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This paper attempts to improve the radar data quality and discover intrusion behaviors by 

mining frequent patterns of real-time data. For this purpose, the author improved the frequent 

pattern mining algorithm for static datasets, and proposed a maximum frequent pattern mining 

algorithm based on bitmap mapping. Next, a new frequent pattern mining algorithm was 

designed specifically for data stream with the storage structure of index pattern tree (IPT). The 

new algorithm was applied to process the real-time radar data stream. The application results 

demonstrate efficiency of our algorithm in time and space. 

Keywords: 

frequent pattern, data mining, radar 

data, data stream, index pattern tree 

(IPT) 

1. INTRODUCTION

With the proliferation of information technology, a huge 

amount of data has been generated in various fields. These data 

contain both the traditional static data, which are stored in 

databases, and the real-time and infinite data stream [1]. 

Typical examples of the data stream include the instantaneous 

information that is continuously generated in network 

monitoring, and the various trend charts produced in the stock 

market. The real-time nature raises higher requirement for the 

mining of data stream. After all, it is impossible to store all 

data in the memory, as the data stream is being produced 

infinitely. If applied to data stream, the frequent pattern mining 

algorithm will face problems in mining ability and storage 

structure. 

The above problems are particularly severe in the military 

field. Since WWII, radar has been widely used for military and 

civil purposes, yielding a massive amount of radar data with 

complex structure. The shear volume of the data, coupled with 

the high precision, makes it extremely difficult to find useful 

information by manual method. Therefore, more and more 

data mining algorithms, e.g. sequential pattern mining based 

on association rules [2], have been introduced to extract 

features and mine out information from the radar data. 

Through data analysis and sequential pattern mining, these 

algorithms manage to excavate the sequence pattern law, 

enhance the signal quality, predict scanning result, detect 

intrusions/faults and assist reconnaissance. 

In view of the above, this paper improves the frequent 

pattern mining algorithm and carries out preprocessing based 

on actual radar data. The improved algorithm was applied to 

process the real-time radar data stream. The application results 

demonstrate efficiency of our algorithm in time and space. 

2. LITERATURE REVIEW

Since its birth in 1995, the sequential pattern mining [3] has 

developed into an important branch of data mining. Apriori-

based sequential pattern mining algorithms [6] like AprioriAll 

[4], AprioriSome [5] have attracted much attention from 

scholars. For example, Bureva et al. [7] extended the frequent 

pattern mining, which extracts frequent item sets into a 

generalized sequential pattern (GSP) algorithm. Masseglia et 

al. [8] proposed the PSP algorithm with prefix tree as the 

storage structure. Zhang et al. [9] developed the FFS algorithm 

to solve the input/output (I/O) consumption problem in the 

GSP. The above mining algorithms all generate lots of 

candidate sets, and thus a considerable storage space.  

Drawing from the pattern growth, Han et al. [10] designed 

the frequent pattern (FP) growth algorithm that generates no 

candidate set. The same idea was reflected in Hsu’s free-space 

algorithm [11] and Pei’s prefix-span algorithm [12]. In 

addition, Huang et al. [13] put forward the memory indexing 

for sequential pattern mining (MEMISP) algorithm based on 

memory index, which achieves high CPU and memory 

utilization rate by reading data into the memory and scanning 

the database only once. 

Since 2000, the mining of data stream has gradually 

attracted the attention from the academia. For instance, Guha 

et al. [14] created a novel data stream management system 

called the STREAM. Zhou et al. [15] proposed the tilted time 

window strategy after exploring clustering, classification and 

frequent pattern mining. Guo et al. [16] presented an 

approximation algorithm to mine frequent patterns of time 

series. Desai et al. [17] designed the FTP-DS algorithm to 

mine the frequent patterns of time series. Asai et al. [18] set up 

an online mining algorithm called StreamT, which is able to 

mine frequent ordered trees. 

The sliding window model can mine out recently arrived 

data, without specifying the start and end points of the window. 

In this model, the processing range of data can be adjusted by 

sliding on the window. Chang et al. [19] proposed a frequent 

pattern mining algorithm based on sliding window model, 

which mines the frequent patterns of data streams in the 

current window and saves the mining results in the prefix tree. 

Chi et al. [20] invented a heuristic moment algorithm that 

mines closed frequent patterns by continuous sliding windows 

in data streams. Inspired by sliding window, Chen et al. [21] 

used the storage structure of SWP-tree to mine frequent 
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patterns in data stream through dynamic adjustment of the 

window size. Lee et al. [22] put forward the WMFP-SW 

algorithm to mine frequent patterns in data streams based on 

the weighted processing of items on the sliding window model; 

the correctness of the extracted patterns is judged according to 

the weighted values. 

 

 

3. BITMAP-BASED IMPROVED MAXIMUM 

FREQUENT PATTERN MINING ALGORITHM 

 

The bitmap representation refers to mapping the data of 

sequence database into a bitmap in memory, using binary bits 

0 and 1 for storage. In the subsequent analysis, all sequence 

operations are based on bitmap rows in memory, eliminating 

the need for second scan of the sequence database. 

In this paper, the radar data are inputted in the form of a data 

stream, which differs from the traditional consumer shopping 

data for sequential pattern mining. Before mapping, the radar 

data were denoised and processed in blocks, because the 

original data are both noisy and infinite. Next, each piece of 

processed data was mapped to the storage structure according 

to bitmap mapping, laying the basis for frequent pattern 

mining. 

 

3.1 Bitmap representation of time series data 

 

The sequence mining was first proposed based on the 

shopping sequence of consumers. Thus, the data processing 

often involves the consumer shopping data. In general, the 

shopping data are saved in the database with joint primary 

keys like consumer identifier (CID) and transaction identifier 

(TID). During data preprocessing, the same CID data in the 

consumer shopping database are merged. The final result 

(Table 1) will serve as the input of the sequential pattern 

mining algorithm. 

 

Table 1. Data model of consumer shopping database after 

merging 

 
CID Sequence 

1 (a, b) a (a, c) 

2 aa (a, c) b 

3 (a, b) a (ac) 

 

Table 2. Radar database 

 
ID attr1 attr2 ……. t 

1 22.6 100 …… 1.11 

2 22.7 127 …… 1.12 

3 23.8 125 …… 1.13 

4 27.6 133 …… 1.15 

5 27.8 185 …… 1.17 

6 28.1 200 …… 1.19 

7 23.5 361 …… 1.23 

8 22.9 298 …… 1.26 

9 22.5 424 …… 1.29 

10 22.3 339 …… 1.36 

 

Unlike consumer shopping data, radar data are stored in the 

form of data stream in the database (Table 2). Due to the 

difference in data form, it is impossible to merge and process 

the radar data by the traditional method. To solve the problem, 

the data were normalized and data blocks were mapped into 

the memory, before frequent pattern mining. 

As mentioned above, bitmap representation aims to map the 

data in the database into a bitmap. To compute the support 

degree effectively, the sequence of item sets in the database 

was divided into different sets. If its length falls between 2k+1 

and 2k+1, the sequence was considered as a sequence of 2k+1 

bits, where the minimum value of k is 1. Figure 1 presents the 

bitmap mapped from the data in Table 1. 

 

 
 

Figure 1. Bitmap diagram of sequence database 

 

The sequential database needs to be scanned multiple times 

in common mining algorithms based on candidate sets, and 

twice in mining algorithms based on pattern growth. By 

contrast, the bitmap-based mining only needs to scan the 

database once, because the sequence information in the 

database is mapped directly to bitmaps for storage. Therefore, 

the radar database in this research is mapped into memory, 

such that all subsequent operations are performed on the 

bitmap, eliminating the need for a second scan. This perfectly 

suits the constraint that the radar database can only be scanned 

once. 

After the radar data were denoised and processed in blocks, 

the data in the current block still cannot be fully mapped into 

a bitmap and saved in the memory. This calls for a special data 

structure to store the mapped data. Thus, this paper designs a 

new algorithm that maps sequential data into linked storage 

data structure (Figure 2). 

 

 
 

Figure 2. Structural diagrams of bitmap mapping for storing 

data 

 

3.2 Maximum frequent pattern mining algorithm based on 

bitmap mapping 

 

The proposed algorithm integrates bitmap mapping with 

recursive division. The frequent sequence patterns are mined 

out from radar sequence data in such steps as source 
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partitioning, denoising, block processing, bitmap mapping and 

recursive sequential pattern mining. 

Specifically, the proposed algorithm firstly divides the 

original database into data sources, ensuring that all input 

sequences are from the same radar. On this basis, the radar 

database is established. Next, the denoising plan is adopted to 

smooth the jamming in radar data, followed by the 

determination of the size of data blocks. After that, the 

mapping from radar database to bitmap is completed by 

sequential pattern mining (SPAM) algorithm. Finally, the 

frequent sequential patterns are mined out from the radar data. 

 

 
 

Figure 3. Principle of radar signal noise processing 

 

The radar data were denoised by the data interval division 

method. Under the rule of sequential pattern representation in 

Figure 3(a), the values of attribute 𝛼 were divided into several 

intervals. The value of each interval was replaced by a specific 

value. The processed data are plotted as Figure 3(b). 

The length of each data interval can be calculated by: 

 

length =
𝐻−𝐿

𝑛
                                                                    (1) 

 

where, H and L are the maximum and the minimum length of 

radar data that can be obtained, respectively; n is the number 

of data intervals. The expression of length can be obtained 

from formula (1). Then, the mean value of points in each 

interval can be determined by: 

 

L +
2𝑖−1

2
𝑙𝑒𝑛𝑔𝑡ℎ    (1 ≤ 𝑖 ≤ 𝑛)                                       (2) 

 

According to formula (2), it can be calculated that the values 

of 1 to n intervals are in the order of L +
1

2
𝑙𝑒𝑛𝑔𝑡ℎ , L +

3

2
𝑙𝑒𝑛𝑔𝑡ℎ,…, H −

1

2
𝑙𝑒𝑛𝑔𝑡ℎ, respectively. 

As mentioned before, the data in the data stream must be 

processed in blocks rather than processed all at once, due to 

the infinite nature of the data stream. To determine the block 

size, this paper presents a method to partition data blocks 

based on radar signal periodicity. Assuming that the radar 

signals have the following periodic regularity, the block 

processing plan based on the periodic data is shown in Figure 

4. 

 
 

Figure 4. Diagram of radar data block processing 

 
 

Figure 5. Bitmap mapping of radar signal test data 

 

When the data are mapped from the radar database to 

memory, a special data structure is needed to store the 

mapping of original data. The mapping data structure adopted 

in our algorithm is explained as follows. 

Table 3 shows the data of radar data sequence after source 

partitioning, denoising and block processing. 

 

Table 3. Processed data of radar data sequence 

 

Sequence ID Sequence 

1 a b a c d 

2 a b c a c 

3 b a b a c 

4 a b a c c 

 

After being mapped to the memory by bitmap mapping, the 

data in Table 3 can be transformed into the form in Figure 5. 

Taking the sequence database S as an example, the 

projection database can be constructed as shown in Figure 6. 

 

 
 

Figure 6. Recursive construction of projection database 

 

The pseudocode description of the proposed algorithm is as 

follows: 

Input: data source 

Output: frequent pattern sequence 

1.Data Source partition by users; 

2.Determine the block size with cycle; 

3.Map the database to bitmap; 
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4.Get first column FC of bitmap; 

5.For each item in FC 

6.   if(item.count<min-sup) 

          remove item from bitmap; 

7.   End if; 

8.Initial project database PD, sequence S=; 

9.For each item in FC 

      DFS-mining (S, PD, item); 

10.End for;   

 

 

4. A NEW FREQUENT PATTERN MINING 

ALGORITHM BASED ON INDEX PATTERN TREE 

STORAGE STRUCTURE 

 

In this section, an ordered sequence Moment algorithm for 

mining closed frequent pattern itemset is proposed. Moment 

algorithm uses CET storage structure to maintain all node 

information. Each update operation will traverse the whole 

tree structure, which makes it difficult to update data. The 

proposed algorithm improves the storage structure of CET, 

constructs the nodes in the index pattern tree, and improves the 

speed of finding nodes in the update process.   

 

4.1 Data storage model based on index tree 

 

The key to sliding window-based frequent pattern mining 

from data stream lies in the design of the outline structure. As 

the window moves, new transactions are constantly emerging, 

and old ones need to be removed. Each transaction can be 

represented as binary bits. Then, transactions can be added or 

deleted by moving the project left, during the window sliding. 

In this section, the transactions are expressed in binary form 

[23] and the item location in each basic window is stored in a 

chain structure, making ordered sequences minable. The bit 

sequence of items in each window is shown in Table 4. 

 

Table 4. The bit sequence of items in each window 

 
 Window W1 Window W2 Window W3 

a 1101 1011 0111 

b 0001 0010 0100 

c 0111 1111 1111 

d 0101 1011 0110 

e 1111 1110 1101 

 

During the construction of the bit list of item set, the items 

were stored in the chain storage structure (Figure 7). 

 

 
Figure 7. Chain storage structure 

 
 

Figure 8. IPT structure in W1 window 

 

The mined data were preserved in the IPT [IPT]. Note that 

only frequent 1-item sets and closed frequent items could be 

stored in the structure. Figure 8 presents the IPT structure for 

the data stream in window W1. 

 

4.2 New frequent pattern mining algorithm 

 

During the mining of closed frequent item sets, the 

improved moment algorithm mainly constructs the IPT and 

updates the IPT through window sliding. Taking the dataset in 

Table 4 for example, the frequent patterns can be mined out in 

the following steps (window size: 4; minimum support: 50 %): 

(1) Initial operations: 

The dataset of each window is scanned. Next, the bit 

sequence representation and the location of each item are 

saved in a chain structure. 

(2) IPT construction: 

In the initial state, the IPT and root node are empty and the 

child node is a frequent 1-itemset. Then, each node is 

processed by bit "and" operation in a right combination way, 

producing the child node of the node. If it is frequent, the child 

node is stored in the IPT. Otherwise, it is not saved until no 

more frequent item is generated. 

(3) IPT update: 

Deletion outdated transactions: When the window slides, 

the node 𝑛𝑖 pointed by the header pointer is found in the index 

table according to the item I, and the support degree of the 

node 𝑛𝑖 and its child nodes are updated.  

Addition of new transactions: When the window slides, the 

support degree of each node is updated according to the bit 

sequence representation of the sliding transaction in the index 

table. After updating the information of the items in the index 

table, the pruning operation is performed to prune the nodes 

with substandard support degree. 

(4) Termination condition: 

As the window slides, Step (3) is repeated until there is no 

data inflow. 

The new algorithm improves the storage structure of the 

original moment algorithm, speeds up the search and update, 

prunes the substandard nodes, and saves the memory space. 

 

 

5. EXPERIMENTAL VERIFICATION 

 

The mining effect of the proposed algorithm was verified 

through an experiment on multidimensional radar data. The 

verification covers three aspects: denoising, data partitioning 

and frequent pattern mining. The frequent patterns were mined 

by 1D attributes to analyze to pattern periodicity. The selected 

test dataset of radar data contains over 7,500 data points. The 

signal data of the selected dimension consist of two columns, 

namely, the time of radar data generation (microsecond) and 
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the value of 𝑎𝑘 attribute of radar data. Figure 9 presents the 

local simulation diagram of test dataset. Obviously, the radar 

signals have periodic variations. 

 

 
 

Figure 9. The local simulation diagram of radar signal test dataset 

 

5.1 Denoising 

 

The noise jamming of radar data severely impedes 

sequential pattern mining. The noise must be removed to 

achieve accurate mining. Through observation,  the  value  of  

 

Attribute 𝑎𝑘 of radar data was found to fall between 36 and 50. 

Here, the radar data are divided into 12 intervals for processing. 

The denoising results are shown in Figure 10 below. The 

original radar data and the denoised data were compared to 

disclose the denoising effect. 

 
 

Figure 10. The local simulation diagram of radar signal after noise processing 

 

 
 

Figure 11. Comparison of radar signal noise jamming before and after processing 
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5.2 Data partitioning 

 

The  radar  data  were  processed  in  blocks  by  the  peak  

extraction method. The results are shown in Figure 12, where 

the solid line is the law of radar data and the part between two 

dashed lines is an input sequence. 

 

 
 

Figure 12. Radar signal data blocking 

 

5.3 Maximum frequent pattern mining 

 

The threshold of support in frequent pattern patterns was set 

to 50%. To control the number of generated frequent sequence 

patterns, our algorithm only outputs the maximum frequent 

sequence. Figure 13 shows a frequent sequence pattern in the 

mining results. Then, the original data and the mining result 

were simulated in the same graph (Figure 14).

 

 
 

Figure 13. Radar signal mining results 

 

 
 

Figure 14. Comparison of radar signal mining results with original data 
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Next, the proposed algorithm was compared with the 

traditional moment algorithm in runtime and space 

consumption at the minimum support of 15 %, 30 %, 45 %, 

60 % and 75 %, respectively. The runtimes and space 

consumptions of the two algorithms are compared in Figures 

15 and 16, respectively. 

 

 
 

Figure 15. The comparison of running time between the two 

algorithms 

 

 
 

Figure 16. The comparison of space consumption between 

the two algorithms 

 

As shown in the above figures, the proposed algorithm was 

more efficient than the traditional moment algorithm; under a 

low support, our algorithm consumed less space than the 

traditional one; with the increase of support, however, the 

space consumption of our algorithm surpassed that of the 

traditional algorithm. This is because our algorithm needs to 

map the sequential database into memory, which takes up a 

certain amount of space. 

 

 

6. CONCLUSIONS 

 

This paper explores the frequent pattern mining for stream 

data on real-time radar signals. Then, a bitmap-based mining 

algorithm was proposed for static data and a sliding window-

based closed frequent pattern mining algorithm was developed 

for stream data. Both theoretical analysis and experiment 

verification confirmed that the proposed stream data mining 

method can save memory space and achieve efficient 

operation in the mining of maximum frequent patterns. The 

future research will try to overcome the conceptual drift in data 

stream and design a better storage structure for result update 

and query. 
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