
Implementation of Blockchain with Machine Learning Intrusion Detection System for

Defending IoT Botnet and Cloud Networks

Swapna Siddamsetti1,2*, Muktevi Srivenkatesh1

1 Department of Computer Science, GITAM School of Science, GITAM Deemed to be University, Vishakapatnam 530045,

India
2 Department of Computer Science and Engineering, Neil Gogte Institute of Technology, Hyderabad, Telanagana 500039,

India

Corresponding Author Email: swapnangit2021@gmail.com

https://doi.org/10.18280/isi.270620 ABSTRACT

Received: 8 August 2022

Accepted: 4 November 2022

Significant research has been done on combining intrusion detection and blockchain to

increase data privacy and find both current and future threats. This research suggests a

machine blockchain framework (MBF) in order to provide distributed intrusion detection

with security and blockchain with privacy with the help of smart contracts in IoT

networks. An XGBoost algorithm was implemented to work with sequential network

data and the intrusion detection approach is explored using the N-BaIoT dataset. In order

to protect the network against known malware threats (Mirai, Gafgyt, or Bashlite), the

IoT malware attack prediction model created in this study offers a deterrent strategy

based on the network traffic statistics. On the other hand, the models need to be taught

to recognize new varieties of malware. In this work, we observe how different machine

learning models, like Random Forest algorithm and proposed XGBoost algorithm, can

accurately predict the infected malware in certain traffic instance. However, we provide

a honeypot-based strategy that employs machine learning techniques for the detection of

malware in this study. Using data from an IoT Botnet as a dataset helps train a machine

learning model in a way that is effective and changes over time.

Keywords:

blockchain, cloud systems, machine learning,

IoT botnets, intrusion detection system

1. INTRODUCTION

Internet users have been dynamically attacked over the past

10 years by worms and viruses that are distributed over email.

This is not because the Internet is significantly more secure;

rather, it is more likely a result of attackers' focus shifting to

infecting and controlling victim PCs, a type of threat that

offers greater opportunity for individual gain and offensive

capabilities. As per a Gartner report [1], by 2030, the number

of Internet of Things (IoT) devices linked over the internet is

predicted to reach 50 billion. These IoT devices are not just

used in electronic gadgets; they have also made their way into

other industries, including smart agriculture, hospitals, and

homes [2]. Several strategies are used to attack threats and give

users access to a secure network. In particular, blockchain,

machine learning (ML), and deep learning (DL) technologies

are studied in this paper as intrusion detection strategies. By

using either the signature-based or anomaly-based types of

cyber-analysis, machine learning may be used to identify

attacks. Some publications in the literature [3] employ

signature-based approaches to identify attacks. The four

different machine learning algorithms are used to understand

the features of some frequent attacks in the paper. The

detection of botnet patterns in the network traffic was

employed by using signature-dependent methods [4]. These

methods were also employed to detect infected workstations

by analysis of botnet network traffic patterns. The two

fundamental weaknesses of signature-dependent techniques

are that they cannot identify previously undetected phishing

attacks and that their effective usage necessitates regular

human updating of attack traffic signatures. Anomaly-based

detection is the second class of detection techniques. This class

simulates typical network behavior, and any unusual behavior

is regarded as an attack. Many IoT gadgets, including security

cameras with IP-enabled systems, printers with wireless

connectivity, baby monitors, etc., have weak security

configurations that Mirai took advantage of to turn the above-

mentioned devices into harmful bots. The above harmful bots

joined together to form a botnet that launched many DDoS

attacks against a DNS provider. Later, the Mirai botnet's

source code was made public on Hackers Forum, and it was

looked into how these IoT devices came to be a target of the

Mirai botnet [5]. Traditional DDoS attacks are usually stopped

by installing expensive, complex equipment or using outside

service providers who charge a lot for their services [6, 7]. To

overcome the issue with centralized DDoS mitigation methods,

Blockchain introduces a database which is distributed and

depends on the network with peer-to-peer connectivity, which

presents a high intensity of trust which also includes

dependability. A node broadcasts a new block to the rest of the

network after receiving it. After verifying the block, each node

that has received it distributes it to other nodes. The block can

only be added to the blockchain by the miners.

Several industries are using blockchain to facilitate trust and

data privacy. This is because it supports parties to make

different types of transactions in order to transfer information

by retaining trust of the users. Intrusion Detection System with

blockchain technology can be used together to detect different

Ingénierie des Systèmes d’Information
Vol. 27, No. 6, December, 2022, pp. 1029-1038

Journal homepage: http://iieta.org/journals/isi

1029

https://crossmark.crossref.org/dialog/?doi=10.18280/isi.270620&domain=pdf

kinds of threats in order to protect personal and sensitive data

of the clients stored on cloud technology and also IoT

networks. The Collaborative Intrusion Detection Systems

(CIDSs) are assumed as economical and scalable for

inspecting different cloud nodes. The major challenges in the

cloud technologies will be the storage capacity to maintain the

privacy of data and provide assurance for trust management

amongst multi-cloud service providers [8].

Privacy-preserving mechanisms are frequently

implemented to convert, alter, or hide original material in

order to secure it from unwanted access, along with the process

of finding attack events employing CIDSs in the cloud services

[9]. The blockchain structure and smart contract technologies

are popular forms for preserving privacy, which provides

cloud elements with authentication and integrity. Numerous

security weaknesses in blockchain attacks and related

technologies, like bitcoin and Ethereum, have been recently

brought to light [10]. As this article says, it is important to use

machine learning to create an IDS-based blockchain system in

the cloud. This will help find cyberattacks and protect the data

of IDS engines that are installed at different cloud nodes.

We can summarize our contributions through this article as:

• On the basis of a machine blockchain framework

(MBF), a system for detecting intrusions has been proposed.

This system keeps data secure and private in cloud networks.

• The detection of cyberattacks in IoT networks can be

made better by looking at how efficiently machine learning

algorithms will be able to work on a recent type of IoT dataset.

• Get the current features from the datasets and choose

the most useful ones to improve the performance of a machine

learning algorithm.

The proposed system and prescribed methods have been

evaluated with the help of data sets of UNSW-BN15 and N-

BaIoT of the network, the performance of the system is

compared with different intrusion detection techniques to

determine its effectiveness while deploying it to the cloud.

2. RELATED WORKS

The implementation of machine learning algorithms has

been the subject of in-depth study in the past [11], and a

number of academic articles on the applications of data mining

and artificial intelligence for intrusion detection have been

published [12]. Several studies have used blockchain

technology to boost CIDS trust in networks and cloud

platforms. As an illustration, Dawit et al. [13] examined

several approaches for grouping CIDSs with blockchains. The

significance of CIDSs has been increased by employing the

blockchain technology as proposed by the authors in different

articles. It was emphasized that the benefits of blockchain

technology for CIDSs include the capacity to trust one another

as well as techniques for accountability and consensus.

Saldamli et al. [14] also talked about how important it is to use

blockchain and how its theoretical techniques could be used to

secure CIDSs.

Li et al. [15] fully implemented these issues and argued for

the benefits of fusing trust management with blockchain

technology. Blockchain technology enables communication in

the networks without any trusted party to maintain the integrity

of shared data, and trust management can assist in assessing

each node's trustworthiness. Then a simple model for

cooperative intrusion detection with blockchain in SDN was

presented. In this study, they considered challenge-based

CIDS to asses basic performance of our framework against

external and internal threats. The outcomes demonstrate the

framework's feasibility and efficiency. Putra et al. [16]

proposed a CIDS with a decentralized environment and

emphasized the value of developing trust among CIDS nodes.

To implement the suggested fix, every CIDS node

communicates detection rules with other nodes to aid in the

identification of novel intrusion types. The design uses a store

with decentralized structures to handle the shared detection

rules for trustworthy mechanisms, guaranteeing scalability

and offloading the trust computation to the blockchain.

Implementing the approach in a lab-scale testbed showed that

it works and meets the expected benchmarks for the Ethereum

platform [17].

By combining these two, Li et al. [18] expected to offer a

blockchain-based challenge-based CIDN system. As per the

evaluation criteria, blockchain technology has the capability to

improve the trust management (i.e., enhancing the detection of

malware in the insider nodes) and alarm aggregation aspects

of challenge-based CIDNs (i.e., identifying untruthful inputs).

With the help of traffic fusion and aggregation to manage and

eliminate harmful traffic, Meng et al. [19] focused on

blockchain-based SDN and created a filter called the

BSDNFilter, an IDS-based security mechanism. The

simulated tests in a real blockchain-based SDN system shown

that BSDNFilter can filter threats of flooding better than

models that were made in collaboration with an IT

organization. Li et al. [20] created a framework known as

BlockCSDN, for collaborative blockchain-based intrusion

detection in SDN, and used the CIDS of challenge-based as a

case study. The investigated results under both internal and

external threats prove that CIDSs and SDNs can benefit from

employing blockchain technology for avoiding vulnerability

and security.

In the smart grid, for MMG systems, a new type of

collaborative intrusion detection (CID) solution utilizing

blockchain was explained in this study by Hu et al. [21]. The

technique is created without the necessity for a central server

or trusted authority due to the message exchange of blockchain,

which also allows for a collaborative improvement in intrusion

detection accuracy. The proposal was designed with the

generating mechanism which integrates both periodic patterns

and trigger patterns which produce detection target for the CID,

i.e., a proposal. Using consensus procedure, a CID is produced

from the generated proposals and the MMG correlation model.

The final detection results from CID are successively collected.

A single microgrid is motivated to take part in consensus by

the application of an incentive mechanism. A case study on an

MMG system is used to show the efficacy of the suggested

strategy.

3. PROPOSED WORK

An MBF is suggested to recognize cyberattacks and

safeguard cloud-based data. The suggested framework's

systematic architecture is made up of four key parts: As

mentioned below and shown in Figure 1, the four components

are: 1) Cloud provider; 2) Blockchain and smart contracts that

protect privacy; 3) Central Coordinator Unit (CCU); and 4)

Intrusion Detection System (IDS). Every component has a role

to play. Cloud service providers often exchange data or notify

intrusion occurrences involving data privacy and

confidentiality concerns.

1030

Figure 1. Proposed cloud-based system architecture for cloud data centers using the MBF installed at NIDS

Figure 2. A DBF transaction's period of security event aggregation

The CCU entity is a mechanism for storing IDS audit logs

and warnings, acting as an isolated environment operating in

parallel with the blockchain system. The blockchain and smart

contract layer follows, which is intended to provide integrity

and authenticity to data and alarms created by NIDS and HIDS.

Finally, the IDS entity facilitates the validation of sessions

operating on the cloud transaction network and guarantees

whether they follow the rules set.

There are several cloud companies and data centers

available which are dented as the data centers D1, D2, D3, …,

Dn. They are detected as being part of a blockchain network's

cloud network. These organizations should have adequate

cloud resources to give their customers' entities to them. In

particular, a distributed digital ledger that contains all

transactions cloud-based was included in the block chain with

privacy-preservation and smart contract systems by means of

a consortium blockchain. This object is duplicated and placed

on every node of the multi-cloud network. It may be a CCU, a

data center, or a single host. The proposed MBF is built in a

data format similar to Bitcoin's. However, mining new blocks

should be suitably rewarded during a method of adding a block

to the blockchain. Miners earn from new coins minted with

each new block and transaction fees from any transactions

contained in the block. The proof of work mechanism,

contained in the new block and functions as proof to gain

reward and the privilege to register bitcoin transactions on the

blockchain, is the solution to implement and serves as the basis

for bitcoin's security framework. IDS audit logs and alarms are

stored in the CCU, which serves as a SIEM tool. Utilizing the

CCU's capabilities allows for the analysis, filtering, and

correlation of incoming data from various sources (such as

cloud data centers) in order to distinguish between typical and

unusual events. With smart contract platforms that facilitate

distributed data interchange and migration across multi-cloud

services, network managers could quickly reduce threats and

raise security awareness among blockchain cloud network

1031

participants. IDS based on an MBF guarantee privacy and data

security in cloud networks. The cloud transaction network's

frames are verified by the IDS entity, which also makes sure

they follow the established standards. They are made up of

several IDSs which are placed with in the wide-spread

networks or hosts of individuals and interact with each another

in order to predict coordinated cyberattacks and avoid

potential illegal activities. The CIDS, which requires

cooperation between different nodes, would make it easier to

find complex intrusions like DoS, DDoS, and malicious

insiders.

3.1 Intrusion detection system-based on machine learning

The proposed IDS's heterogeneous model and virtualized

technologies need to be constructed and deployed on a

computer infrastructure. Transaction logs and related

notification data on harmful software activity may be

exchanged among several cloud suppliers. However, the

usefulness of the shared data was limited in this case of IDS

systems which are not trusted and properly combined. When

creating a cloud-based IDS, the specific concept of cloud

computing creates a number of difficulties. The idea of cloud

computing itself makes it hard to make an IDS that is based on

the cloud. These characteristic features include efficient

insider and outsider attack detection with a reduced risk of

false negative values (FNs) and false positive values (FPs).

IDS monitors' raw warning data is saved in a blockchain

transaction that is distributed across participating network

nodes.

As a result, they can be kept in the CCU for a long time

within the prescribed directory for the forensic investigation

and compliance. Before permanently adding the transactions

into the ledger blocks, each and every participant (i.e.,

datacenter in the cloud) uses the consensus procedure in order

to guarantee the integrity of the transactions. By ensuring that

the CCU database only contains legitimate warnings, this

technique offers resistance to tampered data and transparency

so that the providers of cloud services can see where their

migrated data is located on the blockchain ledger. In order to

better supervise identity, basically in an open public access

blockchain, participating nodes of the datacenter of the IDS

have to build a smart contract which will be linked to other

nodes with the help of a registry-based type. The

characteristics of any smart contract are copied and

disseminated by all network nodes. These can only do the acts

they were created and only when the specified criteria are

satisfied. They can no longer be edited after they have been

published to the network. A high-level language known as

solidity is required to develop the most prominent and

successful language for creating a smart contract. Formal

approaches, programming language semantics, and

cryptography are some of the other cases.

The smart contract is sorted into the cloud-based blockchain

of each IDS. Based on stated regulations inside the smart

contract, like country code, the area, their zone, and type of

organization, each and every participating IDS node can be

able to select other partner nodes with whom they want to

transfer the information. A new datacenter or cloud vendor

must first register with the CCU to get an identification

number before they can use the CID system (private and public

keys). Figure 2 presents our DBF's architectural layout. MBF

offers complete knowledge of reported security incidents,

rapid data interchange across IDS, alarm correlation, and

predictive analytics. MBF is the data protection mechanism

that accepts a blockchain transaction as input, initializes the

genesis block, verifies for legitimate blockchain transactions,

processes off-chain, computes hash using SHA-256, and thus

generates newhashBlock. Furthermore, only the resource-

constrained device nodes need to keep a ledgers tiny amount

which has to be processed by the distributed CCU in off-chain

mode according to the blockchain’s built-in capabilities for

smart contract-based systems. As a result, IoT devices may

function as simple users to confirm and share the accuracy of

alert events throughout the blockchain network. The CCU with

distributed property, on the other hand, serves as the miner

node and keeps the whole blockchain ledger. It requires a hash

value of high rate to execute all the incoming transactions.

Lastly, the proposed MBF results are made unchangeable,

reliable by getting them and putting them on the blockchain in

the correct order.

3.2 Machine learning models for intrusion detection

systems

In this part the proposed MBF framework is presented. For

the purpose of identifying the blockchain-based cloud network

attacks, LR, RF, and XGBoost are used as IDS. It may be

observed as a strong artificial neural network that processes

sequence input by passing internally stored information.

Figure 3 provides an illustration of the suggested IDS

methodology details. There are four primary phases for

training and validating the LR, RF, and algorithm: the

partitioning of training and testing sets; data standardization;

model construction; and dataset inputs. Data is uploaded for

the first stage. This contains datasets like the N-BaIoT dataset,

for instance. These were picked because they cover a wide

range of security incidents and are reputed and reliable cloud

network observations. In the second phase, the complete data

sets are partitioned into two parts called training datasets and

testing datasets to establish how well the ML algorithms can

discriminate between attacks and regular observations. In

order to successfully fit data using ML models, the training

datasets and testing datasets are normalized according to

certain range, like [0, 1], in the third step. It was made so that

the proposed XGBoost model could be trained and tested to

see how well it could classify attack events. The Python-based

Keras deep learning package was used to create the XGBoost

model. Every data collection is split into three categories: 1)

training phase, 2) validation phase, and 3) testing phase, with

respective percentages of 60%, 20%, and 20%. This results in

the highest accuracy detection model during implementation.

The trained model was put to the test by working on each row

of the testing dataset. Rows that follow are then classified as

either regular records or attack record datasets. Nine

commercial IoT devices that were attacked by the Mirai and

BASHLITE botnets provided the data for this dataset, which

contains genuine network traffic information.

A. Dataset:

The dataset is produced by separating harmful from benign

data [16]. The dataset displays actual traffic data taken from

seven Internet of Things (IoT) devices that were infected with

the Mirai virus. Each IoT device has a unique value assigned

to it in the dataset. Although each dataset shares 115 features,

the total size of the collection differs depending on the device.

There are 23 features in each of the five-time window that

make up the 115 features. The "N-BaIoT" dataset, which

1032

records typical network traffic patterns, was used to train

seven IoT devices. For example, the MI dir L5 function of

weight displays traffic from MAC packets of the host and IP

at a five-second interval. Similar to how HH dir L3 weight

specifies traffic from the source host to the destination host at

a three-second interval, HpHp dir L3 weight specifies the

traffic from the source host port to the destination host port at

a three-second interval. It contains 115 traffic features, eight

separate attack classes, two botnets, and one benign botnet.

The attributes used for training include DoS HTTP, DoS UDP,

DoS TCP, Backdoor, Exploits, Analysis, Reconnaissance,

Worms, Shellcode, Ports canning, OS fingerprinting, DDoS

HTTP, DDoS UDP, DDoS TCP, Keylogging, and Datatheft.

All the properties are independent.

Figure 3. Proposed XGBoost model for intrusion detection

B. Data preprocessing:

We employed the max-min normalization, in which the

input data are to be mapped according to the range of the

values between 0 and 1 [22], as the preprocessing step. For the

system's implementation, we employed various Python

libraries, including Scikit-learn, Keras, and TensorFlow.

Scikit-learn is a supporting tool for effectively implementing

a variety of machine learning methods. Additionally, it offers

the ability to divide datasets into several subsets, including the

ability to divide training and test datasets. We have partitioned

the chosen dataset into training and testing datasets using this

package. Additionally, we experimented with the help of a

tree-based approach and naive bayes using this library. In this

case, we use TensorFlow, which is a more complicated

framework designed for distributed numerical computation

with the help of data flow graphs. It can run on top of Keras,

the high-level efficient neural network of the Python-API.

Data cleaning: The IoT Botnet dataset contains properties

of a comparable type and quantity with somewhat different

attack types. Before normalizing this dataset, the null values

are taken out, the redundant indices are removed, and the data

types are changed to the right type (float). This is done to avoid

problems.

Numericalization: Each dataset's feature data types must

be identified in advance for numericalization. As the N BaIoT

Data Set dataset lacks a category value. By using label

encoding, these category variables are transformed into

numeric data. Label encoding uses little memory and produces

the same dimension of the dataset as previously, while giving

repeated labels the same values. So, label encoding is used to

turn the category-type features in all four of these datasets into

numbers. For label encoding in this study, we employed the

scikit-learn library. The steps are as follows: (i) Create a

LabelEncoder; (ii) Instance and save it in the LabelEncoder

variable/object; (iii) Then, fit and transform are used to assign

numerical values to categorical values, and the results are kept

in a new column named "State N."

Normalizing: Following numericalization, the five relevant

dataset’s continuous numerical data, particularly those with a

high range, are subjected to the StandardScaler technique for

normalization. StandardScalar scales the data using a normal

distribution by dividing by the standard deviation and

subtracting the mean of 0.

𝑥𝑖 −𝑚𝑒𝑎𝑛(𝑥)

𝑠𝑡𝑑. 𝑑𝑒𝑣(𝑥)
 (1)

The mean and standard deviation of the x features are

determined for feature xi, and xi is scaled using Eq. (1) above.

C. Classification:

The network detection mechanism classifies the specified

features as either normal or attacks using classification

algorithms. Three classifiers are used to analyse the data:

1033

Logistic Regression (LR), Random Forest (RF), and XGBoost

(a proposed technique), and the data is classified by botnet,

attack, and device. Below, we have a detailed explanation of

each.

Logistic Regression (LR):

A machine learning classifier called logistic regression (LR)

is used to simulate the probability of a given class value.

Although LR may be expanded to classify more than one class,

in its most basic form, LR models a binary dependent variable

using a logistic function. It is possible to employ a weighting

of the factors to lower the level of the penalties from a

complete penalty to a very small penalty. The L2 penalty is

employed by the LogisticRegression class by default with a

weighting of coefficients set to 1.0. Although not all solvers

support all penalty types, the type of penalty may be chosen

through the "penalty" parameter with values of "l1", "l2", or

"elasticnet" (e.g., both). The "C" option allows the penalty's

coefficient weighting to be modified [23].

Random Forest (RF):

The Random Forest algorithm belongs to the category of

supervised learning. Random Forest is unique in that it may be

used with both classification and regression methods. A

random forest, to put it simply, is a collection of decision trees

that use the bulk of their outputs to enhance prediction and

outcomes. In this study, the Random Forest model is used to

predict the accuracy of the Mirai or Gafgyt malware in the

dataset. The LR and XGBoost models are also used to predict

and compare the precision value, recall value, and F-1 score.

Algorithm XGBoost (Proposed model):

Test and train data were included in the dataset. To combine

the data into one file, the two sets were first concatenated. The

Python environment is used to run the combined data. The

dataset has been opened on the Python platform, and the

XGBoost algorithm for the N-BotIoT dataset was run by

configuring different XGBoost-related settings. XGBoost was

basically created by utilizing gradient-boosted decision trees

to improve the speed and performance. It represents a method

for applying boost to machines, or machine boosting. A

general architecture of the XGBoost algorithm is shown in

Figure 4. For tree boosting algorithms, XGBoost, also known

as extreme gradient boosting, which helps in making use of all

the available within the specified hardware and memory

resources. It offers the advantages of algorithm improvement,

model tuning process, and deployment in computing with

different environments. The three main gradient boosting

methods—Gradient Boosting, Regularized Boosting, and

Stochastic Boosting—can all be carried out by XGBoost. In

contrast to other libraries, it also enables the insertion and fine-

tuning of regularization parameters.

Figure 4. A general XGBoost architecture

The technique makes the best use of memory resources

while being very successful at decreasing computation time. It

has the special ability to execute boosting on additional data

along with the trained model, which can be sparse-aware or

can efficiently handle the missing values. It also provides a

parallel structure for the tree construction along with several

other notable features. The objective function has two parts: a

training loss and a regularization. The training loss is the first

portion of the objective function.

𝑜𝑏𝑗(𝜑) = 𝑇𝐿(𝜑) + 𝑅(𝜑) (2)

In Eq. (2), R stands for the regularization term, while TL

represents training loss. Simply said, the TL is a measurement

of the proposed model's predictive power. Regularization

helps maintain the model's complexity within desirable

bounds by removing issues like data overstacking or

overfitting, which may result in the model having lower

accuracy. All of the trees created from the dataset are simply

added together by XGBoost, who then optimizes the outcome.

At each stage, XGBoost adds a tree while attempting to

optimize the learned tree (training). Taylor's theorem says that,

at step t, the new objective function usually has up to the

second order and looks like an expansion.

𝑜𝑏𝑗(𝑡) = ∑[𝑚𝑖𝑓𝑡(𝑝𝑖) +
1

2
𝑐𝑖𝑓𝑡

2(𝑝𝑖)]

𝑛

𝑖=1

(3)

where, mi and ci are taken as inputs.

The new tree that decides to join the model, the outcome

reflects the intended optimization. In order to handle loss

functions like logistic regression, XGBoost does it in this

manner. To continue, regularization is crucial in determining

the tree complexity defined in terms of R. Tree f(p) can be

more precisely defined as:

𝑓𝑡(𝑝) = 𝑤𝑞(𝑝), 𝑤𝜖𝑅
𝐿 , 𝑞: 𝑅𝑑 → {1,2,3… . , 𝐿} (4)

In the above equation, the function q assigns leaves to the

relevant data points, and w represents a vector of leaf scores

(same score for data points utilizing the same leaf). The

number of leaves is L. Given the intricacy of XGBoost,

𝑅(𝑓) = 𝛼𝐿 +
1

2
𝛽∑𝑤𝑗

2

𝐿

𝑗=1

(5)

By using the normalization equation in the theorem, it is

possible to get the proposed control objective function at the

step t, also known as the tth tree. The model will represent

recently upgraded tree models and also provide an assessment

of the quality (p) of the tree structures. Since it's hard to

compute all tree options at the same time, the regularization,

leaf scores, and objective function are all calculated at each

level to define the tree structure. The gain of the tree structure

is calculated at each and every level by splitting the leaf into a

left leaf and a right leaf. The gain value of the current leaf is

calculated by applying the regularization to all potential

subsequent leaves. If the benefit is less than the additional

regularization value, that particular branch is severed (by using

the concept also called "tree pruning"). XGBoost uses this

method to classify data and explore trees in depth. The

extracted features are fed into the XGBoost model. Then,

1034

during every round, we employ the weighted column method

to subsample columns, allowing XGBoost to concentrate on

features that can better classify attacks. As a result, this

strategy may lower the impact of redundancy features while

improving classification accuracy and computational resource

savings. As a result, accuracy values and other parameters can

be calculated.

4. RESULTS AND DISCUSSION

The data collected was classified by type of device, by type

of botnet, and then by type of attack, since we are categorizing

each attempt in each botnet for each device.

Table 1. Provision_PT_737E Security Camera device results for Gafgyt attacks

Device-

Name

Botnet-

Name

Attack-

Type
Alg. Acc Pre Recall

F1

score

Provision_

PT_737E

Security

Cameras

Gafgyt

Junk,

combo,

scan, tcp,

udp

LR

RF

XGBoost

0.86 0.85 0.89 0.82

0.93 0.93 0.95 0.95

0.97 0.97 0.96 0.96

Table 2. Provision_PT_737E Security Camera device results for Mirai attacks

Device-

Name

Botnet-

Name

Attack-

Type
Alg. Acc Pre Recall

F1

score

Provision_

PT_737E

Security

Camera

Mirai

Junk,

combo,

scan, tcp,

udp

LR

RF

XGBoost

0.85 0.84 0.88 0.81

0.92 0.92 0.94 0.94

0.97 0.97 0.96 0.96

Table 3. Philips_B120N10 Baby Monitor results for Mirai attacks

Device-

Name

Botnet-

Name

Attack-

Type
Alg. Acc Pre Recall

F1

score

Philips_B120

N10 Baby

Monitor

Mirai

Junk,

combo,

scan, tcp,

udp

LR

RF

XGBoost

0.86 0.85 0.89 0.82

0.94 0.96 0.97 0.90

0.98 0.96 0.97 0.95

Table 4. SamsungSNH1011NWebcam device results for Gafgyt attacks

Device-Name
Botnet-

Name

Attack-

Type
Alg. Acc Pre Recall

F1

score

SamsungSNH1

011NWebcam
Gafgyt

Junk,

combo,

scan, tcp,

udp

LR

RF

XGBoost

0.83 0.85 0.83 0.80

0.94 0.93 0.95 0.96

0.98 0.96 0.97 0.98

Our early findings with the three classifiers—LR, RF, and

XGBoost—did not perform well, mostly because of how

severely unbalanced the data was. We employed nearly equal

amounts of malicious and benign (normal) data to address this

problem. Before executing the algorithms, a random sample of

roughly half of the benign data was taken from the collection

of malicious data and added to the malicious dataset.

The data was then normalised using z-scores as part of the

preprocessing. The normalised data was then utilised to train

and predict each of the classifiers (LR, RF, and XGBoost) as

binary classifiers. 20% of the data was utilised for testing,

while the remaining 80% was used for training. The classifiers

were run using Scikit Learn. In this experiment, the commonly

used multi-class performance measure "accuracy" is assessed

in order to analyse the performances of the implemented

models. Additionally, the precision values, recall values, and

F1-score have been calculated. The qualitative model quality

indices that are used to figure out these metrics are the true

positive values, the true negative values, the false positive

values, and the false negative values.

Accuracy is defined as the ratio of the model’s correct data

(TP+TN) to the total data, given by

Accuracy =
(TP + TN)

(TP + FP + TN + FN)
 (6)

Attack Detection Rate (ADR): It often known as recall

value, sensitivity, or: The number of positive instances

(TP+FN) in the given dataset for which the model correctly

identified a positive case as a true positive (TP) indicates how

good the model is at recognising an attack.

Recall = sensitivity = ADR = TPR =
TP

(TP + FN)
 (7)

Precision: This value represents the percentage of attack

occurrences which are correctly categorised as attacks, or the

number of real cases for all the positive cases (TP+FP)

determined by the model (TP).

Precision =
TP

(TP + FP)
 (8)

F1-score: The F1-score value represents the relationship

between precision_value and recall_value, given by:

1035

F1 − score =
1

Precision
+

1

Recall
 (9)

if the F1-score is maximum, then the proposed classification

model will be more robust [24].

UCI collected data from 9 IoT devices in the three

categories indicated below. Data is grouped by attack type for

each and every device (Benign, Mirai, Bashlite). Benign traffic

represents the normal traffic which is not being attacked by

any botnet software. Malware that targets these IoT devices

includes Bashlite and Mirai. The botnets that are used in this

research are called Gafgyt and Bashlite. The information

shown below is gathered for each device:

1) Benign (Normal)

2) Mirai malware attack

3) Gafgyt Malware attack

Figure 5 comparison of the Provision_PT_737E Security

Camera IoT device's performance evaluation findings may be

understandable given that it is based on Gafgyt botnet attacks

which are predicted based on above Table 1 to Table 4. We

have discussed these findings on the Gafgyt botnet and its

attacks using the three classifiers Logistic regression (LR) [25],

Random Forest (RF) [26], and proposed XGBoost. In this bar

graph, each pair of colors represents a combination of the

several performance indices that were used in this study.

Although LR has attained an accuracy value of 0.86, lower

than our proposed XGBoost model's 0.97, we assess three ML

approaches in this analysis. These results also reveal a very

high attack detection rate of over 0.96 for XGBoost as related

to the 0.89 of LR, and 0.95 of RF models. Also, the proposed

XGBoost model precision is 0.97 and has an F1-score of 0.96

in almost all Gafgyt botnet attacks, which is very close to one.

Figure 5. Performance comparison of Provision_PT_737E

Security Camera device for Gafgyt attacks

Figure 6 comparison of the Provision_PT_737E Security

Camera IoT device's performance evaluation findings may be

understandable given that it is based on Miria botnet attacks.

From the findings on the Miria botnet and its attacks using the

three classifiers LR, RF, and XGBoost. Although LR has

attained an accuracy value of 0.85, lower than our trained

XGBoost model's 0.97, we assess three ML approaches in this

analysis. These results also reveal a very high attack detection

rate of over 0.96 for XGBoost as related to the 0.88 of LR, and

0.94 of RF models. Also, the proposed XGBoost model

precision is 0.97 and has an F1-score of 0.96 in almost all

Miria botnet attacks, which is very close to one.

Figure 6. Performance comparison of Provision_PT_737E

Security Camera device for Mirai attacks

Figure 7 shows the performance comparison of the

Philips_B120N10 Baby Monitor device for Mirai attacks, in

which the proposed XGBoost outperforms in all four cases of

evaluation indices as related to the LR and RF models.

Figure 7. Performance comparison of Philips_B120N10

Baby Monitor device for Mirai attacks

Figure 8 shows the performance comparison of the

SamsungSNH1011NWebcam device for Gafgyt attacks, in

which the proposed XGBoost outperforms in all four cases of

evaluation indices as related to the LR and RF models.

Figure 8. Performance comparison of

SamsungSNH1011NWebcam device for Gafgyt attacks

0.7

0.75

0.8

0.85

0.9

0.95

1

LR RF XGBoost

P
er

fo
rm

a
n

ce
 l

ev
el

Method

Acc Prec Recall F1-score

0.7

0.75

0.8

0.85

0.9

0.95

1

LR RF XGBoost

P
er

fo
rm

a
n

ce
 l

ev
el

Methods

Accuracy Precision Recall F1 score

0.75

0.8

0.85

0.9

0.95

1

LR RF XGBoost

P
er

fo
rm

a
n

ce
 l

ev
el

Methods
Accuracy Precision Recall F1 score

0

0.2

0.4

0.6

0.8

1

LR RF XGBoost

P
er

fo
rm

a
n

ce
 l

ev
el

Methods

Accuracy Precision Recall F1 score

1036

In the testing phase, the proposed XGBoost model obtains

high DR vs the epoch's times, as shown in Figure 9.

Figure 9. Attacks that were correctly identified (DR) were

measured against both datasets epoch periods

In Figure 10, the detection ratio (DR) under multiclass

classification is compared between the XGBoost model as an

IDS and other well-known machine learning algorithms for

classification, such as RF and LR. The findings show that the

proposed IDS through XGBoost records lower false alarm

rates for each and every attack than the RF, LR, and false alarm

rates. This demonstrates that, when compared to other models,

the model obtains the best DR [27, 28].

Figure 10. Contrasting the proposed IDS-based XGBoost

model on both data sets with alternative machine learning

methods

5. CONCLUSIONS

To identify cyberattacks, we developed an intrusion

detection system based on MBF. It is intended to accomplish

cloud environment privacy preservation as well. The XGBoost

algorithm, which was tested on the UNSW-NB15 dataset and

the N-BaIoT dataset for identifying different attack events that

leverage cloud networks, is the foundation of the suggested

approach to intrusion detection. The results are quite precise,

and the error rate is very small. On average, the XGBoost

algorithm’s performance was best and the LR algorithm’s

performance was the worst of the three algorithms when

detecting whether an IoT device was attacked by any specific

botnet. The results by botnet type, for each attack on each

device, for all three classifiers show very high ADRs and

classification accuracy values (over 98%). In XGBoost

approaches, which essentially provide a new type of classifier

to the already existing trained ensemble, the re-training

component of RF is omitted. Future research studies will

examine the typical types of traffic patterns on various IoT

devices to expand the anomaly-sub-capabilities engine’s

ability to efficiently identify unidentified attacks.

REFERENCES

[1] Sivaraman, V., Gharakheili, H.H., Fernandes, C., Clark,

N., Karliychuk, T. (2018). Smart IoT devices in the home:

Security and privacy implications. IEEE Technology and

Society Magazine, 37(2): 71-79.

https://doi.org/10.1109/MTS.2018.2826079

[2] Fotsing, P.T., Lim, S.Y., Musa, O., Almasri, A. (2020).

Authchain blockchain-based authentication system.

International Journal of Engineering Trends and

Technology (IJETT), 70-74.

https://doi.org/10.14445/22315381/CATI1P212

[3] Arnaldo, I., Cuesta-Infante, A., Arun, A., Lam, M.,

Bassias, C., Veeramachaneni, K. (2017). Learning

representations for log data in cybersecurity. CSCML,

250-268. https://doi.org/10.1007/978-3-319-60080-2_19

[4] Stevanovic, M., Pedersen, J.M. (2016). Detecting bots

using multi-level traffic analysis. International Journal

on Cyber Situational Awareness (IJCSA), 1(1): 182-209.

https://doi.org/10.22619/IJCSA.2016.100109

[5] Idriss, H.K. (2020). Mirai botnet in Lebanon. 2020 8th

International Symposium on Digital Forensics and

Security (ISDFS), 1-6.

https://doi.org/10.1109/ISDFS49300.2020.9116456

[6] Zalte, S., Kamat, R.K., Ghorpade, V. (2020). Mitigation

of DDoS attack in MANET. International Journal of

Engineering and Advanced Technology, 9(6): 410-413.

http://dx.doi.org/10.35940/ijeat.E95400.089620

[7] Abdulkarem, H.S., Alethawy, A.D. (2021). DDoS attack

detection and mitigation at SDN environment. Journal of

Information & Communications Technology, 4(1): 1-9.

https://doi.org/10.31987/ijict.4.1.115

[8] Li, W., Meng, W., Kwok, L., IP, H. (2017). Enhancing

collaborative intrusion detection networks against insider

attacks using supervised intrusion sensitivity-based trust

management model. Journal of Network and Computer

Applications, 77: 135-145.

https://doi.org/10.1016/j.jnca.2016.09.014

[9] Bernal Bernabe, J., Canovas, J.L., Hernández-Ramos,

J.L., Torres Moreno, R., Skarmeta, A. (2019). Privacy-

preserving solutions for blockchain: Review and

challenges. IEEE Access, 7: 164908-164940.

https://doi.org/10.1109/ACCESS.2019.2950872

[10] Liang, X., Shetty, S.S., Tosh, D.K., Kamhoua, C.A.,

Kwiat, K.A., Njilla, L.L. (2017). ProvChain: A

blockchain-based data provenance architecture in cloud

environment with enhanced privacy and availability.

2017 17th IEEE/ACM International Symposium on

Cluster, Cloud and Grid Computing (CCGRID), pp. 468-

477. https://doi.org/10.1109/CCGRID.2017.8

[11] Zhang, J., Pan, L., Han, Q., Chen, C., Wen, S., Xiang, Y.

(2022). Deep learning based attack detection for cyber-

physical system cybersecurity: A survey. IEEE/CAA

0

20

40

60

80

100

1 10 20 30 40 50

D
et

ec
ti

o
n

 r
a

te
 i

n
 %

Epochs

UNSW-BN15 N-BaIoT

1.8

4.7

3.5

1.3

4.4

3.1

0

1

2

3

4

5

XGBoost LR RF

F
a

ls
e

a
la

rm
 r

a
te

 i
n

 %

Intrusion detection models

UNSW-BN15 N-BaIoT

1037

Journal of Automatica Sinica, 9(3): 377-391.

https://doi.org/10.1109/jas.2021.1004261

[12] Mirsky, Y., Doitshman, T., Elovici, Y., Shabtai, A.

(2018). Kitsune: An Ensemble of Autoencoders for

Online Network Intrusion Detection. ArXiv,

abs/1802.09089.

https://doi.org/10.14722/NDSS.2018.23204

[13] Dawit, N.A., Mathew, S.S., Hayawi, K. (2020).

Suitability of blockchain for collaborative intrusion

detection systems. 2020 12th Annual Undergraduate

Research Conference on Applied Computing (URC), pp.

1-6. https://doi.org/10.1109/URC49805.2020.9099189

[14] Saldamli, G., Ramesh, P.H., Nair, K.M.S., Munegowda,

R., Venkataramana, J., Tawalbeh, L. (2020). When

Healthcare Services Meet Blockchain Technology.

https://doi.org/10.1201/9780429324932-12

[15] Li, W., Tan, J.Q., Wang, Y. (2020). A Framework of

Blockchain-Based Collaborative Intrusion Detection in

Software Defined Networking. NSS, 261-276.

https://doi.org/10.1007/978-3-030-65745-1_15

[16] Putra, G.D., Dedeoglu, V., Pathak, A., Kanhere S.S.,

Jurdak, R. (2021). Decentralised trustworthy

collaborative intrusion detection system for IoT. 2021

IEEE International Conference on Blockchain

(Blockchain), Melbourne, Australia, pp. 306-313.

https://doi.org/10.1109/Blockchain53845.2021.00048

[17] Chen, L., Su, S. (2022). Optimization of the trust

propagation on supply chain network based on

blockchain plus. J. Intell. Manag. Decis., 1(1): 17-27.

https://doi.org/10.56578/jimd010103

[18] Li, W., Wang, Y., Li, J., Au, M.H. (2019). Towards

Blockchained Challenge-based Collaborative Intrusion

Detection. Acns workshops, 122-139.

https://doi.org/10.1007/978-3-030-29729-9_7

[19] Meng, W., Li, W., Zhou, J. (2021). Enhancing the

security of blockchain-based software defined

networking through trust-based traffic fusion and

filtration. Information Fusion, 70: 60-71.

https://doi.org/10.1016/j.inffus.2020.12.006

[20] Li, W., WANG, Y., Meng, W., LI, J., SU, C. (2022).

BlockCSDN: Towards blockchain-based collaborative

intrusion detection in software defined networking.

IEICE Transactions on Information and Systems,

E105.D(2): 272-279.

https://doi.org/10.1587/transinf.2021BCP0013

[21] Hu, B., Zhou, C., Tian, Y., Qin, Y., Junping, X. (2019).

A collaborative intrusion detection approach using

blockchain for multimicrogrid systems. IEEE

Transactions on Systems, Man, and Cybernetics:

Systems, 49(8): 1720-1730.

https://doi.org/10.1109/TSMC.2019.2911548

[22] Kumar, R., Zhang, X., Khan, R., Ahad, I., Kumar, J.

(2018). Malicious code detection based on image

processing using deep learning. ICCAI 2018 Proceedings

of the 2018 International Conference on Computing and

Artificial Intelligence, pp. 81-85.

https://doi.org/10.1145/3194452.3194459

[23] Basysyar, F.M. Dwilestari, G. (2022). House price

prediction using exploratory data analysis and machine

learning with feature selection. Acadlore Trans. Mach.

Learn., 1(1): 11-21.

https://doi.org/10.56578/ataiml010103

[24] Zhang, F., Wu, D., Liu, P., Zhu, S. (2014). Program logic

based software plagiarism detection. 2014 IEEE 25th

International Symposium on Software Reliability

Engineering, Naples, Italy, pp. 66-77.

https://doi.org/10.1109/ISSRE.2014.18

[25] Singh, H., Bijalwan, A. (2017). Botnet detection using

logistic regression technique. International Journal of

Computer Science and Information Security, 15(7): 306-

313.

[26] Moubayed, A., Injadat, M., Shami, A. (2020). Optimized

random forest model for botnet detection based on DNS

queries. 2020 32nd International Conference on

Microelectronics (ICM), Aqaba, Jordan, pp. 1-4.
https://doi.org/10.1109/ICM50269.2020.933181

[27] Yemelyanov, V., Nikonenko, U., Sytnyk, Y.,

Okhrimenko, I., Shulga, A. (2022). A model for

countering the information and technical threats of

intellectual capital management of innovation-oriented

systems in the engineering sector. Ingénierie des

Systèmes d’Information, 27(5): 799-806.

https://doi.org/10.18280/isi.270513

[28] Saeed, S.H., Hadi, S.M., Hamad, A.H. (2022). Iraqi

paradigm E-voting system based on hyperledger fabric

blockchain platform. Ingénierie des Systèmes

d’Information, 27(5): 737-745.

https://doi.org/10.18280/isi.270506

1038

https://doi.org/10.56578/jimd010103
https://doi.org/10.56578/ataiml010103
https://doi.org/10.1109/ICM50269.2020.933181

