
Optimized FPGA-Based Implementation of Brain Tumor Detection by Combining K-Means

and Grey Wolf Optimization Algorithms

Amin Jarrah*, Sereen Amri

Department of Computer Engineering, Hijjawi Faculty for Engineering Technology, Yarmouk University, Irbid 21163, Jordan

Corresponding Author Email: amin.jarrah@yu.edu.jo

https://doi.org/10.18280/ts.390601 ABSTRACT

Received: 18 July 2022

Accepted: 12 December 2022

There is a need for fast, accurate, and real-time algorithms to detect brain tumors effectively

to support the physician’s decision-making for treatment purposes. A brain tumor is a life-

threatening uncontrolled growth of cells and tissues that may cause death due to inaccurate

and late detection. K-means clustering is one of the clustering techniques that is widely used

in brain tumor detection, but it has some drawbacks such as dependency on initial centroid

values and a tendency to fall on local optima. This research proposes a new model that uses

grey wolf optimization to find the optimal value of K (clusters number) of the k-means

algorithm to avoid local optima. A parallel implementation of the K-means clustering

algorithm on a field-programmable gate array (FPGA) is also proposed to enhance the

performance by reducing the processing time and the power consumption. Moreover, the

proposed algorithm is implemented using the Vivado HLS tool on Xilinx Kintex7

XC7K160t FPGA 484-1 where different optimization techniques are adopted and applied,

such as loop unrolling, loop pipelining, dataflow, and loop merging. The achieved speed-up

of the parallel implementation compared with sequential implementation was 88.17, where

the obtained average clustering accuracy was 97.11%.

Keywords:

brain tumor detection, grey wolf

optimization, k-means clustering algorithm,

optimization techniques, parallel

implementation

1. INTRODUCTION

All human body activities are controlled by the brain,

including intelligence, memory, speech, senses, etc. [1]. The

brain consists of three types of tissues, including grey matter,

white matter, and cerebrospinal fluid [1]. A brain tumor is an

abnormal and uncontrolled growth of brain cells. It is a life-

threatening disease that can be primary or secondary due to

metastasis from other organs in the body. It’s classified into

two types: malignant and benign [1]. The Magnetic Resonance

Imaging technique MRI is the preferred imaging technique to

detect brain tumors [2] since it’s widely used in hospitals for

diagnosis, treatment, and follow-up disease [2]. It is used to

create a picture of the anatomy and physiology of body organs.

MRI has the advantage of being non invasive diagnostic tool

as it does not use radiation. Thus, it’s commonly used to image

soft tissues such as the brain, where it detects changes in the

brain, including bleeding and tumors [2].

Early detection of brain tumors helps in accelerating the

treatment and saving human lives [3]. There are many brain

tumor detection algorithms that are proposed to help in the

diagnosis and treatment processes [3]. K-means is one of these

algorithms [3]. It is an unsupervised, simple, and practicable

algorithm that classifies the observations into classes. It was

chosen because it is efficient and does not necessitate

significant effort in data preprocessing, training, and testing

[3]. However, K-means has some drawbacks, such as the

dependency on initial centroid values, the large number of

iterations, determining the number of clusters and a tendency

to fall into local optima [4]. Therefore, the Grey Wolf

Optimization (GWO) technique [5] was adopted and applied

to determine the optimal number of clusters. It’s an

optimization technique that is inspired by the behavior of grey

wolves and their strategies for eating and hunting [5]. This will

help in optimizing the accuracy by avoiding falling into local

optimum and improving the processing speed.

However, the detection of brain tumors from MRI images is

a computationally intensive task, especially when the image

size increases. It requires processing of a massive amount of

data known as Big Data, especially for processing MRI for

brain tumor detection which needs high-speed processing to

analyze data [3]. Therefore, a parallel implementation of the

proposed K-means based on GWO was proposed and

implemented on the FPGA parallel platform. This means that

more than one section of a system may operate with a different

set of data concurrently to improve the execution time [6].

However, the FPGA needs a long time for designing,

implementation, and validation processes since it requires

knowledge of digital systems and underlying architectures [6].

Xilinx FPGA has a powerful tool called the Vivado HLS tool

which can be used to overcome these constraints [7].

Therefore, the Vivado High-Level Synthesis tool for synthesis

and simulation was adopted and used. It’s a tool that is used

for configuring the FPGA and converting the C family code

into a hardware description language. So, the proposed

algorithm was implemented on the Vivado HLS tool where

different optimization techniques were adopted and applied.

The remainder of this paper is organized as follows: Section

I provides an overview of the topic. Section II discusses the

related work. Section III explains the K-means algorithm and

its operation. Section IV shows a brief description of the Grey

Wolf Optimization, while Section V provides an explanation

of the FPGA and Vivado HLS tool, Section ⅤI presents the

proposed methodology with a detailed explanation, and

Traitement du Signal
Vol. 39, No. 6, December, 2022, pp. 1879-1891

Journal homepage: http://iieta.org/journals/ts

1879

https://crossmark.crossref.org/dialog/?doi=10.18280/ts.390601&domain=pdf

Section ⅥI presents and analyzes the results obtained from the

described implementation. Finally, Section ⅦI concludes the

results and remarks of the work.

2. RELATED WORK

In the last few years, many researchers have proposed many

parallel implementations of the K-means algorithm. A

completely parallel implementation of the K-means clustering

technique was developed on FPGA [8]. To accelerate

processing time and separate huge amounts of data (Big Data)

into K clusters, they used the Euclidean distance metric to

calculate the similarity between the data and the initial

centroid of each cluster to determine to which cluster the data

belongs. They reached a performance level of more than 53

million data points processed per second. In the study of Hema

and Madhavi [9], accurate results of tumor segmentation on

MRI images with FPGA-based K-means clustering are

obtained where there is no information regarding the speed-up

or the image size. Jaroš et al. [10] presented a method for

speeding up K-means clustering, which is used in medical

image segmentation. They used many integrated circuit MIC

architectures with the Intel Xeon Phi coprocessor to perform a

parallel implementation of the algorithm. They compared MIC

with CPU and GPU on Computed Tomography (CT) images

of the human body. A parallel implementation of 2D image

clustering has been proposed on an FPGA using the moving

window technique [11]. The authors used a multi-core FPGA

to reduce the required processing time of the clustering

technique. The implementation of the K-means clustering

algorithm on FPGA has been proposed in the field of

bioinformatics to analyze microarray data [12]. Microarray

data is a technique used by biologists to perform many genome

experiments. Using FPGA in this domain is very effective

because of the huge amount of data that needs to be analyzed.

They used five K-means cores on Xilinx Virtex4 XC4VLX25

FPGA and achieved a speed-up of 51.7 times. All previous

works have a limitation where the value of K was not accurate

since it was selected randomly and sometimes based on

expectation, which may fall into local optima. Therefore, in

this research, we adopted and applied the Grey Wolf

Optimization (GWO) technique to determine the optimal

number of clusters (K) and overcome the above mentioned

limitations.

Many researchers use metaheuristic algorithms to overcome

the shortcomings of classical K-means algorithms. GWO is

used in the study [13] as a solution to the K-means algorithm's

problems. The authors combined GWO with K-means

clustering to solve a capacitated vehicle routing problem [13].

Each wolf searches for a set of centroids based on cluster

number to avoid random initialization of centroids. The

authors [14] proposed Grey Wolf Algorithm-based Clustering

(GWAC), where the search capability of GWO is used to

search for optimal initial centroids of K-means clustering.

3. THE K-MEANS ALGORITHM

K-means clustering is a widely used algorithm that divides

datasets into groups or "clusters" based on similarity metrics

[8]. Each data point is assigned to one cluster based on the

similarity between this data point and the cluster centroid [8].

Supposing that we have a dataset 𝑋 defined in Eq. (1), it

consists of 𝑛 data points that need to be clustered into K

clusters [8] where each data point 𝑃 should be assigned to one

cluster.

𝑋 = (𝑝1, 𝑝2, 𝑝3 ⋯ , 𝑝𝑛) (1)

Firstly, the number of clusters K must be determined. As

mentioned above, in traditional K-means, K is determined

randomly. Accordingly, the GWO algorithm is adopted and

used to help in finding the optimal value of K since the K value

has a direct impact on the accuracy of the results of the K-

means algorithm. Then, each cluster assigns an initial centroid

where 𝐶 is the set of centroids based on Eq. (2) [8]. In the

traditional K-means, cluster centroids are initialized randomly.

This makes the result of clustering dependent on the first

centroids, which leads to a local optima problem [15].

However, a mathematical model is adopted and used based on

Eq. (3) to initialize the cluster centroid, which depends on the

maximum intensity of the image and the number of clusters

[15].

𝐶 = (𝑐1, 𝑐2, 𝑐3,⋯ , 𝑐𝑘) (2)

𝐶𝑖 = 𝑖 ∗
𝑚

𝑘 + 1
 (3)

where, m is the maximum intensity of the image based on the

histogram, i is the i’th centroid number that takes values 1, 2,

3,…., k, and k is the number of clusters.

The distance metric is used to determine to which cluster c

the data point p must be assigned [8]. The distance between

data point 𝑝 on 𝑋 and each c centroid on 𝐶 is measured by

using the Euclidean distance metric based on Eq. (4) [8]. Then,

p is assigned to the cluster with a minimum distance between

p and centroid of the cluster.

𝑑(𝑝𝑛, 𝑐𝑘)
2 = ∑|𝑝𝑛,𝑖 − 𝑐𝑘,𝑖|

2

𝐷

𝑖=0

 (4)

where, d is the distance and D is the dimension of the data.

To determine the cluster of a data point named p1, the

distances between 𝑝1 and each centroid 𝑐1, 𝑐2, 𝑐3, ….𝑐𝑘 are

calculated based on Eq. (4). The result is the set of distances

based on Eq. (5) [8]. The 𝑝1 is assigned to the closest cluster

with a minimum distance. After that, the new centroids of each

cluster are calculated, and the subset C is updated. The updated

means are calculated based on Eq. (6) [8].

𝑑 = 𝑑1(𝑝1, 𝑐1), 𝑑2(𝑝1, 𝑐2),⋯ , 𝑑𝑘(𝑝1, 𝑐𝑘) (5)

𝐶𝑘[𝑚] =
1

𝑧
 ∑𝑝𝑗,𝑠[𝑚]

𝑧

𝑠=1

 (6)

where, z is the number of data points in that cluster.

This process is repeated for each data point until the

centroid does not change, and there is no difference between

c(n) and c(n+1) or the difference is smaller than a threshold

value τ is determined by trial, where n is the iteration number.

Figure 1 shows the main steps of the K-means clustering

algorithm.

1880

Figure 1. K-means algorithm steps

4. GREY WOLF OPTIMIZATION

Optimization is the process of finding the optimal solution

from all possible solutions in a given space to maximize or

minimize its objective function [5]. Gray wolf optimization is

a metaheuristic optimization technique identified by Mirjalili

[5]. This technique was inspired by the behavior of the grey

wolf, its social hierarchy, and its strategy in hunting. Figure 2

depicts the dominant grey wolf social hierarchy, which

consists of four categories. The first top one is the leader, who

is called the alpha. Alpha has a large amount of authority as

it’s responsible for making a decision about the wolves’ lives.

The pack should follow the alpha’s decisions and orders. The

second level is beta; it helps alpha in decision making and acts

as an advisor to it. It should follow the alpha wolves but

command the lower level wolves; beta is the best candidate to

be alpha. The third level is the delta. Delta wolves have to

submit to alphas and betas, but they dominate the omega.

Scouts, sentinels, elders, hunters, and caretakers belong to this

category. The last ranking wolf is omega; it is the wolves that

have to submit to all the other dominant wolves. They are the

last wolves that are allowed to eat [5].

α

β

δ

ω

Figure 2. Hierarchy of the grey wolf

Hunting strategies are divided into three stages: tracking the

prey, encircling it, and attacking it. The mathematical

representation of GWO depends on these strategies, 𝑎 is the

best solution, 𝛽 is the second-best solution, and 𝛿 is the third-

best solution, while ω wolves follow the upper level [5].

Mathematical models that represent the wolves’ behavior in

their hunting phases are based on Eqns. (7) and (8) [5].

𝐷⃑ = |𝐶 . 𝑋𝑝 (𝑡) − 𝑋 (𝑡)| (7)

𝑋 (𝑡 + 1) = 𝑋𝑝 (𝑡) − 𝐴⃑ . 𝐷⃑ (8)

where, (X) is the position vector of the grey wolf, and (𝑋𝑝) is

the position vector of prey, (t) is the iteration number, (C) and

(A) are coefficient vectors that are calculated based on Eqns.

(9) and (10) [5].

𝐴⃑ = 2 𝑎 . 𝑟1 (9)

𝐶 = 2. 𝑟2 (10)

where, (𝑟1) and (𝑟2) are random vectors between 0 and 1, (a)

is decreased from 2 to 0.

The grey wolves can recognize the prey and encircle it. Also,

it updates its positions according to the prey position. It can

reach different locations by adjusting the values of (A) and (C).

The wolves updated their positions to estimate the prey

position based on the wolves a, β, and δ positions shown in

Eqns. (11), (12), and (13) [5].

𝐷⃑𝛼 = 𝐶1 . 𝑋𝛼 − 𝑋 , 𝐷⃑𝛽 = 𝐶2 . 𝑋𝛽 − 𝑋 , 𝐷⃑𝛿 =

𝐶3 . 𝑋𝛿 − 𝑋
(11)

𝑋1 = 𝑋𝛼 − 𝐴⃑1 . 𝐷⃑𝛼 , 𝑋2 = 𝑋𝛽 − 𝐴⃑2 . 𝐷⃑𝛽 , 𝑋3 =

 𝑋𝛿 − 𝐴⃑3 . 𝐷⃑𝛿
(12)

𝑋 (𝑡 +) =
𝑋1 + 𝑋2 + 𝑋3

3
 (13)

To represent the attack phase by decreasing the random

vector (a). (a) is decreased from 2 to 0 over the course of

iterations. When random value of 𝐴⃑ is between -1 and 1, the

next position of a search agent can be in any position between

its current position and the position of the prey. The attack

phase is represented when |A| <1 where the searching for prey

phase wolf is represented when |A| >1 which makes GWO

searches globally. C is another parameter that must be utilized

when modeling the search phase. It contains random values in

the interval [0, 2]. It adds weight to prey, making it more

difficult for wolves to catch; this affects wolf distance. C is

important to show the random behavior of the algorithm and

to avoid local optima. It may be considered as the effect of the

obstacle. The algorithm searches for the best value of K which

is the best position calculated based on the fitness value.

5. FPGA PLATFORM AND VIVADO HLS TOOL

An FPGA is a type of integrated circuit that consists of

millions of logic cells that are configured to implement desired

algorithms efficiently [16, 17]. The configuration is specified

using hardware description languages [18]. FPGAs are widely

used in a variety of applications, including industry, military,

aerospace, automotive, audio communication, and image

processing [18]. The FPGA consists of thousands of

fundamental elements named "configurable logic blocks"

(CLB). Each CLB consists of several logic blocks which

consist mainly of Lookup tables (LUTs), Flip-Flop (FF),

Digital Signal Processing (DSP), and others [19].

The FPGA provides a high degree of parallelism in the

execution of arithmetic and logical functions. However, the

FPGAs require a long time for the design, implementation, and

testing processes since the programmer needs to have

knowledge of the FPGA architecture [18]. Fortunately, Xilinx

FPGA supports a software tool called Vivado HLS [7]. Vivado

HLS is an interactive design environment that supports

1881

hierarchal design and facilitates the creation and reuse of

complex systems. It also accelerates design productivity and

enables up to 4X productivity advantages [7]. It includes a

built-in simulator that converts C family code into

programmable logic [20]. Also, it analyzes all programs in

terms of operations, loops, functions, and condition statements.

It has many optimization techniques that can be applied to

improve the performance in terms of execution time, area, and

power dissipation [21].

6. METHODS OF OPTIMIZATION AND THE

PROPOSED APPROACH PERFORMANCE TUNING

The main objective of this research is to detect the brain

tumor by MRI images efficiently by combining the K-means

and GWO algorithms. The input image is entered into the

GWO algorithm to determine the best number of clusters (K)

to segment it as shown in Figure 3. Then, the K-means

algorithm starts processing and outputting the clustered image.

The methodology includes several steps, starting from

searching for the MRI dataset and applying all processing to it

until reaching the final outputs, as shown in Figure 3. Figure 4

represents the methodology for all the steps of the proposed

algorithm.

Grey Wolf

optimization
Input Image

K-means

Clustering
K

Clustered

Image

Figure 3. Methodology main stages

Start

Input image

Pre-processing

Grey wolf optimization

K-means algorithm

K

Post-processing

Morphological operations

Optimization of all system on

FPGA using Vivado HLS

Processed image

Figure 4. The proposed methodology flow chart

6.1 Pre-processing

The pre-processing step is needed to prepare the image and

enhance its quality [22]. Pre-processing includes the following

processes:

• The skull stripping process, which segments brain

tissues (cortex and cerebellum) from the surrounding

region [23], aims to remove skull tissues and non-brain

regions from the MRI images.

• Converting the image to binary using the global

thresholding method (Otsu’s method) [22].

• Extracting the labeled image to remove the skull label

from the input image.

6.2 Finding the optimal value of K using Grey Wolf

Optimization

One of the main challenges of the K-mean algorithm is

determining the optimal number of clusters to separate the

image efficiently [4], which affects the performance of the

whole algorithm. In the MRI brain images, it’s very important

to choose the correct number of clusters when using K-means

clustering to segment the tumor region correctly and separate

it from other brain tissues. The grey wolf optimizer (GWO) is

used to search and find the optimal value of K where it starts

by working on the input image and searching for the best K to

segment it by comparing its fitness values as shown in Figure

5. Then, the K value is sent to the K-means algorithm to start

the clustering and output of K separate clusters. The steps of

the GWO algorithm to find the optimal value of K are as

follows:

1. Firstly, the wolf population, parameters, and different

values of K are determined.

2. Secondly, the fitness function is calculated for each K.

The fitness function that is used in GWO minimizes the

Sum of Squared Error (SSE) between the intensity of the

image pixel and the centroid of each cluster based on Eq.

(14) [24]. This will help in minimizing the intra-cluster

distance and maximizing the inter-cluster distance [24].

𝑓(𝑥) = ∑∑|𝑏𝑖 − 𝑐𝑗|
2

𝑛

𝑖=1

𝑘

𝑗=1

 (14)

where, bi is the intensity of the image pixel, and cj is the

centroid of each cluster.

3. The fitness values are compared to select the best three K

values (positions).

4. After that, the parameters and positions of wolves are

updated based on Eqns. (9) (10) (13).

5. Steps from 2 to 4 are repeated until reaching the maximum

number of iterations. The output of GWO is the wolf

position and the best score of the wolf with a maximum

fitness value. The position of the best wolf represents the

number of clusters (K).

6.3 K-mean clustering

After determining the number of clusters K by GWO, the

K-means algorithm starts, and the next step is to initialize the

centroid of each cluster. The input image is the dataset that

needs to be clustered to assign each pixel to a certain cluster.

K centroids are initialized based on Eq. (3). Then, the feature

1882

distance between each pixel and each centroid is calculated

using Eq. (4) to assign each pixel to its nearest cluster. The

next step is to calculate the new mean for all clusters after each

iteration. The algorithm is repeated until the mean remains

constant or the maximum number of iterations is reached, as

shown in Figure 5.

Figure 5. GWO-K-means algorithm flow chart

The pseudocode of the proposed GWO-K-means algorithm

is shown in Figure 6.

Figure 6. Proposed methodology pseudocode

6.4 Post-processing: Morphological operation

Morphological operations are defined as a technique that

deals with the shapes and features of an image [25]. It is used

to remove imperfections, and noise after image segmentation,

simplify the image, and keep essential shapes. There are two

basic types of morphological operations: erosion and dilation

[25]. Erosion is used to shrink objects in the images, while

dilation is used to grow objects. The combination of erosion

and dilation results in two operations: opening and closing [25].

In this research, the K-means algorithm is run on the image to

segment it into K clusters. At this step, we can determine to

which cluster the tumor belongs. Then, we use the opening

operation on the cluster to separate the tumor and remove any

noises and imperfections. The opening process is performed

by eroding the image with the structuring element and then

applying dilation to the eroded image with the same

structuring element. The best appropriate structuring element

for this type of application, after much experiment testing, was

found to be a “disk” (a circle of ones and zeros outside of the

circle in the structure element matrix) [26]. The radius of the

structure element that was used in this research was 14 pixels

[26].

6.5 Optimization on FPGA using Vivado HLS tool

The K-means algorithm is implemented in parallel using an

FPGA to improve the performance and reduce the execution

time. The parallel implementation allows starting more than

one process concurrently. To implement it in parallel on the

FPGA, the proposed architecture is replicated according to a

parallelization degree. This allows a group of input data to be

processed simultaneously. Figure 7 represents the parallel

implementation of the K-means algorithm modules. Firstly,

the input image is processed row by row in parallel. Each

processing unit takes the input image and operates the K-

means steps on one row. The input image was replicated 𝑁

times since each processing element requires its own row and

the neighboring rows of the original image to perform some

operations and calculations for the distance module, clustering

process, and the mean centroid function. The Centroid

Register module stores the cluster’s centroids C[m] set which

are updated at the end of each iteration. Then, the distance

metric module calculates the distances between each data

point Pj[m] and each centroid Ck[m].

The clustering process module assigns each data point to its

closest cluster. The mean centroid module calculates the new

mean of each cluster and stores it on the centroid register.

These modules are fully implemented in parallel, so, they are

replicated N times based on the hardware resources of the

FPGA. This means that an N number of K-means modules are

operated concurrently, each one working with a different

image row.

Moreover, the GWO is also implemented on FPGA. The

GWO algorithm consists of four iterative modules, which are:

the fitness calculation module, determining (alpha, beta, and

delta) positions module, updating parameters module, and

updating all wolves’ positions module. The input image is

replicated N times to enable the simultaneous execution of the

module’s function on different rows of the image. As shown

in Figure 8, each processing unit takes the input image and

works with a different row to operate the GWO algorithm

steps in parallel.

The GWO-K-means algorithm was developed using a

parallel architecture on FPGA to accelerate the processing

time. This is performed by implementing the whole proposed

algorithm with the aid of the Vivado HLS tool. Different

optimization techniques were adopted and applied, such as

loop unrolling, loop pipelining, dataflow, and loop merging.

1883

Function pipelining optimization allows processes to run

concurrently, whereas loop unrolling allows all loop

operations to run in one clock cycle but requires more

hardware resources. This helps shorten the execution time.

All the initialization steps of the GWO-K-means algorithm

don’t have any dependencies, that can be executed in parallel

by applying the loop pipelining and loop unrolling as shown

in Figures 9 and 10 respectively. Without applying any

optimization technique, every iteration needs three clock

cycles to operate three processes, which requires 3N clock

cycles for N iterations. However, with applying the pipelining

optimization technique, only N+2 clock cycles are needed to

complete the whole process as shown in Figure 9, and only 1

clock cycle is needed for applying the unrolling optimization

technique as shown in Figure 10.

Input image

Input image

Input image

Input image

Centriod Register

Distance

module

Clustering

process

Mean

centriod

Distance

module

Distance

module

Distance

module

Clustering

process

Clustering

process

Mean

centriod

Mean

centriod

Clustering

process

Mean

centriod

Centriod Register

Centriod Register

Centriod Register

Processor 1

Processor 2

Processor 3

Processor N

1

2

3

N

1

2

3

N

Figure 7. Parallelization of the K-means algorithm

Input image

Input image

Input image

Input image

Fitness

calculation

Determine alpha,

beta, delta

positions

Update

parameters

Processor 1

Processor 2

Processor 3

Processor N

1

2

3

N

Update

wolves

positions

Fitness

calculation

Fitness

calculation

Determine alpha,

beta, delta

positions

Determine alpha,

beta, delta

positions

Fitness

calculation

Determine alpha,

beta, delta

positions

Update

parameters

Update

parameters

Update

parameters

Update

wolves

positions

Update

wolves

positions

Update

wolves

positions

Figure 8. Parallelization of GWO algorithm

1884

P1 P3P2 P2P1 P3 P1 P2 P3

Iteration 1 Iteration 2 Iteration n

P1 P2 P3

P1 P2 P3

P1 P2 P3

Iteration 1

Iteration 2

Iteration n

a)Without loop pipelining

b) With loop pipelining

3N cycles

N+2 cycles

Figure 9. Loop pipelining technique

P1

P2

P1

P3 P3

P2

P3

P2

P1

CLK CLKCLK

a) Rolled loop

P1

P2

P3

CLK

B) Unrolled loop

P1

P2

P3

P1

P2

P3

Figure 10. Loop unrolling technique

Loop 1 Loop 3Loop 2 Loop 4

Loop 1

Loop 2

Loop 3

Loop 4

a) without dataflow

b) with dataflow

R
ead

y
 d

ata w
ill b

e fo
rw

ard
ed

Figure 11. Data flow technique

The distance and centroids calculations have no dependency,

which can be executed in parallel by applying the loop

pipelining and loop unrolling optimization techniques.

Moreover, it’s not necessary for the update step to wait until

the previous step has completely finished all its iterations.

Once the current value is determined, it can then be forwarded

to the update step to start its execution by applying the

dataflow optimization technique as shown in Figure 11.

Dataflow is an optimization technique that is applied to the

loops to allow parallel execution. Loop 2 can’t start until Loop

1 completes all its iterations. However, while applying the

dataflow optimization technique, Loop 1 can forward the

result from the first iteration to Loop 2, then both loops can

operate concurrently. The same thing between Steps 5 and

Step 6 as shown in Figure 11. The Vivado HLS tool

automatically inserts channels between the loops to ensure

data can flow asynchronously from one loop to the next [27].

Objective function Calculation

Initialization of search agent positions

Calculation of the fitness values of search

agents

S
te

p
 1

S
te

p
 2

S
te

p
 3

Updating the positions of wolves

 α, β, δ

Updating positions of each search agent

Initializing centroids of k clusters

Calculation of the distance matrix

Searching for minimum distance to cluster

Updating the clusters mean

S
te

p
 5

S
te

p
 4

S
te

p
 9

S
te

p
 8

S
te

p
 7

S
te

p
 6

Pipelining

Pipelining

Unrolling

Unrolling,

Pipelining

Pipelining

Pipelining

Unrolling,

Pipelining

Unrolling

,Pipelining

Unrolling,

Pipelining

Steps Optimization technique

No dependency

between 1 and 2.

dataflow is applied

No dependency

between 5 and 6 .

Dataflow is applied

Figure 12. GWO-K-means steps and its optimization

techniques

Table 1. The results of optimizing the objective function

calculation (step 1)

 Before optimization
After

optimization

 Double point Fixed point

Clock Period

(CP) (ns)
4.36 2.39 2.39

Clock Cycles

(CC)
2349954 699987 100002

DSP48E 3 2 5

Flip-Flop (FF) 1128 110 156

Lookup Table

(LUT)
880 91 225

Execution time

(ms)
10.246 1.673 0.239

Speed-up 1 6.124 42.87

Figure 12 shows all the GWO-K-means steps and the

proposed optimization techniques for each step. Step 1 is

responsible for determining and calculating the objective

function of GWO. It takes the input image and calculates an

initial centroid and objective function 𝑜𝑏𝑗 − 𝑓𝑢𝑛 [][]. The

time complexity of this piece of code is O (NM). We applied

the pipelining technique to the outer and inner loops since

there is no dependency. We also used a fixed-point data type

rather than a double point to reduce the resources and the

execution time. We used 10 bits for the integer part and 14 bits

for the fraction part. After applying the pipelining directive,

1885

better results are obtained where there is a notable decrease in

the clock cycle, as shown in Table 1. However, there is an

increase in FF and LUT, which makes sense because of the

parallel execution after pipelining technique that needs more

resources. The obtained speed-up of step 1 is 42.87, as shown

in Table 1.

Step 2 represents the initialization of the search agent

positions, which can be fully parallelized since there is no

dependency by applying the loop unrolling and loop pipelining.

The obtained speed-up from applying the loop unrolling is

88.7 and 44.71 with applying the pipelining technique as

shown in Table 2. More hardware resources are needed for the

loop unrolling, so it’s a trade-off issue between the execution

time and the usage of hardware resources. However, the

processing time for this step is short, and therefore the

optimizations for this step were removed since the resources

were increased for little improvement in performance. This

helps in saving the resources where the bulk of the time is

spent.

Table 2. The result of optimization the search agent

initialization (step 2)

 Before optimization
After

pipelining

After

unrolling

Double

point
Fixed point

Clock Period

(CP) (ns)
3.68 2.39 2.39 2.39

Clock Cycles

(CC)
2981 397 103 52

DSP48E 14 10 12 12

Flip-Flop (FF) 3058 35 31 365

Lookup Table

(LUT)
2235 37 46 1623

Execution time

(ms)
0.011 0.000948 0.000246 0.000124

Speed-up 1 11.6 44.71 88.7

Step 3 represents the search agent's fitness value calculation.

It was parallelized in the same way using the loop pipelining

directive. The obtained speed-up is 618, as shown in Table 3.

Table 3. Result of optimization of the search agent’s fitness

value calculation (step 3)

 Before optimization
After

optimization

Double

point
Fixed point

Clock Period

(CP) (ns)
2.49 2.39 2.39

Clock Cycles

(CC)
178801 149101 302

DSP48E 0 0 0

Flip-Flop (FF) 36 35 73

Lookup Table

(LUT)
48 48 89

Execution

time (ms)
0.445 0.356 0.00072

Speed-up 1 1.25 618

Step 4 represents the Alpha, Beta, and Delta wolves'

position updating process. Both loop unrolling and pipelining

were applied to improve the performance. The obtained speed-

up is 6.477, as shown in Table 4.

Table 4. Results of optimizing Alpha, Beta, Delta wolves

position updating (step 4)

 Before optimization
After

optimization

Double

point
Fixed point

Clock Period

(CP) (ns)
2.49 2.39 2.39

Clock Cycles

(CC)
188650 131208 30300

DSP48E 0 0 0

Flip-Flop (FF) 36 35 2704

Lookup Table

(LUT)
48 48 7061

Execution time

(ms)
0.469 0.313 0.0724

Speed-up 1 1.5 6.477

Step 5 represents the search agent position updating process.

A loop pipelining directive was applied to improve the

performance. The obtained speed-up is 32849, as shown in

Table 5.

Table 5. Results of optimizing search agent positions

updating (step 5)

 Before optimization After

optimization

 Double point Fixed point

Clock Period

(CP) (ns)

2.49 2.39 2.39

Clock Cycles

(CC)

472290001 3030005 15006

DSP48E 42 24 31

Flip-Flop (FF) 12470 88 122

Lookup Table

(LUT)

8901 141 415

Execution time

(ms)

1176 7.24 0.0358

Speed-up 1 162.43 32849

Step 6 represents the centroid's initialization. A loop

pipelining directive was applied to improve the performance.

The obtained speed-up is 9.69, as shown in Table 6.

Table 6. Result of optimizing centroids initialization (step 6)

 Before optimization
After

optimization

Double

point
Fixed point

Clock Period

(CP) (ns)
3.86 2.39 2.39

Clock Cycles

(CC)
120001 60001 20003

DSP48E 14 10 12

Flip-Flop (FF) 2579 94 101

Lookup Table

(LUT)
2181 141 162

Execution time

(ms)
0.4632 0.1434 0.0478

Speed-up 1 3.23 9.69

Step 7 represents the distance matrix calculation. Both loop

unrolling and pipelining were applied to improve the

performance. The obtained speed-up is 40.377, as shown in

Table 7.

1886

Table 7. Result of optimizing the distance matrix calculation

(step 7)

 Before optimization
After

optimization

 Double point Fixed point

Clock Period

(CP) (ns)
3.86 2.39 2.39

Clock Cycles

(CC)
50001551 18000351 2000450

DSP48E 3 2 4

Flip-Flop (FF) 871 149 4104

Lookup Table

(LUT)
633 120 9096

Execution time

(ms)
193 43 4.78

Speed-up 1 4.489 40.377

Table 8. Results of optimizing the minimum distance

determining (step 8)

 Before optimization
After

optimization

Double

point

Fixed

point

Clock Period

(CP) (ns)
3.86 2.39 2.39

Clock Cycles

(CC)
86000101 18000101 4000500

DSP48E 0 0 0

Flip-Flop (FF) 1652 181 10384

Lookup Table

(LUT)
1449 129 11798

Execution time

(ms)
331.96 43.02 9.56

Speed-up 1 7.716 34.72

Step 8 represents the minimum distance determined. Both

loop unrolling and pipelining were applied to improve the

performance. The obtained speed-up is 34.72, as shown in

Table 8.

Step 9 represents the cluster mean update. Both loop

unrolling and pipelining were applied to improve the

performance. The obtained speed-up is 35.48, as shown in

Table 9.

Table 9. Results of optimizing the clusters means updating

(step 9)

 Before optimization After optimization

 Double point Fixed point

Clock Period (CP) (ns) 4.24 2.39 2.39

Clock Cycles (CC) 100003551 21000901 5001350

DSP48E 12 8 10

Flip-Flop (FF) 20808 693 28760

Lookup Table (LUT) 14253 648 35284

Execution time (ms) 424.02 50.2 11.95

Speed-up 1 8.4466 35.48

7. RESULTS AND DISCUSSION

The proposed GWO-K-means algorithm has been

implemented using MATLAB 2019 on an HP Laptop with an

Intel Core i7-6700 GHz running at 3.4 GHz with a memory of

16 GB. For verification purposes to examine the proposed

algorithm, MRI image datasets containing T1-weighted and

T2-weighted MRI types were used [28]. The grey wolf

population is set to 100 search agents, and the iteration number

is set to 300. The GWO will return the optimal value of K after

completing all the iterations. GWO provides different values

of K based on the input image, as shown in Table 10. After

clustering, the tumor region will be separated from its cluster

using a thresholding technique. Then, a morphological

operation was applied to the tumor cluster to enhance the result

and remove noise. Table 10 represents a group of MRI images

from the dataset and the result after segmenting the brain

tumor with different values of K for each image based on

GWO.

Several metrics were used to evaluate the performance of

the proposed GWO K-means algorithm, including the

Silhouette index [29], Mean of Absolute Error MAE [30],

Root Mean Square Error RMSE [31], Clusters separation [32],

Jaccard index [33], and the Dice index [34]. The Silhouette

index measures how similar the point is to points in its own

cluster when compared to points in other clusters based on Eq.

(15) [24, 29].

Si =
(bi − ai)

max (ai , bi)
 (15)

where, 𝑎𝑖 is the average distance from the ith point to the other

points in the same cluster. 𝑏𝑖is the minimum average distance

from the ith point to points in a different cluster. The range of

silhouette is [-1:1], a value near 1 indicates a correct cluster of

the point, whereas a value near -1 indicates a noncorrect

cluster of the point.

The MAE measures how closely related points are in the

cluster, which is calculated based on Eq. (16) [30].

MAE =
∑ |di − c|z

i=1

z
 (16)

where, 𝑑𝑖 is the data points (the pixel intensity), 𝑐 is the cluster

centroid, and 𝑧 is the size of the cluster.

The RMSE calculates the error or difference between two

values, the lower value is preferred, but it cannot be zero, it

indicates the accuracy of the system which is calculated based

on Eq. (17) [31].

𝑅𝑀𝑆𝐸 = √
1

𝑍
∗ ∑(𝑑𝑖 − 𝑐)2

𝑧

1

 (17)

The separation measures how distinct or well separated a

cluster is from other clusters, measured by the sum of squares

(BSS) between them. The pairwise distance between cluster

centers is widely used as a measure of separation, which is

calculated based on Eq. (18) [32].

𝐵𝑆𝑆 = ∑(𝐶 − 𝐶𝑖)
2

𝑘

𝑖=1

 (18)

1887

Table 10. Results of GWO-K-means for different MRI images

3

5

5

4

4

7

The Jaccard index measures the similarity between two

finite sets. It’s defined as the size of the intersections divided

by the size of the union of the sample sets A and B, which is

calculated based on Eq. (19) [34].

𝐽(𝐴⃑, 𝐵) =
|𝐴⃑ ⋂𝐵 |

|𝐴⃑ ⋃𝐵|
 (19)

The Dice coefficient measures similarity between two sets.

It’s very similar to the Jaccard index, which is calculated based

on Eq. (20).

𝐷⃑(𝐴⃑, 𝐵) =
2 ∗ 𝐽(𝐴⃑, 𝐵)

1 + 𝐽(𝐴⃑, 𝐵)
 (20)

Table 11. Average silhouette values

Image
Cluster number

k
Average silhouette

1 3 0.8742

2 5 0.8354

3 5 0.8127

4 4 0.8314

5 4 0.9002

6 7 0.8589

Table 11 represents the silhouette values for the images (1,

2, 3, 4, 5, and 6) in Table (10), respectively. The desirable

value of the silhouette index is close to 1. The average

silhouette score for image 1 is 0.8742, which is very good and

indicates a correct clustering as shown in Table 11. The

thickness of the silhouette plot indicates the number of pixels

on each cluster; cluster 1 has the largest number of pixels of

all the images.

Tables 12, 13, 14, 15, 16, and 17 represent the MAE, RMSE,

BSS, Jaccard, and Dice performance metrics for images on

Table 10 to evaluate the performance of clustering. The lower

MAE and RMSE indicate that the pixels in one cluster are

closely related. The pixels in cluster 1 in all images are the

closest to each other because of the very low MAE. A high

value of BSS means that the clusters are well separated and

classified correctly. The Jaccard and Dice indexes represent

the similarity between clusters. We want the similarity to be as

low as possible to ensure that the pixels on different clusters

differ from each other.

Table 18 shows the clustering accuracy for the six images

in Table 10, which validates the performance of the proposed

algorithm. The same dataset was used for all the tasks to

measure the accuracy of classification, which were MRI image

datasets containing T1-weighted and T2-weighted MRI types

[28].

1888

Table 12. Performance metric for image 1 with K=3

Cluster number MAE RMSE BSS Jaccard Dice

1 8.1710*10-20 2.8585*10-10 4.5362*104 0.0145 0.286

2 11.9018 3.4733 1.7438*104 0.0034 0.0067

3 21.1953 4.6863 4.0365*104 0.0121 0.0239

Table 13. Performance metric for image 2 with K=5

Cluster number MAE RMSE BSS Jaccard Dice

1 5.3473*10-31 7.3125*1016 1.1570*105 0.1887 0.3175

2 5.7441 2.4010 2.3729*104 0.0244 0.0477

3 6.9528 2.6668 3.4483*104 0.0541 0.1026

4 16.2592 4.2772 4.7408*104 0.0089 0.0176

5 8.3041 2.9245 1.0342*105 0.0089 0.0176

Table 14. Performance metric for image 3 with K=5

Cluster number MAE RMSE BSS Jaccard Dice

1 3.1343*10-67 5.5985*10-34 1.2219*105 0.0319 0.0613

2 9.3186 3.0647 4.3280*104 0.0111 0.0219

3 17.4233 5.7845 3.6683*104 0.0595 0.1122

4 7.1559 2.8467 8.5314*104 0.0152 0.03

5 9.1234 3.0825 6.2381*104 0.0160 0.0315

Table 15. Performance metric for image 4 with K=4

Cluster number MAE RMSE BSS Jaccard Dice

1 1.0718 *10-36 2.4723*10-16 4.2258*104 0.0692 0.01294

2 8.4698 2.9672 1.3601*104 0.016 0.0315

3 6.1964 2.5313 1.4747*104 0.0541 0.1026

4 9.9283 4.1668 3.5698*104 0.0076 0.0150

Table 16. Performance metric for image 5 with K=4

Cluster number MAE RMSE BSS Jaccard Dice

1 5.7065*10-61 1.8656*10-18 5.8856*104 0.0494 0.0941

2 6.2113 3.0473 2.3289*104 0.0089 0.0176

3 8.7145 4.1838 2.3472*104 0.0252 0.0491

4 12.9069 4.1345 5.8195*104 0.0051 0.0102

Table 17. Performance metric for image 6 with K=7

Cluster number MAE RMSE BSS Jaccard Dice

1 4.0509*10-68 4.0509*10-68 1.3353*105 0.1274 0.226

2 6.4893 7.8065 3.196*104 0.0516 0.0982

3 4.1972 4.8435 3.7296*104 0.3077 0.4706

4 4.2863 4.99 3.3649*104 0.0816 0.1508

5 7.0793 9.0975 3.4377*104 0.0319 0.0618

6 11.3234 13.4996 69826104 0.0149 0.0293

7 8.5765 9.9967 1.1254*105 0.016 0.0315

Table 18. Accuracy of clustering

Image Cluster number k Accuracy

1 3 94%

2 5 97.5%

3 5 98.2%

4 4 98%

5 4 96.8%

6 7 98.2%

Table 19. Performance metrics for design implementation on both CPU and FPG

Performance metrics Conventional design on CPU Conventional design on FPGA Optimized design on FPGA

Execution time (ms) 2352.43 2136.6 26.68

Speed-up 1 1.1 88.17

1889

Table 20. Time complexity for GWO- K-means algorithm

Steps Before optimization After optimization

Step1: Objective function Calculation O(NM) O(M)

Step2: Initialization of search agent positions O(M) O(1)

Step3: Calculation of the fitness values of search agents O(NM) O(NM)/G

Step4: Updating the positions of wolves Alpha, Beta, Delta O(NM) O(1)

Step5: Updating positions of each search agent O(NM) O(NM)/G

Step6: Initializing centroids of k clusters O(N+M) O(N+M)/G

Step7: Calculation of the distance matrix O(NMK) O(1)

Step8: Searching for minimum distance to cluster O(NMK) O(1)

Step9: Updating the clusters mean O(NMK) O(1)

N is the maximum number of iteration

M is the number of search agent’s

K is the number of clusters

G is the number of defined processing elements

Table 21. Comparison with other research

Algorithm Speed-up Used FPGA device

Reference [35] 21 Xilinx Startix VA7

Reference [12] 51.7 Xilinx Virtex4 XC4VLX25

Reference [36] 20.6 Xilinx Kintex-7

Reference [37] 30 Xilinx XC2V6000

Proposed method 88.17 Xilinx Kintex7 XC7K160t FPGA 484-1

Table 19 shows the performance metrics in terms of

execution time and speed-up. The execution time for the

conventional design on FPGA is almost the same as for the

serial code on CPU (a CPU with an Intel Core i7-6700@3.4

GHz and a memory of 16 GB is used to run the serial code).

Compared to implementing the parallel code on FPGA, the

execution time was found to be up to 88.17 times slower. This

is because the compiler is unable to create pipelined data-paths

as a result of the high data dependencies between loops. This

is also due to the applied optimization techniques as discussed

in the previous section.

The time complexity values for the algorithm steps before

and after applying the optimization techniques are represented

in Table 20.

Table 21 shows a comparison between the proposed

algorithm and other implementations from the related work. It

indicates that our algorithm has the best speed-up value among

these studies.

8. CONCLUSIONS

A modified GWO-K-means algorithm for earlier and more

accurate brain tumor detection by MRI images has been

proposed. GWO was adopted to obtain the optimal number of

clusters (K) when a large number of search agents are used to

search globally for K. The proposed GWO-K-means algorithm

was also implemented on FPGA using the Vivado HLS tool to

improve the execution time. Different metrics were adopted

and applied, such as MAE, RMSE, Silhouette, BSS, Jaccard,

and Dice performance metrics, to examine and evaluate the

algorithm. The results confirmed a very good clustering of

MRI images where the similarity between pixels in one cluster

is high and is very low between pixels in different clusters. The

average clustering accuracy obtained is 97.11%. Moreover,

several optimization techniques such as pipelining, unrolling,

and dataflow were adopted and applied to optimize the

proposed algorithm on FPGA. This results in a speedup of

88.17 compared to the software sequential-based

implementation.

REFERENCES

[1] Liu, J., Li, M., Wang, J., Wu, F., Liu, T., Pan, Y. (2014).

A survey of MRI-based brain tumor segmentation

methods. Tsinghua Science and Technology, 19(6): 578-

595. https://doi.org/10.1109/TST.2014.6961028

[2] Martinez, G.V. (2018). Introduction to MRI physics. In

Preclinical MRI. Humana Press, New York, NY, pp. 3-

19. https://doi.org/10.1007/978-1-4939-7531-0_1

[3] Alam, M.S., Rahman, M.M., Hossain, M.A., Islam, M.K.,

Ahmed, K.M., Ahmed, K.T., Miah, M.S. (2019).

Automatic human brain tumor detection in MRI image

using template-based K means and improved fuzzy C

means clustering algorithm. Big Data and Cognitive

Computing, 3(2): 27.

https://doi.org/10.3390/bdcc3020027

[4] Ahmmed, R., Hossain, M.F. (2016). Tumor detection in

brain MRI image using template based K-means and

Fuzzy C-means clustering algorithm. In 2016

International Conference on Computer Communication

and Informatics (ICCCI), pp. 1-6.

https://doi.org/10.1109/ICCCI.2016.7479972

[5] Mirjalili, S., Mirjalili, S.M., Lewis, A. (2014). Grey wolf

optimizer. Advances in Engineering Software, 69: 46-61.

https://doi.org/10.1016/j.advengsoft.2013.12.007

[6] Khatri, A.R., Nizamani, N., Ali, E., Saand, A.S. (2016).

Selecting right FPGA for the right application: A

technical survey for Xilinx FPGAs. Quaid-E-Awam

Univ. Res. J. Eng., Sci. Technol., 15: 46-49.

[7] Xilinx, I. (2013). Introduction to fpga design with vivado

high-level synthesis. URL: https://www. xilinx.

com/support/documentation/sw_manuals/ug998-vivado-

introfpga-design-hls. pdf. (acceso: 28.06. 2020).

[8] Dias, L.A., Ferreira, J.C., Fernandes, M.A. (2020).

Parallel implementation of K-means algorithm on FPGA.

IEEE Access, 8: 41071-41084.

https://doi.org/10.1109/ACCESS.2020.2976900

[9] Hema, M., Madhavi, C. (2014). Tumor Segmentation for

Medical Application Using FPGA.

[10] Jaroš, M., Strakoš, P., Karásek, T., Říha, L., Vašatová,

A., Jarošová, M., Kozubek, T. (2017). Implementation of

1890

K-means segmentation algorithm on Intel Xeon Phi and

GPU: Application in medical imaging. Advances in

Engineering Software, 103: 21-28.

https://doi.org/10.1016/j.advengsoft.2016.05.008

[11] Sotiropoulou, C.L., Gkaitatzis, S., Annovi, A., Beretta,

M., Giannetti, P., Kordas, K., Volpi, G. (2014). A multi-

core FPGA-based 2D-clustering implementation for real-

time image processing. IEEE Transactions on Nuclear

Science, 61(6): 3599-3606.

https://doi.org/10.1109/TNS.2014.2364183

[12] Hussain, H.M., Benkrid, K., Seker, H., Erdogan, A.T.

(2011). FPGA implementation of k-means algorithm for

bioinformatics application: An accelerated approach to

clustering microarray data. In 2011 NASA/ESA

Conference on Adaptive Hardware and Systems (AHS),

248-255. https://doi.org/10.1109/AHS.2011.5963944

[13] Korayem, L., Khorsid, M., Kassem, S.S. (2015). Using

grey wolf algorithm to solve the capacitated vehicle

routing problem. In IOP Conference Series: Materials

Science and Engineering, 83(1): 012014.

https://doi.org/10.1088/1757-899X/83/1/012014

[14] Kumar, V., Chhabra, J.K., Kumar, D. (2017). Grey wolf

algorithm-based clustering technique. Journal of

Intelligent Systems, 26(1): 153-168.

https://doi.org/10.1515/jisys-2014-0137

[15] Waleed, M., Um, T.W., Khan, A., Khan, U. (2020).

Automatic detection system of olive trees using

improved K-means algorithm. Remote Sensing, 12(5):

760. https://doi.org/10.3390/rs12050760

[16] Jarrah, A., Haddad, B., Al-Jarrah, M.A., Obeidat, M.B.

(2017). Optimized parallel architecture of evolutionary

neural network for mass spectrometry data processing.

International Journal of Modeling, Simulation, and

Scientific Computing, 8(1): 1750016.

https://doi.org/10.1142/S1793962317500167

[17] Alqudah, E., Jarrah, A. (2020). Parallel implementation

of genetic algorithm on FPGA using Vivado high level

synthesis. International Journal of Bio-Inspired

Computation, 15(2): 90-99.

https://doi.org/10.1504/IJBIC.2020.106439

[18] Babu, P., Parthasarathy, E. (2021). Reconfigurable

FPGA architectures: a survey and applications. Journal

of the Institution of Engineers (India): Series B, 102(1):

143-156. https://doi.org/10.1007/s40031-020-00508-y

[19] Jarrah, A., Almomany, A., Alsobeh, A.M., Alqudah, E.

(2021). High-performance implementation of wideband

coherent signal-subspace (CSS)-Based DOA algorithm

on FPGA. Journal of Circuits, Systems and Computers,

30(11): 2150196.

https://doi.org/10.1142/S0218126621501966

[20] Jarrah, A., Al-Tamimi, A.K., Albashir, T. (2018).

Optimized parallel implementation of extended Kalman

filter using FPGA. Journal of Circuits, Systems and

Computers, 27(1): 1850009.

https://doi.org/10.1142/S0218126618500093

[21] Al Bataineh, A., Jarrah, A., Kaur, D. (2019). High-speed

FPGA-based of the particle swarm optimization using

HLS tool. International Journal of Advanced Computer

Science and Applications, 10(5).

[22] Swiebocka-Wiek, J. (2016). Skull stripping for MRI

images using morphological operators. In IFIP

International Conference on Computer Information

Systems and Industrial Management, 172-182.

https://doi.org/10.1007/978-3-319-45378-1_16

[23] Kalvakolanu, A. T. S. (2021). Brain Tumor Detection

and Classification from MRI Images.

[24] Ahamad, M.K., Bharti, A.K. (2020). Comparative

analysis the fitness function of k-means and kernel

fisher’s discriminant analysis (KFDA) with genetic

algorithm.'' European Journal of Molecular & Clinical

Medicine, 7(11): 6231-6241.

[25] Hÿtch, M., Hawkes, P.W. (2020). Morphological image

operators. Academic Press.

[26] Lojzim, J.M., Fries, M. (2017). Brain tumor

segmentation using morphological processing and the

discrete wavelet transform. Journal of Young

Investigators, 33(3).

https://doi.org/10.22186/jyi.33.3.55-62

[27] Jarrah, A. (2016). Optimized parallel architecture of

Kalman filter for radar tracking applications. Jordan J.

Electr. Eng, 2(3): 215-230.

[28] Kawahara, D., Nagata, Y. (2021). T1-weighted and T2-

weighted MRI image synthesis with convolutional

generative adversarial networks. reports of practical

Oncology and radiotherapy, 26(1): 35-42.

https://doi.org/10.5603/RPOR.a2021.0005

[29] Mamat, A.R., Mohamed, F.S., Mohamed, M.A., Rawi,

N.M., Awang, M.I. (2018). Silhouette index for

determining optimal k-means clustering on images in

different color models. Int. J. Eng. Technol, 7(2): 105-

109.

[30] Kumar, A., Sinha, R., Bhattacherjee, V., Verma, D.S.,

Singh, S. (2012). Modeling using K-means clustering

algorithm. In 2012 1st International Conference on

Recent Advances in Information Technology (RAIT),

554-558. https://doi.org/10.1109/RAIT.2012.6194588

[31] Wu, W., Peng, M. (2017). A data mining approach

combining K-Means clustering with bagging neural

network for short-term wind power forecasting. IEEE

Internet of Things Journal, 4(4): 979-986.

https://doi.org/10.1109/JIOT.2017.2677578

[32] Liu, Y., Li, Z., Xiong, H., Gao, X., Wu, J. (2010).

Understanding of internal clustering validation measures.

In 2010 IEEE international conference on data mining,

911-916. https://doi.org/10.1109/ICDM.2010.35

[33] Costa, L.D.F. (2021). Further generalizations of the

Jaccard index. arXiv preprint arXiv:2110.09619.

[34] Thada, V., Jaglan, V. (2013). Comparison of jaccard,

dice, cosine similarity coefficient to find best fitness

value or web retrieved documents using genetic

algorithm. International Journal of Innovations in

Engineering and Technology, 2(4): 202-205.

[35] Tang, Q.Y., Khalid, M.A. (2016). Acceleration of k-

means algorithm using altera SDK for OPENCL. ACM

Transactions on Reconfigurable Technology and

Systems (TRETS), 10(1): 1-19.

https://doi.org/10.1145/2964910

[36] Choi, Y.M., So, H.K.H. (2014). Map-reduce processing

of k-means algorithm with FPGA-accelerated computer

cluster. In 2014 IEEE 25th International Conference on

Application-Specific Systems, Architectures and

Processors, 9-16.

https://doi.org/10.1109/ASAP.2014.6868624

[37] Saegusa, T., Maruyama, T. (2006). An FPGA

implementation of k-means clustering for color images

based on KD-tree. In 2006 International Conference on

Field Programmable Logic and Applications, 1-6.

https://doi.org/10.1109/FPL.2006.311268

1891

