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There is a need for fast, accurate, and real-time algorithms to detect brain tumors effectively 

to support the physician’s decision-making for treatment purposes. A brain tumor is a life-

threatening uncontrolled growth of cells and tissues that may cause death due to inaccurate 

and late detection. K-means clustering is one of the clustering techniques that is widely used 

in brain tumor detection, but it has some drawbacks such as dependency on initial centroid 

values and a tendency to fall on local optima. This research proposes a new model that uses 

grey wolf optimization to find the optimal value of K (clusters number) of the k-means 

algorithm to avoid local optima. A parallel implementation of the K-means clustering 

algorithm on a field-programmable gate array (FPGA) is also proposed to enhance the 

performance by reducing the processing time and the power consumption. Moreover, the 

proposed algorithm is implemented using the Vivado HLS tool on Xilinx Kintex7 

XC7K160t FPGA 484-1 where different optimization techniques are adopted and applied, 

such as loop unrolling, loop pipelining, dataflow, and loop merging. The achieved speed-up 

of the parallel implementation compared with sequential implementation was 88.17, where 

the obtained average clustering accuracy was 97.11%. 
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1. INTRODUCTION

All human body activities are controlled by the brain, 

including intelligence, memory, speech, senses, etc. [1]. The 

brain consists of three types of tissues, including grey matter, 

white matter, and cerebrospinal fluid [1]. A brain tumor is an 

abnormal and uncontrolled growth of brain cells. It is a life-

threatening disease that can be primary or secondary due to 

metastasis from other organs in the body. It’s classified into 

two types: malignant and benign [1]. The Magnetic Resonance 

Imaging technique MRI is the preferred imaging technique to 

detect brain tumors [2] since it’s widely used in hospitals for 

diagnosis, treatment, and follow-up disease [2]. It is used to 

create a picture of the anatomy and physiology of body organs. 

MRI has the advantage of being non invasive diagnostic tool 

as it does not use radiation. Thus, it’s commonly used to image 

soft tissues such as the brain, where it detects changes in the 

brain, including bleeding and tumors [2].  

Early detection of brain tumors helps in accelerating the 

treatment and saving human lives [3]. There are many brain 

tumor detection algorithms that are proposed to help in the 

diagnosis and treatment processes [3]. K-means is one of these 

algorithms [3]. It is an unsupervised, simple, and practicable 

algorithm that classifies the observations into classes. It was 

chosen because it is efficient and does not necessitate 

significant effort in data preprocessing, training, and testing 

[3]. However, K-means has some drawbacks, such as the 

dependency on initial centroid values, the large number of 

iterations, determining the number of clusters and a tendency 

to fall into local optima [4]. Therefore, the Grey Wolf 

Optimization (GWO) technique [5] was adopted and applied 

to determine the optimal number of clusters. It’s an 

optimization technique that is inspired by the behavior of grey 

wolves and their strategies for eating and hunting [5]. This will 

help in optimizing the accuracy by avoiding falling into local 

optimum and improving the processing speed.  

However, the detection of brain tumors from MRI images is 

a computationally intensive task, especially when the image 

size increases. It requires processing of a massive amount of 

data known as Big Data, especially for processing MRI for 

brain tumor detection which needs high-speed processing to 

analyze data [3]. Therefore, a parallel implementation of the 

proposed K-means based on GWO was proposed and 

implemented on the FPGA parallel platform. This means that 

more than one section of a system may operate with a different 

set of data concurrently to improve the execution time [6]. 

However, the FPGA needs a long time for designing, 

implementation, and validation processes since it requires 

knowledge of digital systems and underlying architectures [6]. 

Xilinx FPGA has a powerful tool called the Vivado HLS tool 

which can be used to overcome these constraints [7]. 

Therefore, the Vivado High-Level Synthesis tool for synthesis 

and simulation was adopted and used. It’s a tool that is used 

for configuring the FPGA and converting the C family code 

into a hardware description language. So, the proposed 

algorithm was implemented on the Vivado HLS tool where 

different optimization techniques were adopted and applied. 

The remainder of this paper is organized as follows: Section 

I provides an overview of the topic. Section II discusses the 

related work. Section III explains the K-means algorithm and 

its operation. Section IV shows a brief description of the Grey 

Wolf Optimization, while Section V provides an explanation 

of the FPGA and Vivado HLS tool, Section ⅤI presents the 

proposed methodology with a detailed explanation, and 
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Section ⅥI presents and analyzes the results obtained from the 

described implementation. Finally, Section ⅦI concludes the 

results and remarks of the work. 

 

 
2. RELATED WORK 

 
In the last few years, many researchers have proposed many 

parallel implementations of the K-means algorithm. A 

completely parallel implementation of the K-means clustering 

technique was developed on FPGA [8]. To accelerate 

processing time and separate huge amounts of data (Big Data) 

into K clusters, they used the Euclidean distance metric to 

calculate the similarity between the data and the initial 

centroid of each cluster to determine to which cluster the data 

belongs. They reached a performance level of more than 53 

million data points processed per second. In the study of Hema 

and Madhavi [9], accurate results of tumor segmentation on 

MRI images with FPGA-based K-means clustering are 

obtained where there is no information regarding the speed-up 

or the image size. Jaroš et al. [10] presented a method for 

speeding up K-means clustering, which is used in medical 

image segmentation. They used many integrated circuit MIC 

architectures with the Intel Xeon Phi coprocessor to perform a 

parallel implementation of the algorithm. They compared MIC 

with CPU and GPU on Computed Tomography (CT) images 

of the human body. A parallel implementation of 2D image 

clustering has been proposed on an FPGA using the moving 

window technique [11]. The authors used a multi-core FPGA 

to reduce the required processing time of the clustering 

technique. The implementation of the K-means clustering 

algorithm on FPGA has been proposed in the field of 

bioinformatics to analyze microarray data [12]. Microarray 

data is a technique used by biologists to perform many genome 

experiments. Using FPGA in this domain is very effective 

because of the huge amount of data that needs to be analyzed. 

They used five K-means cores on Xilinx Virtex4 XC4VLX25 

FPGA and achieved a speed-up of 51.7 times. All previous 

works have a limitation where the value of K was not accurate 

since it was selected randomly and sometimes based on 

expectation, which may fall into local optima. Therefore, in 

this research, we adopted and applied the Grey Wolf 

Optimization (GWO) technique to determine the optimal 

number of clusters (K) and overcome the above mentioned 

limitations.  

Many researchers use metaheuristic algorithms to overcome 

the shortcomings of classical K-means algorithms. GWO is 

used in the study [13] as a solution to the K-means algorithm's 

problems. The authors combined GWO with K-means 

clustering to solve a capacitated vehicle routing problem [13]. 

Each wolf searches for a set of centroids based on cluster 

number to avoid random initialization of centroids. The 

authors [14] proposed Grey Wolf Algorithm-based Clustering 

(GWAC), where the search capability of GWO is used to 

search for optimal initial centroids of K-means clustering. 
 
 

3. THE K-MEANS ALGORITHM  
 

K-means clustering is a widely used algorithm that divides 

datasets into groups or "clusters" based on similarity metrics 

[8]. Each data point is assigned to one cluster based on the 

similarity between this data point and the cluster centroid [8]. 

Supposing that we have a dataset 𝑋  defined in Eq. (1), it 

consists of 𝑛 data points that need to be clustered into K 

clusters [8] where each data point 𝑃 should be assigned to one 

cluster. 

 

𝑋 = (𝑝1, 𝑝2, 𝑝3 ⋯ , 𝑝𝑛) (1) 

 

Firstly, the number of clusters K must be determined. As 

mentioned above, in traditional K-means, K is determined 

randomly. Accordingly, the GWO algorithm is adopted and 

used to help in finding the optimal value of K since the K value 

has a direct impact on the accuracy of the results of the K-

means algorithm. Then, each cluster assigns an initial centroid 

where 𝐶  is the set of centroids based on Eq. (2) [8]. In the 

traditional K-means, cluster centroids are initialized randomly. 

This makes the result of clustering dependent on the first 

centroids, which leads to a local optima problem [15]. 

However, a mathematical model is adopted and used based on 

Eq. (3) to initialize the cluster centroid, which depends on the 

maximum intensity of the image and the number of clusters 

[15]. 
 

𝐶 = (𝑐1, 𝑐2, 𝑐3,⋯ , 𝑐𝑘) (2) 
 

𝐶𝑖 = 𝑖 ∗
𝑚

𝑘 + 1
 (3) 

 

where, m is the maximum intensity of the image based on the 

histogram, i is the i’th centroid number that takes values 1, 2, 

3,…., k, and k is the number of clusters. 

The distance metric is used to determine to which cluster c 

the data point p must be assigned [8]. The distance between 

data point 𝑝 on 𝑋  and each c centroid on 𝐶  is measured by 

using the Euclidean distance metric based on Eq. (4) [8]. Then, 

p is assigned to the cluster with a minimum distance between 

p and centroid of the cluster.  

 

𝑑(𝑝𝑛, 𝑐𝑘)
2 = ∑|𝑝𝑛,𝑖 − 𝑐𝑘,𝑖|

2

𝐷

𝑖=0

 (4) 

 

where, d is the distance and D is the dimension of the data.  

To determine the cluster of a data point named p1, the 

distances between 𝑝1  and each centroid 𝑐1, 𝑐2, 𝑐3, ….𝑐𝑘  are 

calculated based on Eq. (4). The result is the set of distances 

based on Eq. (5) [8]. The 𝑝1 is assigned to the closest cluster 

with a minimum distance. After that, the new centroids of each 

cluster are calculated, and the subset C is updated. The updated 

means are calculated based on Eq. (6) [8].  

 

𝑑 =  𝑑1(𝑝1, 𝑐1), 𝑑2(𝑝1, 𝑐2),⋯ , 𝑑𝑘(𝑝1, 𝑐𝑘) (5) 
 

𝐶𝑘[𝑚] =
1

𝑧
 ∑𝑝𝑗,𝑠[𝑚]

𝑧

𝑠=1

 (6) 

 

where, z is the number of data points in that cluster.  

This process is repeated for each data point until the 

centroid does not change, and there is no difference between 

c(n) and c(n+1) or the difference is smaller than a threshold 

value τ is determined by trial, where n is the iteration number. 

Figure 1 shows the main steps of the K-means clustering 

algorithm. 
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Figure 1. K-means algorithm steps 

 

 

4. GREY WOLF OPTIMIZATION 

 

Optimization is the process of finding the optimal solution 

from all possible solutions in a given space to maximize or 

minimize its objective function [5]. Gray wolf optimization is 

a metaheuristic optimization technique identified by Mirjalili 

[5]. This technique was inspired by the behavior of the grey 

wolf, its social hierarchy, and its strategy in hunting. Figure 2 

depicts the dominant grey wolf social hierarchy, which 

consists of four categories. The first top one is the leader, who 

is called the alpha. Alpha has a large amount of authority as 

it’s responsible for making a decision about the wolves’ lives. 

The pack should follow the alpha’s decisions and orders. The 

second level is beta; it helps alpha in decision making and acts 

as an advisor to it. It should follow the alpha wolves but 

command the lower level wolves; beta is the best candidate to 

be alpha. The third level is the delta. Delta wolves have to 

submit to alphas and betas, but they dominate the omega. 

Scouts, sentinels, elders, hunters, and caretakers belong to this 

category. The last ranking wolf is omega; it is the wolves that 

have to submit to all the other dominant wolves. They are the 

last wolves that are allowed to eat [5].  

 

α 

β

δ 

ω
 

 

Figure 2. Hierarchy of the grey wolf  

 

Hunting strategies are divided into three stages: tracking the 

prey, encircling it, and attacking it. The mathematical 

representation of GWO depends on these strategies, 𝑎 is the 

best solution, 𝛽 is the second-best solution, and 𝛿 is the third-

best solution, while ω wolves follow the upper level [5]. 

Mathematical models that represent the wolves’ behavior in 

their hunting phases are based on Eqns. (7) and (8) [5]. 

 

𝐷⃑ = |𝐶 . 𝑋𝑝 (𝑡) − 𝑋 (𝑡)| (7) 

 

𝑋 (𝑡 + 1) = 𝑋𝑝 (𝑡) − 𝐴⃑ . 𝐷⃑  (8) 

where, (X) is the position vector of the grey wolf, and (𝑋𝑝) is 

the position vector of prey, (t) is the iteration number, (C) and 

(A) are coefficient vectors that are calculated based on Eqns. 

(9) and (10) [5]. 

 

𝐴⃑ = 2 𝑎 . 𝑟1  (9) 

 

𝐶 = 2. 𝑟2  (10) 

 

where, (𝑟1) and (𝑟2) are random vectors between 0 and 1, (a) 

is decreased from 2 to 0.  

The grey wolves can recognize the prey and encircle it. Also, 

it updates its positions according to the prey position. It can 

reach different locations by adjusting the values of (A) and (C). 

The wolves updated their positions to estimate the prey 

position based on the wolves a, β, and δ positions shown in 

Eqns. (11), (12), and (13) [5]. 

 

𝐷⃑𝛼 = 𝐶1 . 𝑋𝛼 − 𝑋 , 𝐷⃑𝛽 = 𝐶2 . 𝑋𝛽 − 𝑋 , 𝐷⃑𝛿 =

𝐶3 . 𝑋𝛿 − 𝑋  
(11) 

 

𝑋1 = 𝑋𝛼 − 𝐴⃑1 . 𝐷⃑𝛼 , 𝑋2 = 𝑋𝛽 − 𝐴⃑2 . 𝐷⃑𝛽 , 𝑋3 =

 𝑋𝛿 − 𝐴⃑3 . 𝐷⃑𝛿  
(12) 

 

𝑋 (𝑡 +) =  
𝑋1 + 𝑋2 + 𝑋3 

3
 (13) 

 

To represent the attack phase by decreasing the random 

vector (a). (a) is decreased from 2 to 0 over the course of 

iterations. When random value of 𝐴⃑ is between -1 and 1, the 

next position of a search agent can be in any position between 

its current position and the position of the prey. The attack 

phase is represented when |A| <1 where the searching for prey 

phase wolf is represented when |A| >1 which makes GWO 

searches globally. C is another parameter that must be utilized 

when modeling the search phase. It contains random values in 

the interval [0, 2]. It adds weight to prey, making it more 

difficult for wolves to catch; this affects wolf distance. C is 

important to show the random behavior of the algorithm and 

to avoid local optima. It may be considered as the effect of the 

obstacle. The algorithm searches for the best value of K which 

is the best position calculated based on the fitness value. 

 

 

5. FPGA PLATFORM AND VIVADO HLS TOOL 

 

An FPGA is a type of integrated circuit that consists of 

millions of logic cells that are configured to implement desired 

algorithms efficiently [16, 17]. The configuration is specified 

using hardware description languages [18]. FPGAs are widely 

used in a variety of applications, including industry, military, 

aerospace, automotive, audio communication, and image 

processing [18]. The FPGA consists of thousands of 

fundamental elements named "configurable logic blocks" 

(CLB). Each CLB consists of several logic blocks which 

consist mainly of Lookup tables (LUTs), Flip-Flop (FF), 

Digital Signal Processing (DSP), and others [19]. 

The FPGA provides a high degree of parallelism in the 

execution of arithmetic and logical functions. However, the 

FPGAs require a long time for the design, implementation, and 

testing processes since the programmer needs to have 

knowledge of the FPGA architecture [18]. Fortunately, Xilinx 

FPGA supports a software tool called Vivado HLS [7]. Vivado 

HLS is an interactive design environment that supports 
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hierarchal design and facilitates the creation and reuse of 

complex systems. It also accelerates design productivity and 

enables up to 4X productivity advantages [7]. It includes a 

built-in simulator that converts C family code into 

programmable logic [20]. Also, it analyzes all programs in 

terms of operations, loops, functions, and condition statements. 

It has many optimization techniques that can be applied to 

improve the performance in terms of execution time, area, and 

power dissipation [21]. 

 

 

6. METHODS OF OPTIMIZATION AND THE 

PROPOSED APPROACH PERFORMANCE TUNING 

 

The main objective of this research is to detect the brain 

tumor by MRI images efficiently by combining the K-means 

and GWO algorithms. The input image is entered into the 

GWO algorithm to determine the best number of clusters (K) 

to segment it as shown in Figure 3. Then, the K-means 

algorithm starts processing and outputting the clustered image. 

The methodology includes several steps, starting from 

searching for the MRI dataset and applying all processing to it 

until reaching the final outputs, as shown in Figure 3. Figure 4 

represents the methodology for all the steps of the proposed 

algorithm.  

 

Grey Wolf 

optimization
Input Image

K-means 

Clustering 
K

Clustered 

Image 

 
 

Figure 3. Methodology main stages 

 

Start

Input image

Pre-processing

Grey wolf optimization

K-means algorithm

K

Post-processing

Morphological operations

Optimization of all system on 

FPGA using Vivado HLS

Processed image

 
 

Figure 4. The proposed methodology flow chart 

6.1 Pre-processing  

 

The pre-processing step is needed to prepare the image and 

enhance its quality [22]. Pre-processing includes the following 

processes: 

 

• The skull stripping process, which segments brain 

tissues (cortex and cerebellum) from the surrounding 

region [23], aims to remove skull tissues and non-brain 

regions from the MRI images.  

• Converting the image to binary using the global 

thresholding method (Otsu’s method) [22]. 

• Extracting the labeled image to remove the skull label 

from the input image.  

 

6.2 Finding the optimal value of K using Grey Wolf 

Optimization 

 

One of the main challenges of the K-mean algorithm is 

determining the optimal number of clusters to separate the 

image efficiently [4], which affects the performance of the 

whole algorithm. In the MRI brain images, it’s very important 

to choose the correct number of clusters when using K-means 

clustering to segment the tumor region correctly and separate 

it from other brain tissues. The grey wolf optimizer (GWO) is 

used to search and find the optimal value of K where it starts 

by working on the input image and searching for the best K to 

segment it by comparing its fitness values as shown in Figure 

5. Then, the K value is sent to the K-means algorithm to start 

the clustering and output of K separate clusters. The steps of 

the GWO algorithm to find the optimal value of K are as 

follows: 

1. Firstly, the wolf population, parameters, and different 

values of K are determined.  

2. Secondly, the fitness function is calculated for each K. 

The fitness function that is used in GWO minimizes the 

Sum of Squared Error (SSE) between the intensity of the 

image pixel and the centroid of each cluster based on Eq. 

(14) [24]. This will help in minimizing the intra-cluster 

distance and maximizing the inter-cluster distance [24]. 

 

𝑓(𝑥) = ∑∑|𝑏𝑖 − 𝑐𝑗|
2

𝑛

𝑖=1

𝑘

𝑗=1

 (14) 

 

where, bi is the intensity of the image pixel, and cj is the 

centroid of each cluster. 

3. The fitness values are compared to select the best three K 

values (positions).  

4. After that, the parameters and positions of wolves are 

updated based on Eqns. (9) (10) (13). 

5. Steps from 2 to 4 are repeated until reaching the maximum 

number of iterations. The output of GWO is the wolf 

position and the best score of the wolf with a maximum 

fitness value. The position of the best wolf represents the 

number of clusters (K).  

 

6.3 K-mean clustering 

 

After determining the number of clusters K by GWO, the 

K-means algorithm starts, and the next step is to initialize the 

centroid of each cluster. The input image is the dataset that 

needs to be clustered to assign each pixel to a certain cluster. 

K centroids are initialized based on Eq. (3). Then, the feature 
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distance between each pixel and each centroid is calculated 

using Eq. (4) to assign each pixel to its nearest cluster. The 

next step is to calculate the new mean for all clusters after each 

iteration. The algorithm is repeated until the mean remains 

constant or the maximum number of iterations is reached, as 

shown in Figure 5.  

 

 
 

Figure 5. GWO-K-means algorithm flow chart 

 

The pseudocode of the proposed GWO-K-means algorithm 

is shown in Figure 6.  

 

 
 

Figure 6. Proposed methodology pseudocode 

 

6.4 Post-processing: Morphological operation 

 

Morphological operations are defined as a technique that 

deals with the shapes and features of an image [25]. It is used 

to remove imperfections, and noise after image segmentation, 

simplify the image, and keep essential shapes. There are two 

basic types of morphological operations: erosion and dilation 

[25]. Erosion is used to shrink objects in the images, while 

dilation is used to grow objects. The combination of erosion 

and dilation results in two operations: opening and closing [25]. 

In this research, the K-means algorithm is run on the image to 

segment it into K clusters. At this step, we can determine to 

which cluster the tumor belongs. Then, we use the opening 

operation on the cluster to separate the tumor and remove any 

noises and imperfections. The opening process is performed 

by eroding the image with the structuring element and then 

applying dilation to the eroded image with the same 

structuring element. The best appropriate structuring element 

for this type of application, after much experiment testing, was 

found to be a “disk” (a circle of ones and zeros outside of the 

circle in the structure element matrix) [26]. The radius of the 

structure element that was used in this research was 14 pixels 

[26]. 

 

6.5 Optimization on FPGA using Vivado HLS tool 

 

The K-means algorithm is implemented in parallel using an 

FPGA to improve the performance and reduce the execution 

time. The parallel implementation allows starting more than 

one process concurrently. To implement it in parallel on the 

FPGA, the proposed architecture is replicated according to a 

parallelization degree. This allows a group of input data to be 

processed simultaneously. Figure 7 represents the parallel 

implementation of the K-means algorithm modules. Firstly, 

the input image is processed row by row in parallel. Each 

processing unit takes the input image and operates the K-

means steps on one row. The input image was replicated 𝑁 

times since each processing element requires its own row and 

the neighboring rows of the original image to perform some 

operations and calculations for the distance module, clustering 

process, and the mean centroid function. The Centroid 

Register module stores the cluster’s centroids C[m] set which 

are updated at the end of each iteration. Then, the distance 

metric module calculates the distances between each data 

point Pj[m] and each centroid Ck[m]. 

The clustering process module assigns each data point to its 

closest cluster. The mean centroid module calculates the new 

mean of each cluster and stores it on the centroid register. 

These modules are fully implemented in parallel, so, they are 

replicated N times based on the hardware resources of the 

FPGA. This means that an N number of K-means modules are 

operated concurrently, each one working with a different 

image row.  

Moreover, the GWO is also implemented on FPGA. The 

GWO algorithm consists of four iterative modules, which are: 

the fitness calculation module, determining (alpha, beta, and 

delta) positions module, updating parameters module, and 

updating all wolves’ positions module. The input image is 

replicated N times to enable the simultaneous execution of the 

module’s function on different rows of the image. As shown 

in Figure 8, each processing unit takes the input image and 

works with a different row to operate the GWO algorithm 

steps in parallel. 

The GWO-K-means algorithm was developed using a 

parallel architecture on FPGA to accelerate the processing 

time. This is performed by implementing the whole proposed 

algorithm with the aid of the Vivado HLS tool. Different 

optimization techniques were adopted and applied, such as 

loop unrolling, loop pipelining, dataflow, and loop merging. 
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Function pipelining optimization allows processes to run 

concurrently, whereas loop unrolling allows all loop 

operations to run in one clock cycle but requires more 

hardware resources. This helps shorten the execution time. 

All the initialization steps of the GWO-K-means algorithm 

don’t have any dependencies, that can be executed in parallel 

by applying the loop pipelining and loop unrolling as shown 

in Figures 9 and 10 respectively. Without applying any 

optimization technique, every iteration needs three clock 

cycles to operate three processes, which requires 3N clock 

cycles for N iterations. However, with applying the pipelining 

optimization technique, only N+2 clock cycles are needed to 

complete the whole process as shown in Figure 9, and only 1 

clock cycle is needed for applying the unrolling optimization 

technique as shown in Figure 10.  
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Figure 7. Parallelization of the K-means algorithm 
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Figure 8. Parallelization of GWO algorithm 
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Figure 9. Loop pipelining technique 
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Figure 10. Loop unrolling technique 
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Figure 11. Data flow technique  

 

The distance and centroids calculations have no dependency, 

which can be executed in parallel by applying the loop 

pipelining and loop unrolling optimization techniques. 

Moreover, it’s not necessary for the update step to wait until 

the previous step has completely finished all its iterations. 

Once the current value is determined, it can then be forwarded 

to the update step to start its execution by applying the 

dataflow optimization technique as shown in Figure 11. 

Dataflow is an optimization technique that is applied to the 

loops to allow parallel execution. Loop 2 can’t start until Loop 

1 completes all its iterations. However, while applying the 

dataflow optimization technique, Loop 1 can forward the 

result from the first iteration to Loop 2, then both loops can 

operate concurrently. The same thing between Steps 5 and 

Step 6 as shown in Figure 11. The Vivado HLS tool 

automatically inserts channels between the loops to ensure 

data can flow asynchronously from one loop to the next [27].  
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Figure 12. GWO-K-means steps and its optimization 

techniques 

 

Table 1. The results of optimizing the objective function 

calculation (step 1) 

 

 Before optimization 
After 

optimization 

 Double point Fixed point  

Clock Period 

(CP) (ns) 
4.36 2.39 2.39 

Clock Cycles 

(CC)  
2349954 699987 100002 

DSP48E 3 2 5 

Flip-Flop (FF) 1128 110 156 

Lookup Table 

(LUT) 
880 91 225 

Execution time 

(ms) 
10.246 1.673 0.239 

Speed-up  1 6.124 42.87 

 

Figure 12 shows all the GWO-K-means steps and the 

proposed optimization techniques for each step. Step 1 is 

responsible for determining and calculating the objective 

function of GWO. It takes the input image and calculates an 

initial centroid and objective function 𝑜𝑏𝑗 − 𝑓𝑢𝑛  [][]. The 

time complexity of this piece of code is O (NM). We applied 

the pipelining technique to the outer and inner loops since 

there is no dependency. We also used a fixed-point data type 

rather than a double point to reduce the resources and the 

execution time. We used 10 bits for the integer part and 14 bits 

for the fraction part. After applying the pipelining directive, 
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better results are obtained where there is a notable decrease in 

the clock cycle, as shown in Table 1. However, there is an 

increase in FF and LUT, which makes sense because of the 

parallel execution after pipelining technique that needs more 

resources. The obtained speed-up of step 1 is 42.87, as shown 

in Table 1. 

Step 2 represents the initialization of the search agent 

positions, which can be fully parallelized since there is no 

dependency by applying the loop unrolling and loop pipelining. 

The obtained speed-up from applying the loop unrolling is 

88.7 and 44.71 with applying the pipelining technique as 

shown in Table 2. More hardware resources are needed for the 

loop unrolling, so it’s a trade-off issue between the execution 

time and the usage of hardware resources. However, the 

processing time for this step is short, and therefore the 

optimizations for this step were removed since the resources 

were increased for little improvement in performance. This 

helps in saving the resources where the bulk of the time is 

spent.  

 
Table 2. The result of optimization the search agent 

initialization (step 2) 

 

 Before optimization 
After 

pipelining 

After 

unrolling 

 
Double 

point 
Fixed point   

Clock Period 

(CP) (ns) 
3.68 2.39 2.39 2.39 

Clock Cycles 

(CC)  
2981 397 103 52 

DSP48E 14 10 12 12 

Flip-Flop (FF) 3058 35 31 365 

Lookup Table 

(LUT) 
2235 37 46 1623 

Execution time 

(ms) 
0.011 0.000948 0.000246 0.000124 

Speed-up  1 11.6 44.71 88.7 

 

Step 3 represents the search agent's fitness value calculation. 

It was parallelized in the same way using the loop pipelining 

directive. The obtained speed-up is 618, as shown in Table 3.  

 
Table 3. Result of optimization of the search agent’s fitness 

value calculation (step 3) 

 

 Before optimization 
After 

optimization 

 
Double 

point 
Fixed point  

Clock Period 

(CP) (ns) 
2.49 2.39 2.39 

Clock Cycles 

(CC)  
178801 149101 302 

DSP48E 0 0 0 

Flip-Flop (FF) 36 35 73 

Lookup Table 

(LUT) 
48 48 89 

Execution 

time (ms) 
0.445 0.356 0.00072 

Speed-up  1 1.25 618 

 
Step 4 represents the Alpha, Beta, and Delta wolves' 

position updating process. Both loop unrolling and pipelining 

were applied to improve the performance. The obtained speed-

up is 6.477, as shown in Table 4. 

Table 4. Results of optimizing Alpha, Beta, Delta wolves 

position updating (step 4) 

 

 Before optimization 
After 

optimization 

 
Double 

point 
Fixed point  

Clock Period 

(CP) (ns) 
2.49 2.39 2.39 

Clock Cycles 

(CC)  
188650 131208 30300 

DSP48E 0 0 0 

Flip-Flop (FF) 36 35 2704 

Lookup Table 

(LUT) 
48 48 7061 

Execution time 

(ms) 
0.469 0.313 0.0724 

Speed-up  1 1.5 6.477 

 

Step 5 represents the search agent position updating process. 

A loop pipelining directive was applied to improve the 

performance. The obtained speed-up is 32849, as shown in 

Table 5. 

 

Table 5. Results of optimizing search agent positions 

updating (step 5) 

 
  Before optimization After 

optimization 

 Double point Fixed point  

Clock Period 

(CP) (ns) 

2.49 2.39 2.39 

Clock Cycles 

(CC)  

472290001 3030005 15006 

DSP48E 42 24 31 

Flip-Flop (FF) 12470 88 122 

Lookup Table 

(LUT) 

8901 141 415 

Execution time 

(ms) 

1176 7.24 0.0358 

Speed-up  1 162.43 32849 

 

Step 6 represents the centroid's initialization. A loop 

pipelining directive was applied to improve the performance. 

The obtained speed-up is 9.69, as shown in Table 6. 
 

Table 6. Result of optimizing centroids initialization (step 6) 

 

  Before optimization 
After 

optimization 

 
Double 

point 
Fixed point  

Clock Period 

(CP) (ns) 
3.86 2.39 2.39 

Clock Cycles 

(CC)  
120001 60001 20003 

DSP48E 14 10 12 

Flip-Flop (FF) 2579 94 101 

Lookup Table 

(LUT) 
2181 141 162 

Execution time 

(ms) 
0.4632 0.1434 0.0478 

Speed-up  1 3.23 9.69 

 

Step 7 represents the distance matrix calculation. Both loop 

unrolling and pipelining were applied to improve the 

performance. The obtained speed-up is 40.377, as shown in 

Table 7. 
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Table 7. Result of optimizing the distance matrix calculation 

(step 7) 

 

 Before optimization 
After 

optimization 

 Double point Fixed point  

Clock Period 

(CP) (ns) 
3.86 2.39 2.39 

Clock Cycles 

(CC)  
50001551 18000351 2000450 

DSP48E 3 2 4 

Flip-Flop (FF) 871 149 4104 

Lookup Table 

(LUT) 
633 120 9096 

Execution time 

(ms) 
193 43 4.78 

Speed-up  1 4.489 40.377 

 

Table 8. Results of optimizing the minimum distance 

determining (step 8) 

 

 Before optimization 
After 

optimization 

 
Double 

point 

Fixed 

point 
 

Clock Period 

(CP) (ns) 
3.86 2.39 2.39 

Clock Cycles 

(CC)  
86000101 18000101 4000500 

DSP48E 0 0 0 

Flip-Flop (FF) 1652 181 10384 

Lookup Table 

(LUT) 
1449 129 11798 

Execution time 

(ms) 
331.96 43.02 9.56 

Speed-up  1 7.716 34.72 

 

Step 8 represents the minimum distance determined. Both 

loop unrolling and pipelining were applied to improve the 

performance. The obtained speed-up is 34.72, as shown in 

Table 8.  

Step 9 represents the cluster mean update. Both loop 

unrolling and pipelining were applied to improve the 

performance. The obtained speed-up is 35.48, as shown in 

Table 9. 

 

Table 9. Results of optimizing the clusters means updating 

(step 9) 

 
 Before optimization After optimization 

 Double point Fixed point  

Clock Period (CP) (ns) 4.24 2.39 2.39 

Clock Cycles (CC)  100003551 21000901 5001350 

DSP48E 12 8 10 

Flip-Flop (FF) 20808 693 28760 

Lookup Table (LUT) 14253 648 35284 

Execution time (ms) 424.02 50.2 11.95 

Speed-up  1 8.4466 35.48 

 

 

7. RESULTS AND DISCUSSION 

 

The proposed GWO-K-means algorithm has been 

implemented using MATLAB 2019 on an HP Laptop with an 

Intel Core i7-6700 GHz running at 3.4 GHz with a memory of 

16 GB. For verification purposes to examine the proposed 

algorithm, MRI image datasets containing T1-weighted and 

T2-weighted MRI types were used [28]. The grey wolf 

population is set to 100 search agents, and the iteration number 

is set to 300. The GWO will return the optimal value of K after 

completing all the iterations. GWO provides different values 

of K based on the input image, as shown in Table 10. After 

clustering, the tumor region will be separated from its cluster 

using a thresholding technique. Then, a morphological 

operation was applied to the tumor cluster to enhance the result 

and remove noise. Table 10 represents a group of MRI images 

from the dataset and the result after segmenting the brain 

tumor with different values of K for each image based on 

GWO. 

Several metrics were used to evaluate the performance of 

the proposed GWO K-means algorithm, including the 

Silhouette index [29], Mean of Absolute Error MAE [30], 

Root Mean Square Error RMSE [31], Clusters separation [32], 

Jaccard index [33], and the Dice index [34]. The Silhouette 

index measures how similar the point is to points in its own 

cluster when compared to points in other clusters based on Eq. 

(15) [24, 29]. 

 

Si =
( bi − ai)

max ( ai , bi)
 (15) 

 

where, 𝑎𝑖  is the average distance from the ith point to the other 

points in the same cluster. 𝑏𝑖is the minimum average distance 

from the ith point to points in a different cluster. The range of 

silhouette is [-1:1], a value near 1 indicates a correct cluster of 

the point, whereas a value near -1 indicates a noncorrect 

cluster of the point. 

The MAE measures how closely related points are in the 

cluster, which is calculated based on Eq. (16) [30].  

 

MAE =
∑ |di − c|z

i=1

z
 (16) 

 

where, 𝑑𝑖  is the data points (the pixel intensity), 𝑐 is the cluster 

centroid, and 𝑧 is the size of the cluster.  

The RMSE calculates the error or difference between two 

values, the lower value is preferred, but it cannot be zero, it 

indicates the accuracy of the system which is calculated based 

on Eq. (17) [31].  

 

𝑅𝑀𝑆𝐸 = √
1

𝑍
∗ ∑(𝑑𝑖 − 𝑐)2

𝑧

1

 (17) 

 

The separation measures how distinct or well separated a 

cluster is from other clusters, measured by the sum of squares 

(BSS) between them. The pairwise distance between cluster 

centers is widely used as a measure of separation, which is 

calculated based on Eq. (18) [32].  

 

𝐵𝑆𝑆 = ∑(𝐶 − 𝐶𝑖)
2

𝑘

𝑖=1

 (18) 
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Table 10. Results of GWO-K-means for different MRI images 
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The Jaccard index measures the similarity between two 

finite sets. It’s defined as the size of the intersections divided 

by the size of the union of the sample sets A and B, which is 

calculated based on Eq. (19) [34].  

 

𝐽(𝐴⃑, 𝐵) =
|𝐴⃑ ⋂𝐵 |

|𝐴⃑ ⋃𝐵|
 (19) 

 

The Dice coefficient measures similarity between two sets. 

It’s very similar to the Jaccard index, which is calculated based 

on Eq. (20).  

 

𝐷⃑(𝐴⃑, 𝐵) =
2 ∗ 𝐽(𝐴⃑, 𝐵)

1 + 𝐽(𝐴⃑, 𝐵)
 (20) 

 

Table 11. Average silhouette values 

 

Image 
Cluster number 

k 
Average silhouette 

1 3 0.8742 

2 5 0.8354 

3 5 0.8127 

4 4 0.8314 

5 4 0.9002 

6 7 0.8589 

 

Table 11 represents the silhouette values for the images (1, 

2, 3, 4, 5, and 6) in Table (10), respectively. The desirable 

value of the silhouette index is close to 1. The average 

silhouette score for image 1 is 0.8742, which is very good and 

indicates a correct clustering as shown in Table 11. The 

thickness of the silhouette plot indicates the number of pixels 

on each cluster; cluster 1 has the largest number of pixels of 

all the images. 

Tables 12, 13, 14, 15, 16, and 17 represent the MAE, RMSE, 

BSS, Jaccard, and Dice performance metrics for images on 

Table 10 to evaluate the performance of clustering. The lower 

MAE and RMSE indicate that the pixels in one cluster are 

closely related. The pixels in cluster 1 in all images are the 

closest to each other because of the very low MAE. A high 

value of BSS means that the clusters are well separated and 

classified correctly. The Jaccard and Dice indexes represent 

the similarity between clusters. We want the similarity to be as 

low as possible to ensure that the pixels on different clusters 

differ from each other.  

Table 18 shows the clustering accuracy for the six images 

in Table 10, which validates the performance of the proposed 

algorithm. The same dataset was used for all the tasks to 

measure the accuracy of classification, which were MRI image 

datasets containing T1-weighted and T2-weighted MRI types 

[28]. 
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Table 12. Performance metric for image 1 with K=3 

 
Cluster number MAE RMSE BSS Jaccard Dice 

1 8.1710*10-20 2.8585*10-10 4.5362*104 0.0145 0.286 

2 11.9018 3.4733 1.7438*104 0.0034 0.0067 

3 21.1953 4.6863 4.0365*104 0.0121 0.0239 

 

Table 13. Performance metric for image 2 with K=5 

 
Cluster number MAE RMSE BSS Jaccard Dice 

1 5.3473*10-31 7.3125*1016 1.1570*105 0.1887 0.3175 

2 5.7441 2.4010 2.3729*104 0.0244 0.0477 

3 6.9528 2.6668 3.4483*104 0.0541 0.1026 

4 16.2592 4.2772 4.7408*104 0.0089 0.0176 

5 8.3041 2.9245 1.0342*105 0.0089 0.0176 

 

Table 14. Performance metric for image 3 with K=5 

 
Cluster number MAE RMSE BSS Jaccard Dice 

1 3.1343*10-67 5.5985*10-34 1.2219*105 0.0319 0.0613 

2 9.3186 3.0647 4.3280*104 0.0111 0.0219 

3 17.4233 5.7845 3.6683*104 0.0595 0.1122 

4 7.1559 2.8467 8.5314*104 0.0152 0.03 

5 9.1234 3.0825 6.2381*104 0.0160 0.0315 

 

Table 15. Performance metric for image 4 with K=4 

 
Cluster number MAE RMSE BSS Jaccard Dice 

1 1.0718 *10-36 2.4723*10-16 4.2258*104 0.0692 0.01294 

2 8.4698 2.9672 1.3601*104 0.016 0.0315 

3 6.1964 2.5313 1.4747*104 0.0541 0.1026 

4 9.9283 4.1668 3.5698*104 0.0076 0.0150 

 

Table 16. Performance metric for image 5 with K=4 

 
Cluster number MAE RMSE BSS Jaccard Dice 

1 5.7065*10-61 1.8656*10-18 5.8856*104 0.0494 0.0941 

2 6.2113 3.0473 2.3289*104 0.0089 0.0176 

3 8.7145 4.1838 2.3472*104 0.0252 0.0491 

4 12.9069 4.1345 5.8195*104 0.0051 0.0102 

 

Table 17. Performance metric for image 6 with K=7 

 
Cluster number MAE RMSE BSS Jaccard Dice 

1 4.0509*10-68 4.0509*10-68 1.3353*105 0.1274 0.226 

2 6.4893 7.8065 3.196*104 0.0516 0.0982 

3 4.1972 4.8435 3.7296*104 0.3077 0.4706 

4 4.2863 4.99 3.3649*104 0.0816 0.1508 

5 7.0793 9.0975 3.4377*104 0.0319 0.0618 

6 11.3234 13.4996 69826104 0.0149 0.0293 

7 8.5765 9.9967 1.1254*105 0.016 0.0315 

 

Table 18. Accuracy of clustering 

 
Image Cluster number k Accuracy  

1 3 94% 

2 5 97.5% 

3 5 98.2% 

4 4 98% 

5 4 96.8% 

6 7 98.2% 

 

Table 19. Performance metrics for design implementation on both CPU and FPG 

 
Performance metrics Conventional design on CPU Conventional design on FPGA Optimized design on FPGA 

Execution time (ms) 2352.43 2136.6 26.68 

Speed-up 1 1.1 88.17 
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Table 20. Time complexity for GWO- K-means algorithm 

 
Steps Before optimization After optimization 

Step1: Objective function Calculation O(NM) O(M) 

Step2: Initialization of search agent positions O(M) O(1) 

Step3: Calculation of the fitness values of search agents O(NM) O(NM)/G 

Step4: Updating the positions of wolves Alpha, Beta, Delta O(NM) O(1) 

Step5: Updating positions of each search agent O(NM) O(NM)/G 

Step6: Initializing centroids of k clusters O(N+M) O(N+M)/G 

Step7: Calculation of the distance matrix O(NMK) O(1) 

Step8: Searching for minimum distance to cluster O(NMK) O(1) 

Step9: Updating the clusters mean O(NMK) O(1) 

N is the maximum number of iteration 

M is the number of search agent’s  

K is the number of clusters 

G is the number of defined processing elements 

  
Table 21. Comparison with other research 

 
Algorithm  Speed-up  Used FPGA device 

Reference [35] 21 Xilinx Startix VA7 

Reference [12] 51.7 Xilinx Virtex4 XC4VLX25 

Reference [36] 20.6 Xilinx Kintex-7 

Reference [37] 30 Xilinx XC2V6000 

Proposed method 88.17 Xilinx Kintex7 XC7K160t FPGA 484-1 
 

Table 19 shows the performance metrics in terms of 

execution time and speed-up. The execution time for the 

conventional design on FPGA is almost the same as for the 

serial code on CPU (a CPU with an Intel Core i7-6700@3.4 

GHz and a memory of 16 GB is used to run the serial code). 

Compared to implementing the parallel code on FPGA, the 

execution time was found to be up to 88.17 times slower. This 

is because the compiler is unable to create pipelined data-paths 

as a result of the high data dependencies between loops. This 

is also due to the applied optimization techniques as discussed 

in the previous section.  

The time complexity values for the algorithm steps before 

and after applying the optimization techniques are represented 

in Table 20. 

Table 21 shows a comparison between the proposed 

algorithm and other implementations from the related work. It 

indicates that our algorithm has the best speed-up value among 

these studies. 

 

 

8. CONCLUSIONS 

 

A modified GWO-K-means algorithm for earlier and more 

accurate brain tumor detection by MRI images has been 

proposed. GWO was adopted to obtain the optimal number of 

clusters (K) when a large number of search agents are used to 

search globally for K. The proposed GWO-K-means algorithm 

was also implemented on FPGA using the Vivado HLS tool to 

improve the execution time. Different metrics were adopted 

and applied, such as MAE, RMSE, Silhouette, BSS, Jaccard, 

and Dice performance metrics, to examine and evaluate the 

algorithm. The results confirmed a very good clustering of 

MRI images where the similarity between pixels in one cluster 

is high and is very low between pixels in different clusters. The 

average clustering accuracy obtained is 97.11%. Moreover, 

several optimization techniques such as pipelining, unrolling, 

and dataflow were adopted and applied to optimize the 

proposed algorithm on FPGA. This results in a speedup of 

88.17 compared to the software sequential-based 

implementation. 
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