniques are increasingly being applied to 

image processing problems. Global features are quickly and 

efficiently extracted from images through these techniques. 

Human visual system is keen in perceiving multiresolution 

analysis for extracting detail from natural scenes. Wavelets 

provide sparse representations for processing smooth images. 

Arivazhagan et al. [18] studied the significance of using 

Discrete Wavelet Transform (DWT) for texture analysis. In the 

work [18], first level decomposition texture image capture 

LH1, HL1, HH1 denote the detail coefficients and subband 

LL1 represents approximate coefficients. In the next level of 

decomposition, LL1 is further divided and decomposed. The 

features generated from this frequency information is efficient 

in classifying a textured image. Wavelet pyramid 

decomposition captures the high and the low frequency 

components within a texture image. Wavelet based texture 

representations [19] found to be efficient for classification task 

in medical field, defect detection, remote sensing from last 

three decades. Fujieda et al. [20] explored a texture based deep 

neural networks, Wavelet CNN in which frequency domain-

based approach is incorporated into the CNN. Wavelet CNN 

[21] considered spectral information and performs

multiresolution analysis through wavelet transform. The

spectral analysis of CNN also captures the scale-invariant

features of the texture patterns. Bruna and Mallat [22]

developed wavelet scattering network (ScatNet) where

convolution filters are represented as gabor wavelets that

captures spectral features. These gabor wavelets preserve high

frequency content in images. Tao et al. [23] developed

WMACapsNet which utilized both spectral and spatial

information through multi scale wavelet features and self-

attention blocks. Liu et al. [24] presented a CNN network,

CWTACapsNet based on multi scale wavelet feature

decomposition, quantization and tensor blocks. The tensor

blocks exploits the dependencies across the cross

channels,which prove the efficiency of CWTACapsNet.
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Multilevel convolution network is successfully used for tasks 

including image restoration [25] and classification of ECG 

heart beats [26]. Khalil and Adib [26] developed end-to end 

wavelet architecture for heart disease prediction based on ECG 

signal features and wavelet features. Usually in image 

classification tasks, Convolution Neural Network (CNN) are 

prone to noise interferences while processing. WaveCNet [27] 

utilizes DWT to decompose the texture feature maps into low 

and high frequency bands. This WaveCNet work is robust to 

noise and also improves the classification accuracy. Zhao et al. 

[28] focused on the significance of wavelet attention modules

for image classification. This method extracted better feature

representations from attention level based high frequency

components and preserved the structures from low frequency

components. For addressing the research gap and getting

motivated from the above discussed related works, wavelet

based deep architecture, WaveTexNeT is proposed in this

work.

3. METHODOLOGY-WAVETEXNET

The proposed method WaveTexNeT is inspired from the 

fact that the ConvNets cannot capture the spectral information 

which is relevant in processing the from texture images. 

Wavelet CNN [20, 21] has proven to be a promising method 

in capturing the spectral features that constitutes the 

approximation features including the low frequency especially 

texture and detail features including the high frequency 

spectral features such as edges, boundaries. 

3.1 Spatial-spectral information 

Texture images can be processed both in spatial and spectral 

domain. Spatial information provides the detailed information 

captured from textures based on the manipulation of pixel 

intensity values in neighbourhood. Spectral information 

depicts the frequency related information present in texture 

images. The low frequency regions depict the smooth areas, 

while the high frequency regions represent edges, contours and 

boundaries. Rich set of spatial-spectral features can be 

captured from texture images. Texture classifications research 

based on spatial-spectral information needs further attention 

and investigation [29]. Spatial- Spectral methods have the 

capability of reducing noise and lessen the influence of noisy 

pixels. Spatial-spectral methods improve the performance of a 

texture classification system. Deep CNN architectures provide 

the spatial information by the successive convolutions with the 

kernel. CNN captures image local features and merges the 

extracted the local features to obtain higher-order image 

features through aggregation and pooling techniques, and 

classification task can be successfully performed using the 

higher-order features. Spectral approaches transform the 

images into frequency domain using a set of spatial filters. The 

spectral information can be obtained from texture images at 

different scales and orientations that constitute the features. 

This approach has been well studied in texture classification 

and results are promising [18]. Feature extraction in the 

frequency domain has an advantage. A spatial filter can be 

easily made selective by enhancing certain frequencies while 

suppressing the others. This explicit selection of certain 

frequencies is difficult to control in CNNs. Rather than relying 

CNNs to learn performing spectral analysis, it would be good 

to combine the spatial and spectral representation based on a 

multiresolution analysis using wavelet transform. So, in this 

work, spatial and spectral features are captured using Xception 

model and Wavelet CNN. 

3.2 WaveTexNeT architecture 

WaveTexNeT investigates different resolutions by four 

level decompositions through Wavelet CNN and the depth 

wise separable convolutions by Xception model. In 

WaveTexNeT, new architecture is proposed by exploiting the 

spectral multiresolution features from wavelet CNN and high 

level deep spatial features from the Xception model. The 

wavelet CNN model is concatenated with the Xception model 

for better texture feature representations by incorporating the 

spatial and spectral features. Wavelet CNN make use of 

Discrete Wavelet Transform (DWT) for capturing 

multiresolution and spectral information by applying 

convolution operation and down sampling. The working of 

WaveTexNeT is given as follows. The input RGB texture 

images are augmented with the luminance images from YIQ 

model. These images are fed to wavelet CNN for 

multiresolution analysis using the 4-level wavelet 

decomposition. These wavelet coefficients are generated. The 

input images are also fed to Xception and images undergo 

depth wise convolution. In Xception, we are training the 

network with learned weights and the features are generated. 

Luminance information also assist in getting the prominence 

in this network and hence textures can be represented better. 

The features captured from the Wavelet CNN and Xception are 

concatenated. Then, global average pooling is applied and 

after that flattening is done to obtain single 1D vector. Dense 

layer, batch normalization and ReLU activation and dropout is 

carried out two times. Finally, fully connected layer performs 

texture classification. Together with Wavelet CNN, Xception 

and the luminance information obtained a better feature 

representation and hence better classification for texture 

images are achieved. WaveTexNeT architecture is provided in 

Figure 1. 

Figure 1. WaveTexNeT architecture
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3.3 Color space image augmentation with luminance 

Image data augmentation [30, 31] is a technique for 

providing different variations of image data through 

geometrical transformations or other methods. hence these 

techniques address the issues on training using less or limited 

data. In the work, we propose a new color space augmentation 

technique where the initial dataset is augmented with 

luminance images. This is inspired from the fact that texture 

images can better be represented with other color spaces along 

with RGB. Here in the work, color information is preserved 

from RGB images and the texture features from luminance 

images. Since the dataset DTD and FMD contains limited 

number of images, we augment the dataset with the luminance 

images from the YIQ model [32]. Luminance channel captures 

significant texture features present in the image. Luminance 

images are captured from the Y channel of the YIQ model. The 

other data augmentation techniques used are shearing, 

zooming and horizontal flip on the training data. We generated 

the luminance images from the Y channel. In the work, I and 

Q, the chromatic components are not used as RGB preserves 

the color information. To analyse the efficiency of YIQ model, 

we compared the approach with luminance images (Y channel) 

from YCbCrcolor model [33]. Here also, we used only Y 

images to generate the luminance images. 

[
𝑌
𝐼
𝑄

] =  [
0.299 0.587 0.114
0.595 −0.274 −0.321
0.211 −0.522 0.311

] [
𝑅
𝐺
𝐵

] (1) 

[
𝑌

𝐶𝑏
𝐶𝑟

] =  [
65.48 128.55 24.97

−37.78 −74.16 111.93
111.96 −93.75 −18.21

] [
𝑅
𝐺
𝐵

] +  [
16

128
128

] (2) 

The conversion of RGB to YIQ and RGB to YCbCrcolor 

space is illustrated in Eqns. (1) and (2). 

3.4 Significance of luminance 

Texture and color are unique cues for representing and 

capturing visual scenes of the nature for texture classification. 

Human vision is more sensitive to luminance details than 

chrominance in an image [34]. Luminance corresponds to the 

light energy emitted from the source based on the spectral 

sensitivity of eye. Luminance channel is significant and it 

would be good to separate luminance from other color models 

for extracting the structural details and better feature 

representation for texture classification problems [35]. The 

significance of the luminance information needs to be better 

studied for texture analysis applications. The literature shows 

that the color spaces can improve accuracy in texture 

classification systems [36]. The effect of luminance in color 

models with deep features needs further investigation. It is 

significant to investigate the influence of luminance 

information for color texture classification. Since deep 

networks capture chrominance information than luminance, it 

is worth exploring the significance of luminance information 

in WaveTexNeT architecture. 

3.5 Wavelet convolution neural network 

In Wavelet Convolution Neural Network termed as Wavelet 

CNN [20], the input images are represented as four 

multiresolution levels of decomposition which extract better 

texture features. Wavelet CNN extract features in 

multiresolution analysis in frequency domain. Wavelet CNN 

uses the 3x3 convolutional kernels, stride 2 with padding 1x1 

for capturing the spectral features. Stride and padding is 

applied to the input image to lower the feature dimensions. 

Multiresolution analysis is performed in input images for the 

decomposition. An illustration of single level wavelet 

decomposition is depicted in Figure 2. 2D wavelet 

decompositions are represented in approximation (low) (LL1) 

and detail (high) wavelet coefficients (LH1, HL1 and HH1) 

and concatenated for each R, G and B channel. The global 

average pooling is applied for convolution modules in the final 

stage and then fully connected layer is applied.  

Figure 2. 2D Wavelet decomposition 

Figure 3. Representation of conv operation and pooling in Wavelet CNN 
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In WaveTexNeT, pooling and the convolution operation is 

considered as down sampling and filtering thereby 

establishing a relation between convolutional neural networks 

and multiresolution decomposition. The frequency domain 

offers an advantage for feature extraction. By increasing 

certain frequencies while suppressing others, a spatial filter 

may be readily made selective. In CNNs, this explicit selection 

of specific frequencies is difficult to regulate. Wavelet CNN 

incorporate spectral techniques into CNNs, through 

multiresolution analysis. This model is trained with images of 

size 224x224. In wavelet CNN, multiresolution analysis can 

be considered as repeatedly applying convolution and pooling 

layers on low-frequency parts with a specific pair of 

convolution filters. 

Convolution layers are expressed as weighted sum of the 

neighbouring pixel intensities and Pooling layer is expressed 

as computing the mean and carry out down sampling. The 

representation of convolution and pooling [20] is given in 

Figure 3.  

The Convolution operation [20] can be expressed as: 

𝑦 = 𝑥 ∗ 𝑤 (3) 

where, 

𝑤 = (𝑤0 , 𝑤1 … … … . . , 𝑤𝑜−1) ∈  𝑅𝑜

𝑥 = (𝑥0 , 𝑥1 … … … … . , 𝑥𝑛−1) ∈  𝑅𝑛

𝑦 = (𝑦0, 𝑦1 … … . . … . . , 𝑦𝑛−1) ∈  𝑅𝑛

𝑥 is an input vector in n-dim space, 𝑤 is the arbitrary weight 

values or kernel filter and 𝑦is the output vector. Pooling is 

applied to reduce the dimensions of the feature maps just after 

the convolution processing. Pooling is expressed as  

𝑦 = (𝑥 ∗ 𝒑 ) ↓ 𝑝 (4) 

where, 𝑝  is a parameter that represents the pooling 

support,  𝑝 =
1

𝑝
, … … . .

1

𝑝
 ∈  𝑅𝑛  represents averaging filter.

The value𝑝 = 2 indicates that output dimensions are reduced 

to one half of inputs by computing mean pair wise.↓represents 

the downsampling operation. Estimation of averaging filter 

indicates convolution operation via 𝑝  followed by 

downsampling operation and using stride value 𝑝. From Eq. (3) 

and (4), we can express 𝑦 as  

𝑦 = (𝑥 ∗ 𝒉 ) ↓ 𝑝 (5) 

where, 𝒉 is the pair of convolution filters with 𝑝 = 2. 

𝑥𝑙𝑜𝑤 = (𝑥 ∗ 𝒉𝑙𝑜𝑤) ↓ 2 (6) 

𝑥ℎ𝑖𝑔ℎ = (𝑥 ∗ 𝒉ℎ𝑖𝑔ℎ) ↓ 2 (7) 

The Eq. (6) and (7) relates convolution operation to multi 

resolution decomposition that considers convolution operation 

with kernels utilizing low frequency and high frequency 

information. We can again reframe the equation as: 

 𝑥𝑙𝑜𝑤,𝑠+1 = (𝑥𝑙𝑜𝑤,𝑠 ∗ 𝒉𝑙𝑜𝑤,𝑠)  ↓ 2 (8) 

𝑥ℎ𝑖𝑔ℎ,𝑠+1 = (𝑥ℎ𝑖𝑔ℎ,𝑠 ∗ 𝒉ℎ𝑖𝑔ℎ,𝑠)  ↓ 2 (9) 

The kernels ℎℎ𝑖𝑔ℎ,𝑠  and ℎ𝑙𝑜𝑤,𝑠  are considered as wavelet

function and scaling function for multi resolution wavelet 

decomposition respectively. The parameter s in the Eq. (8) and 

(9) represents the level of decomposition. In the work, we use

four levels of wavelet decomposition. The trigger activation

function we used is Rectified Linear Unit (ReLU).

3.6 Xception architecture 

Xception [37] is a deep architecture expanded as Extreme 

Xception that is motivated from the Inceptionv3, which 

entirely relies upon the concept of depth wise separable 

convolution and the skip connections. There are three modules 

in Xception namely entry module, middle module and exit 

module and this CNN model uses the depth wise separable 

convolutions and the residual connections [38]. A depth-wise 

separable convolution layer separates each channel of the 

input and filter distinctly, convolves them by each channel, 

and later splits one element of 3 channels to be convoluted 

until all elements have been convoluted. The depth-wise 

separable convolution layer reduces the number of parameters 

compared with the conventional convolution layer. The 

algorithm also has some residual structure that skips over the 

block of the depth-wise separable convolution layers. Instead, 

it has the blocks of the conventional convolution layer and the 

batch normalization layer. Xception Architecture is displayed 

in Figure 4. 

Figure 4. Model representation of Xception 

4. EXPERIMENTAL ANALYSIS AND RESULTS

The proposed method is tested with benchmark datasets 

DTD and FMD. The next section covers the details of the 

dataset used. 

4.1 Datasets 

In color texture natural scene classification, the datasets 

Describable Texture Dataset (DTD) and Flickr Material 
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Dataset (FMD) are popularly used datasets to illustrate the 

various real life and complex textures that we encounter in the 

day today life. These are intricate datasets and assessed to be 

the challenging benchmark data for the texture classification. 

Describable Textures dataset (DTD) is a colored-texture 

database [39] that contains the real-world textures in nature 

such as cobwebbed, braided, dotted, blotchy and frilly. DTD 

contains images with attribute-based texture representations, 

In DTD, texture images are extracted from the web rather than 

being captured or generated in a controlled setting. In color 

texture classification, DTD depicts the various natural 

describable textures annotated with adjectives that describe the 

properties. DTD comprises of texture images that have 

describable attributes and it captures unique patterns within a 

texture. The DTD dataset is considered to be challenging 

because of the complex nature of the real life textures and the 

lesser interclass variance. DTD has 120 images each for 47 

texture categories adding up to 5640 images. The glimpse of 

DTD dataset is given in Figure 5. 

Figure 5. View of DTD dataset 

The Flickr Material Database (FMD) [40] is another 

challenging texture dataset that captures various categories of 

the material appearances. FMD was created with the objective 

of acquiring wide range of material surfaces [41]. Within the 

fabric class, there are four sets of fabric surfaces that exhibit 

different material properties, colors and sizes. FMD provide a 

view of realistic surface textures that account to the material 

recognition that is encountered in the everyday life. FMD 

dataset has 10 classes, and each class contains 100 images. 

FMD is developed to comprehend the human perception of 

material classes and also to design Artificial Intelligence (AI) 

based systems for material recognition. It is still challenging 

to develop computer vision systems that match human 

performance on FMD dataset. A glimpse of the FMD can be 

seen in Figure 6. 

Figure 6. View of FMD dataset 

4.2 Experimental setup 

The experiments are conducted in system configuration 

Intel(R) Core(TM) i7-8565U CPU @ 1.80GHz, 64 bit 

Operating system, x64 based processor, 8GB RAM, NVIDIA 

GeForce MX150. All the experiments are performed in Python 

Colab Pro environment. Python Keras and TensorFlow are 

used for implementation. The experiments are implemented on 

challenging benchmark DTD and FMD datasets. Since the 

number of training images are less for the datasets, they are 

augmented with the luminance (Y channel) images from YIQ 

model for each class along with the RGB images for learning 

the deep features. In the experiments on DTD, each class have 

240 images with 47 classes each add up to a total of 11280 

images used for training and testing. In FMD, each class have 

200 images with 10 classes adding to a total of 2000 images 

used for training and testing. These datasets are split randomly 

and 70% of data are used for training and 30% of data are used 

for testing.  

4.3 Learning parameters 

Total number of parameters for the WaveTexNeT model is 

34,055,319 where number of trainable parameters is 

33,987,863 and non-trainable parameters amount to 12,928. 

The number of parameters of the proposed model is less than 

VGG19, ResNet101, ResNet152, InceptionResNet, 

NasNetLarge. The batch size is selected as 8 for both the 

datasets. The default parameters of WaveletCNN and 

Xception architecture are used in this implementation. The 

loss function used for multiclass texture classification is 

categorical cross entropy which captures the error rate as loss 

function in deep learning models. The optimizer used in the 

work is Stochastic Gradient Descent (SGD). An optimizer is 

used in deep architecture to train a deep model and minimise 

the residual. Learning rate used is 0.01. SGD with momentum 

helps to compute the gradient vectors faster in proper 

orientations and results in faster convergence. Drop out is 

fixed as 0.5 to prevent the overfitting. Accuracy curve is 

generated by computing the accuracy over 50 and 100 epochs 

on FMD and DTD respectively with learning rate 0.01. The 

parameters used in WaveTexNeT are summarized in Table 1. 

Table 1. Parameters used for WaveTexNeT 

Proposed Model  DTD dataset FMDdataset 

WaveTexNeT(Luminance from YIQ model) 

Accuracy 90.34% 95.01% 

No of Epochs 100 50 

Batch Size 8 8 

Learning rate 0.01  0.01 

Optimizer used SGD SGD 
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4.4 Result analysis 

The detailed analysis of the experiments conducted is 

illustrated in this section. Wavelet based method, 

WaveTexNeT is tested on DTD and FMD to prove the 

efficiency in classifying the natural textures. In this section, 

experimental results are analyzed. 

4.4.1 DTD dataset 

Table 2. Precision, recall & F1 score on DTD with YIQ 

luminance 

Class Precision Recall F1 score 

Banded 0.89 0.86 0.87 

Blotchy 0.80 0.82 0.81 

Braided 0.92 0.97 0.95 

Bubbly 0.94 0.89 0.91 

Bumpy 0.88 0.83 0.86 

Chequered 1.00     0.93 0.96 

Cowebbed 0.88 0.93 0.91 

Cracked 0.89 0.90 0.90 

Cross hatched 0.89 0.81 0.85 

Crystalline 0.95 0.96 0.95 

Dotted 0.93 0.97 0.95 

fibrous 0.91 0.89 0.90 

fleckled 0.82 0.93 0.87 

Freckled 1.00 0.94 0.97 

Frilly 0.96 0.93 0.94 

Gauzy 0.84 0.89 0.86 

Grid 0.82 0.86 0.84 

Grooved 0.77 0.96 0.85 

Honey combed 0.84 0.96 0.90 

Interlaced 0.97 0.93 0.95 

Knitted 0.99 0.96 0.97 

Lacelike 0.92 0.96 0.94 

Lined 0.95 0.83 0.89 

Marbled 0.86 0.83 0.85 

Matted 0.88 0.92 0.90 

Meshed 0.82 0.85 0.84 

Paisley 0.91 0.97 0.94 

Perforated 0.82 0.94 0.88 

Pitted 0.88 0.82 0.85 

Pleated 0.97 0.92 0.94 

Polka dotted 1.00 0.94 0.97 

Porous 0.94 0.83 0.88 

Potholed 0.97 0.96 0.97 

Scaly 0.93 0.86 0.89 

Smeared 0.91 0.81 0.85 

Spiralled 0.85 0.88 0.86 

sprinkled 0.93 0.90 0.92 

stained 0.94 0.82 0.87 

Stratfied 0.93 0.90 0.92 

Stripped 0.92 0.97 0.95 

Studded 0.90 0.88 0.89 

Swirly 0.91 0.89 0.90 

Veined 0.96 0.94 0.95 

Waffled 0.89 0.97 0.93 

Woven 0.90 0.86 0.88 

Wrinkled 0.88 0.88 0.88 

zigzagged 0.95 1.00 0.97 

Over all Accuracy 90.34 % 

The results obtained on DTD dataset are discussed. Figure 

7(a) and figure 7(b) illustrates the accuracy value and the loss 

value obtained on DTD using WaveTexNeT. As observed, the 

learning curve is smooth and it reached convergence within 

100 epochs. Accuracy curve shows that an accuracy of 90.34% 

is obtained. Precision- Recall- F1 score values obtained on 

DTD using WaveTexNeT are shown in Table 2. F1 score for 

the proposed approach on DTD resulted in a high F1 Score of 

0.97 for 4 classes viz. Freckled, Knitted, Potholed and 

Zigzagged. The proposed approach is compared with other 

existing approaches in terms of accuracy and the results are 

shown in Table 3. Cimpoi et al. [42] used combination of 

fisher vector CNN (FV-CNN) and fully connected (FC-CNN) 

to get an accuracy of 69.80% which is based on VGG model. 

Simon and Uma [43] developed a texture classification 

method for classifying deep features with support vector 

machine (SVM) classifier and obtained 66.49% accuracy. Tao 

et al. [23] used a wavelet multi attention capsule network 

(WMACapsNet) which explores spatial and spectral features. 

The graphical analysis of accuracy for the DTD dataset is 

provided in Figure 8. Cimpoi et al. [39] also proposed another 

method based on Improved Fisher Vector (IFV) and Deep 

Convolutional network Activation Features (De-CAF) which 

obtained an accuracy of 66.7%. Dai et al. [13] presented a 

Bilinear CNN model, FASON, captured an accuracy of 72.9% 

on DTD dataset. Mao et al. [44] discussed an end-to-end Deep 

residual pooling network based on obtained an accuracy of 

76.62%. Xue et al. [45] used Deep Pooling Network obtained 

73.2% accuracy. Fujieda et al. [20] discussed a wavelet 

convolution neural network for classifying the textures that 

reported an accuracy of 59.8%. Liu et al. [24] 

used CWTACapsNet, with wavelet and compressed 

tensor self attention model to get 81.52%. Simon and Uma 

[46] utilizes deep features and luminance information 

along with the machine learning classifier and produced 

an accuracy of 73.63%. WaveTexNeT obtained a good 

accuracy of 89.01% for luminance from YCbCr, 90.34% for 

luminance from YIQ color space. It is clear that the model is 

performing well. From this result analysis, it is 

proved that the proposed WaveTexNeT along with 

YCbCr and YIQ color model is performing better when 

compared to conventional state-of-the-art methods. 

(a) 

(b) 

Figure 7. (a) Accuracy curve and (b) Loss curve of 

WaveTexNeT for DTD dataset 
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Table 3. Accuracy analysis on DTD -WaveTexNeT model 

Authors Method Accuracy (%) 

Cimpoi et al. [42] FC-CNN + FV-CNN 69.80 

Simon and Uma [43] Deep Features + SVM 66.49 

Cimpoi et al. [39] IFV+DeCAF 66.70 

Dai et al. [13] FASON(conv4+ conv5) 72.90 

Fujieda et al. [20] Wavelet CNN 59.80 

Xue et al. [45] Deep Encoding Pooling Network 73.20 

Simon and Uma [46] DeepLumina 73.63 

Liu et al. [24] CWTACapsNet 81.52 

Tao et al. [23] WMACapsNet 79.52 

Mao et al. [44] Deep Residual Pooling Network 76.62 

WaveTexNeT (Proposed Method) Wavelet CNN+ Xception + Luminance(YCbCr) 89.01 

WaveTexNeT (Proposed Method)  Wavelet CNN+ Xception + Luminance (YIQ) 90.34 

Figure 8. Graphical representation of accuracy analysis on 

DTD 

4.4.2 FMD dataset 

The Figure 9(a) and Figure 9(b) illustrate the accuracy value 

and the loss value respectively for WaveTexNeT on FMD 

dataset. This curve is generated by computing the accuracy 

over 50 epochs. As observed, the learning curve is smooth and 

it reached convergence within 50 epochs. This curve obtained 

an accuracy of 95.01%. Precision, Recall and F1 score on 

FMD is shown in Table 4. F1 score for the proposed approach 

on FMD resulted in a high F1 score of 0.97 for 2 classes viz. 

Fabric and Foliage. The comparative analysis with existing 

approaches is performed and the results are shown in Table 5. 

The graphical representation of accuracy analysis on FMD is 

given in Figure 12. The proposed work, WaveTexNeT is 

analysed with the luminance from two color spaces, YIQ and 

YCbCr. In order to assess the efficiency, extensive 

experiments have been carried out with the color spaces YIQ 

and YCbCr. The model FC-CNN + FV-CNN proposed by 

Song et al. [47] obtained an accuracy of 83.20% on FMD. The 

model [43] developed based on deep features and SVM 

produced an accuracy of 84.50% accuracy. Cimpoi et al. [39] 

developed a model based on Improved Fisher Vector (IFV) 

and Deep Convolutional network Activation Features (De-

CAF) secured an accuracy of 65.50%. Bell at al. [48] used the 

Scale invariant feature transform (SIFT) and IFV for getting 

69.60% accuracy. Deep Lumina [46] obtained an accuracy of 

90.15%. Mao et al. [44] presented a method Deep residual 

pooling network obtained an accuracy of 85.72%. Jbene et al. 

[49] Performed an analysis with Xception and SIFT-FV to

obtain the performance of 86.10% on FMD. Experiments

conducted demonstrate that the results in YIQ color model are

excellent and promising. WaveTexNeT demonstrated an

exceptional accuracy of 94.18% for YCbCr and 95.01% for

YIQ luminance on DTD. So it is inferred, that the proposed 

WaveTexNeT model is providing better accuracy. 

Table 4. Precision, recall and F1 score on FMD with YIQ 

Luminance 

Class Precision Recall F1 score 

Fabric 0.98 0.95 0.97 

Foliage 0.95 0.98 0.97 

Glass 0.97 0.93 0.95 

Leather 0.94 0.97 0.95 

Metal 0.95 0.93 0.94 

Paper 0.95 0.95 0.95 

Plastic 0.95 0.93 0.94 

Stone 0.92 0.95 0.93 

Water 0.98 0.93 0.96 

Wood 0.92 0.97 0.94 

Overall Accuracy 95.01% 

(a) 

(b) 

Figure 9. (a) Accuracy curve and (b) Loss curve of 

WaveTexNeT for FMD dataset 
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Table 5. Accuracy analysis on FMD -WaveTexNeT model 

Authors Method Accuracy (%) 

Song et al. [47] FC-CNN + FV-CNN 83.20 

Simon and Uma [43] Deep Features + SVM 84.50 

Cimpoi et al. [39] IFV+DeCAF 65.50 

Bell et al. [48] SIFT-IFV+fc7 69.60 

JBene et al. [49] Xception + SIFT-FV 86.10 

Simon and Uma [46] DeepLumina 90.15 

Mao et al. [44] Deep Residual Pooling Network 85.72 

WaveTexNeT (Proposed Method) Wavelet CNN+ Xception + Luminance (YCbCr) 94.18 

WaveTexNeT (Proposed Method) Wavelet CNN+ Xception + Luminance (YIQ) 95.01 

The confusion matrix for the WaveTexNeTanalysed for the 

color spaces YIQ and YCbCr on FMD datset is displayed in 

Figure 10 and Figure 11 respectively.  

Figure 10. WaveTexNeT - Confusion Matrix on FMD in 

YIQ color space 

Figure 11. WaveTexNeT - Confusion Matrix on FMD in 

YCbCrcolor space 

Figure 12. Graphical representation of accuracy analysis on 

FMD 

5. CONCLUSION

In this work, a deep learning method is proposed, 

WaveTexNeT that combines the wavelet and deep learning 

approach from Wavelet CNN and Xception model 

respectively for visual natural texture classification. This deep 

network combines the spatial and the spectral features of the 

describable natural textures with luminance information. A 

new color space image data augmentation technique is 

introduced that augments luminance images for the color 

texture classification. Experiments are conducted to assess the 

efficiency of the WaveTexNeT quantitatively and estimated 

confusion matrix. The texture class-wise precision, recall and 

F1-score on DTD and FMD are also evaluated by conducting 

the experiments. Extensive experiments have been carried out 

with YIQ and YCbCr color models. Experiments demonstrate 

that luminance from YIQ proved to be a better color model for 

texture classification. The proposed method obtained excellent 

and promising accuracy of 90.34% on DTD and 95.01% on 

FMD challenging texture datasets than other state -of -the -art 

techniques. 
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