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Significant research has been done on combining intrusion detection and blockchain to 

increase data privacy and find both current and future threats. This research suggests a 

machine blockchain framework (MBF) in order to provide distributed intrusion detection 

with security and blockchain with privacy with the help of smart contracts in IoT 

networks. An XGBoost algorithm was implemented to work with sequential network 

data and the intrusion detection approach is explored using the N-BaIoT dataset. In order 

to protect the network against known malware threats (Mirai, Gafgyt, or Bashlite), the 

IoT malware attack prediction model created in this study offers a deterrent strategy 

based on the network traffic statistics. On the other hand, the models need to be taught 

to recognize new varieties of malware. In this work, we observe how different machine 

learning models, like Random Forest algorithm and proposed XGBoost algorithm, can 

accurately predict the infected malware in certain traffic instance. However, we provide 

a honeypot-based strategy that employs machine learning techniques for the detection of 

malware in this study. Using data from an IoT Botnet as a dataset helps train a machine 

learning model in a way that is effective and changes over time. 
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1. INTRODUCTION

Internet users have been dynamically attacked over the past 

10 years by worms and viruses that are distributed over email. 

This is not because the Internet is significantly more secure; 

rather, it is more likely a result of attackers' focus shifting to 

infecting and controlling victim PCs, a type of threat that 

offers greater opportunity for individual gain and offensive 

capabilities. As per a Gartner report [1], by 2030, the number 

of Internet of Things (IoT) devices linked over the internet is 

predicted to reach 50 billion. These IoT devices are not just 

used in electronic gadgets; they have also made their way into 

other industries, including smart agriculture, hospitals, and 

homes [2]. Several strategies are used to attack threats and give 

users access to a secure network. In particular, blockchain, 

machine learning (ML), and deep learning (DL) technologies 

are studied in this paper as intrusion detection strategies. By 

using either the signature-based or anomaly-based types of 

cyber-analysis, machine learning may be used to identify 

attacks. Some publications in the literature [3] employ 

signature-based approaches to identify attacks. The four 

different machine learning algorithms are used to understand 

the features of some frequent attacks in the paper. The 

detection of botnet patterns in the network traffic was 

employed by using signature-dependent methods [4]. These 

methods were also employed to detect infected workstations 

by analysis of botnet network traffic patterns. The two 

fundamental weaknesses of signature-dependent techniques 

are that they cannot identify previously undetected phishing 

attacks and that their effective usage necessitates regular 

human updating of attack traffic signatures. Anomaly-based 

detection is the second class of detection techniques. This class 

simulates typical network behavior, and any unusual behavior 

is regarded as an attack. Many IoT gadgets, including security 

cameras with IP-enabled systems, printers with wireless 

connectivity, baby monitors, etc., have weak security 

configurations that Mirai took advantage of to turn the above-

mentioned devices into harmful bots. The above harmful bots 

joined together to form a botnet that launched many DDoS 

attacks against a DNS provider. Later, the Mirai botnet's 

source code was made public on Hackers Forum, and it was 

looked into how these IoT devices came to be a target of the 

Mirai botnet [5]. Traditional DDoS attacks are usually stopped 

by installing expensive, complex equipment or using outside 

service providers who charge a lot for their services [6, 7]. To 

overcome the issue with centralized DDoS mitigation methods, 

Blockchain introduces a database which is distributed and 

depends on the network with peer-to-peer connectivity, which 

presents a high intensity of trust which also includes 

dependability. A node broadcasts a new block to the rest of the 

network after receiving it. After verifying the block, each node 

that has received it distributes it to other nodes. The block can 

only be added to the blockchain by the miners. 

Several industries are using blockchain to facilitate trust and 

data privacy. This is because it supports parties to make 

different types of transactions in order to transfer information 

by retaining trust of the users. Intrusion Detection System with 

blockchain technology can be used together to detect different 
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kinds of threats in order to protect personal and sensitive data 

of the clients stored on cloud technology and also IoT 

networks. The Collaborative Intrusion Detection Systems 

(CIDSs) are assumed as economical and scalable for 

inspecting different cloud nodes. The major challenges in the 

cloud technologies will be the storage capacity to maintain the 

privacy of data and provide assurance for trust management 

amongst multi-cloud service providers [8]. 

Privacy-preserving mechanisms are frequently 

implemented to convert, alter, or hide original material in 

order to secure it from unwanted access, along with the process 

of finding attack events employing CIDSs in the cloud services 

[9]. The blockchain structure and smart contract technologies 

are popular forms for preserving privacy, which provides 

cloud elements with authentication and integrity. Numerous 

security weaknesses in blockchain attacks and related 

technologies, like bitcoin and Ethereum, have been recently 

brought to light [10]. As this article says, it is important to use 

machine learning to create an IDS-based blockchain system in 

the cloud. This will help find cyberattacks and protect the data 

of IDS engines that are installed at different cloud nodes. 

We can summarize our contributions through this article as: 

• On the basis of a machine blockchain framework

(MBF), a system for detecting intrusions has been proposed. 

This system keeps data secure and private in cloud networks. 

• The detection of cyberattacks in IoT networks can be

made better by looking at how efficiently machine learning 

algorithms will be able to work on a recent type of IoT dataset. 

• Get the current features from the datasets and choose

the most useful ones to improve the performance of a machine 

learning algorithm. 

The proposed system and prescribed methods have been 

evaluated with the help of data sets of UNSW-BN15 and N-

BaIoT of the network, the performance of the system is 

compared with different intrusion detection techniques to 

determine its effectiveness while deploying it to the cloud. 

2. RELATED WORKS

The implementation of machine learning algorithms has 

been the subject of in-depth study in the past [11], and a 

number of academic articles on the applications of data mining 

and artificial intelligence for intrusion detection have been 

published [12]. Several studies have used blockchain 

technology to boost CIDS trust in networks and cloud 

platforms. As an illustration, Dawit et al. [13] examined 

several approaches for grouping CIDSs with blockchains. The 

significance of CIDSs has been increased by employing the 

blockchain technology as proposed by the authors in different 

articles. It was emphasized that the benefits of blockchain 

technology for CIDSs include the capacity to trust one another 

as well as techniques for accountability and consensus. 

Saldamli et al. [14] also talked about how important it is to use 

blockchain and how its theoretical techniques could be used to 

secure CIDSs. 

Li et al. [15] fully implemented these issues and argued for 

the benefits of fusing trust management with blockchain 

technology. Blockchain technology enables communication in 

the networks without any trusted party to maintain the integrity 

of shared data, and trust management can assist in assessing 

each node's trustworthiness. Then a simple model for 

cooperative intrusion detection with blockchain in SDN was 

presented. In this study, they considered challenge-based 

CIDS to asses basic performance of our framework against 

external and internal threats. The outcomes demonstrate the 

framework's feasibility and efficiency. Putra et al. [16] 

proposed a CIDS with a decentralized environment and 

emphasized the value of developing trust among CIDS nodes. 

To implement the suggested fix, every CIDS node 

communicates detection rules with other nodes to aid in the 

identification of novel intrusion types. The design uses a store 

with decentralized structures to handle the shared detection 

rules for trustworthy mechanisms, guaranteeing scalability 

and offloading the trust computation to the blockchain. 

Implementing the approach in a lab-scale testbed showed that 

it works and meets the expected benchmarks for the Ethereum 

platform [17]. 

By combining these two, Li et al. [18] expected to offer a 

blockchain-based challenge-based CIDN system. As per the 

evaluation criteria, blockchain technology has the capability to 

improve the trust management (i.e., enhancing the detection of 

malware in the insider nodes) and alarm aggregation aspects 

of challenge-based CIDNs (i.e., identifying untruthful inputs). 

With the help of traffic fusion and aggregation to manage and 

eliminate harmful traffic, Meng et al. [19] focused on 

blockchain-based SDN and created a filter called the 

BSDNFilter, an IDS-based security mechanism. The 

simulated tests in a real blockchain-based SDN system shown 

that BSDNFilter can filter threats of flooding better than 

models that were made in collaboration with an IT 

organization. Li et al. [20] created a framework known as 

BlockCSDN, for collaborative blockchain-based intrusion 

detection in SDN, and used the CIDS of challenge-based as a 

case study. The investigated results under both internal and 

external threats prove that CIDSs and SDNs can benefit from 

employing blockchain technology for avoiding vulnerability 

and security. 

In the smart grid, for MMG systems, a new type of 

collaborative intrusion detection (CID) solution utilizing 

blockchain was explained in this study by Hu et al. [21]. The 

technique is created without the necessity for a central server 

or trusted authority due to the message exchange of blockchain, 

which also allows for a collaborative improvement in intrusion 

detection accuracy. The proposal was designed with the 

generating mechanism which integrates both periodic patterns 

and trigger patterns which produce detection target for the CID, 

i.e., a proposal. Using consensus procedure, a CID is produced

from the generated proposals and the MMG correlation model.

The final detection results from CID are successively collected.

A single microgrid is motivated to take part in consensus by

the application of an incentive mechanism. A case study on an

MMG system is used to show the efficacy of the suggested

strategy.

3. PROPOSED WORK

An MBF is suggested to recognize cyberattacks and 

safeguard cloud-based data. The suggested framework's 

systematic architecture is made up of four key parts: As 

mentioned below and shown in Figure 1, the four components 

are: 1) Cloud provider; 2) Blockchain and smart contracts that 

protect privacy; 3) Central Coordinator Unit (CCU); and 4) 

Intrusion Detection System (IDS). Every component has a role 

to play. Cloud service providers often exchange data or notify 

intrusion occurrences involving data privacy and 

confidentiality concerns. 

1030



 
 

Figure 1. Proposed cloud-based system architecture for cloud data centers using the MBF installed at NIDS 

 

 
 

Figure 2. A DBF transaction's period of security event aggregation 

 

The CCU entity is a mechanism for storing IDS audit logs 

and warnings, acting as an isolated environment operating in 

parallel with the blockchain system. The blockchain and smart 

contract layer follows, which is intended to provide integrity 

and authenticity to data and alarms created by NIDS and HIDS. 

Finally, the IDS entity facilitates the validation of sessions 

operating on the cloud transaction network and guarantees 

whether they follow the rules set. 

There are several cloud companies and data centers 

available which are dented as the data centers D1, D2, D3, …, 

Dn. They are detected as being part of a blockchain network's 

cloud network. These organizations should have adequate 

cloud resources to give their customers' entities to them. In 

particular, a distributed digital ledger that contains all 

transactions cloud-based was included in the block chain with 

privacy-preservation and smart contract systems by means of 

a consortium blockchain. This object is duplicated and placed 

on every node of the multi-cloud network. It may be a CCU, a 

data center, or a single host. The proposed MBF is built in a 

data format similar to Bitcoin's. However, mining new blocks 

should be suitably rewarded during a method of adding a block 

to the blockchain. Miners earn from new coins minted with 

each new block and transaction fees from any transactions 

contained in the block. The proof of work mechanism, 

contained in the new block and functions as proof to gain 

reward and the privilege to register bitcoin transactions on the 

blockchain, is the solution to implement and serves as the basis 

for bitcoin's security framework. IDS audit logs and alarms are 

stored in the CCU, which serves as a SIEM tool. Utilizing the 

CCU's capabilities allows for the analysis, filtering, and 

correlation of incoming data from various sources (such as 

cloud data centers) in order to distinguish between typical and 

unusual events. With smart contract platforms that facilitate 

distributed data interchange and migration across multi-cloud 

services, network managers could quickly reduce threats and 

raise security awareness among blockchain cloud network 
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participants. IDS based on an MBF guarantee privacy and data 

security in cloud networks. The cloud transaction network's 

frames are verified by the IDS entity, which also makes sure 

they follow the established standards. They are made up of 

several IDSs which are placed with in the wide-spread 

networks or hosts of individuals and interact with each another 

in order to predict coordinated cyberattacks and avoid 

potential illegal activities. The CIDS, which requires 

cooperation between different nodes, would make it easier to 

find complex intrusions like DoS, DDoS, and malicious 

insiders. 

 

3.1 Intrusion detection system-based on machine learning 

 

The proposed IDS's heterogeneous model and virtualized 

technologies need to be constructed and deployed on a 

computer infrastructure. Transaction logs and related 

notification data on harmful software activity may be 

exchanged among several cloud suppliers. However, the 

usefulness of the shared data was limited in this case of IDS 

systems which are not trusted and properly combined. When 

creating a cloud-based IDS, the specific concept of cloud 

computing creates a number of difficulties. The idea of cloud 

computing itself makes it hard to make an IDS that is based on 

the cloud. These characteristic features include efficient 

insider and outsider attack detection with a reduced risk of 

false negative values (FNs) and false positive values (FPs). 

IDS monitors' raw warning data is saved in a blockchain 

transaction that is distributed across participating network 

nodes. 

As a result, they can be kept in the CCU for a long time 

within the prescribed directory for the forensic investigation 

and compliance. Before permanently adding the transactions 

into the ledger blocks, each and every participant (i.e., 

datacenter in the cloud) uses the consensus procedure in order 

to guarantee the integrity of the transactions. By ensuring that 

the CCU database only contains legitimate warnings, this 

technique offers resistance to tampered data and transparency 

so that the providers of cloud services can see where their 

migrated data is located on the blockchain ledger. In order to 

better supervise identity, basically in an open public access 

blockchain, participating nodes of the datacenter of the IDS 

have to build a smart contract which will be linked to other 

nodes with the help of a registry-based type. The 

characteristics of any smart contract are copied and 

disseminated by all network nodes. These can only do the acts 

they were created and only when the specified criteria are 

satisfied. They can no longer be edited after they have been 

published to the network. A high-level language known as 

solidity is required to develop the most prominent and 

successful language for creating a smart contract. Formal 

approaches, programming language semantics, and 

cryptography are some of the other cases. 

The smart contract is sorted into the cloud-based blockchain 

of each IDS. Based on stated regulations inside the smart 

contract, like country code, the area, their zone, and type of 

organization, each and every participating IDS node can be 

able to select other partner nodes with whom they want to 

transfer the information. A new datacenter or cloud vendor 

must first register with the CCU to get an identification 

number before they can use the CID system (private and public 

keys). Figure 2 presents our DBF's architectural layout. MBF 

offers complete knowledge of reported security incidents, 

rapid data interchange across IDS, alarm correlation, and 

predictive analytics. MBF is the data protection mechanism 

that accepts a blockchain transaction as input, initializes the 

genesis block, verifies for legitimate blockchain transactions, 

processes off-chain, computes hash using SHA-256, and thus 

generates newhashBlock. Furthermore, only the resource-

constrained device nodes need to keep a ledgers tiny amount 

which has to be processed by the distributed CCU in off-chain 

mode according to the blockchain’s built-in capabilities for 

smart contract-based systems. As a result, IoT devices may 

function as simple users to confirm and share the accuracy of 

alert events throughout the blockchain network. The CCU with 

distributed property, on the other hand, serves as the miner 

node and keeps the whole blockchain ledger. It requires a hash 

value of high rate to execute all the incoming transactions. 

Lastly, the proposed MBF results are made unchangeable, 

reliable by getting them and putting them on the blockchain in 

the correct order. 

 

3.2 Machine learning models for intrusion detection 

systems 

 

In this part the proposed MBF framework is presented. For 

the purpose of identifying the blockchain-based cloud network 

attacks, LR, RF, and XGBoost are used as IDS. It may be 

observed as a strong artificial neural network that processes 

sequence input by passing internally stored information. 

Figure 3 provides an illustration of the suggested IDS 

methodology details. There are four primary phases for 

training and validating the LR, RF, and algorithm: the 

partitioning of training and testing sets; data standardization; 

model construction; and dataset inputs. Data is uploaded for 

the first stage. This contains datasets like the N-BaIoT dataset, 

for instance. These were picked because they cover a wide 

range of security incidents and are reputed and reliable cloud 

network observations. In the second phase, the complete data 

sets are partitioned into two parts called training datasets and 

testing datasets to establish how well the ML algorithms can 

discriminate between attacks and regular observations. In 

order to successfully fit data using ML models, the training 

datasets and testing datasets are normalized according to 

certain range, like [0, 1], in the third step. It was made so that 

the proposed XGBoost model could be trained and tested to 

see how well it could classify attack events. The Python-based 

Keras deep learning package was used to create the XGBoost 

model. Every data collection is split into three categories: 1) 

training phase, 2) validation phase, and 3) testing phase, with 

respective percentages of 60%, 20%, and 20%. This results in 

the highest accuracy detection model during implementation. 

The trained model was put to the test by working on each row 

of the testing dataset. Rows that follow are then classified as 

either regular records or attack record datasets. Nine 

commercial IoT devices that were attacked by the Mirai and 

BASHLITE botnets provided the data for this dataset, which 

contains genuine network traffic information. 

 

A. Dataset:  

The dataset is produced by separating harmful from benign 

data [16]. The dataset displays actual traffic data taken from 

seven Internet of Things (IoT) devices that were infected with 

the Mirai virus. Each IoT device has a unique value assigned 

to it in the dataset. Although each dataset shares 115 features, 

the total size of the collection differs depending on the device. 

There are 23 features in each of the five-time window that 

make up the 115 features. The "N-BaIoT" dataset, which 
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records typical network traffic patterns, was used to train 

seven IoT devices. For example, the MI dir L5 function of 

weight displays traffic from MAC packets of the host and IP 

at a five-second interval. Similar to how HH dir L3 weight 

specifies traffic from the source host to the destination host at 

a three-second interval, HpHp dir L3 weight specifies the 

traffic from the source host port to the destination host port at 

a three-second interval. It contains 115 traffic features, eight 

separate attack classes, two botnets, and one benign botnet. 

The attributes used for training include DoS HTTP, DoS UDP, 

DoS TCP, Backdoor, Exploits, Analysis, Reconnaissance, 

Worms, Shellcode, Ports canning, OS fingerprinting, DDoS 

HTTP, DDoS UDP, DDoS TCP, Keylogging, and Datatheft. 

All the properties are independent. 

 

 
 

Figure 3. Proposed XGBoost model for intrusion detection 

 

B. Data preprocessing: 

We employed the max-min normalization, in which the 

input data are to be mapped according to the range of the 

values between 0 and 1 [22], as the preprocessing step. For the 

system's implementation, we employed various Python 

libraries, including Scikit-learn, Keras, and TensorFlow. 

Scikit-learn is a supporting tool for effectively implementing 

a variety of machine learning methods. Additionally, it offers 

the ability to divide datasets into several subsets, including the 

ability to divide training and test datasets. We have partitioned 

the chosen dataset into training and testing datasets using this 

package. Additionally, we experimented with the help of a 

tree-based approach and naive bayes using this library. In this 

case, we use TensorFlow, which is a more complicated 

framework designed for distributed numerical computation 

with the help of data flow graphs. It can run on top of Keras, 

the high-level efficient neural network of the Python-API. 

Data cleaning: The IoT Botnet dataset contains properties 

of a comparable type and quantity with somewhat different 

attack types. Before normalizing this dataset, the null values 

are taken out, the redundant indices are removed, and the data 

types are changed to the right type (float). This is done to avoid 

problems. 

Numericalization: Each dataset's feature data types must 

be identified in advance for numericalization. As the N BaIoT 

Data Set dataset lacks a category value. By using label 

encoding, these category variables are transformed into 

numeric data. Label encoding uses little memory and produces 

the same dimension of the dataset as previously, while giving 

repeated labels the same values. So, label encoding is used to 

turn the category-type features in all four of these datasets into 

numbers. For label encoding in this study, we employed the 

scikit-learn library. The steps are as follows: (i) Create a 

LabelEncoder; (ii) Instance and save it in the LabelEncoder 

variable/object; (iii) Then, fit and transform are used to assign 

numerical values to categorical values, and the results are kept 

in a new column named "State N." 

Normalizing: Following numericalization, the five relevant 

dataset’s continuous numerical data, particularly those with a 

high range, are subjected to the StandardScaler technique for 

normalization. StandardScalar scales the data using a normal 

distribution by dividing by the standard deviation and 

subtracting the mean of 0. 

 

𝑥𝑖 −𝑚𝑒𝑎𝑛(𝑥)

𝑠𝑡𝑑. 𝑑𝑒𝑣(𝑥)
 (1) 

 

The mean and standard deviation of the x features are 

determined for feature xi, and xi is scaled using Eq. (1) above. 

C. Classification: 

The network detection mechanism classifies the specified 

features as either normal or attacks using classification 

algorithms. Three classifiers are used to analyse the data: 
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Logistic Regression (LR), Random Forest (RF), and XGBoost 

(a proposed technique), and the data is classified by botnet, 

attack, and device. Below, we have a detailed explanation of 

each. 

Logistic Regression (LR): 

A machine learning classifier called logistic regression (LR) 

is used to simulate the probability of a given class value. 

Although LR may be expanded to classify more than one class, 

in its most basic form, LR models a binary dependent variable 

using a logistic function. It is possible to employ a weighting 

of the factors to lower the level of the penalties from a 

complete penalty to a very small penalty. The L2 penalty is 

employed by the LogisticRegression class by default with a 

weighting of coefficients set to 1.0. Although not all solvers 

support all penalty types, the type of penalty may be chosen 

through the "penalty" parameter with values of "l1", "l2", or 

"elasticnet" (e.g., both). The "C" option allows the penalty's 

coefficient weighting to be modified [23]. 

Random Forest (RF): 

The Random Forest algorithm belongs to the category of 

supervised learning. Random Forest is unique in that it may be 

used with both classification and regression methods. A 

random forest, to put it simply, is a collection of decision trees 

that use the bulk of their outputs to enhance prediction and 

outcomes. In this study, the Random Forest model is used to 

predict the accuracy of the Mirai or Gafgyt malware in the 

dataset. The LR and XGBoost models are also used to predict 

and compare the precision value, recall value, and F-1 score. 

Algorithm XGBoost (Proposed model): 

Test and train data were included in the dataset. To combine 

the data into one file, the two sets were first concatenated. The 

Python environment is used to run the combined data. The 

dataset has been opened on the Python platform, and the 

XGBoost algorithm for the N-BotIoT dataset was run by 

configuring different XGBoost-related settings. XGBoost was 

basically created by utilizing gradient-boosted decision trees 

to improve the speed and performance. It represents a method 

for applying boost to machines, or machine boosting. A 

general architecture of the XGBoost algorithm is shown in 

Figure 4. For tree boosting algorithms, XGBoost, also known 

as extreme gradient boosting, which helps in making use of all 

the available within the specified hardware and memory 

resources. It offers the advantages of algorithm improvement, 

model tuning process, and deployment in computing with 

different environments. The three main gradient boosting 

methods—Gradient Boosting, Regularized Boosting, and 

Stochastic Boosting—can all be carried out by XGBoost. In 

contrast to other libraries, it also enables the insertion and fine-

tuning of regularization parameters. 

Figure 4. A general XGBoost architecture 

The technique makes the best use of memory resources 

while being very successful at decreasing computation time. It 

has the special ability to execute boosting on additional data 

along with the trained model, which can be sparse-aware or 

can efficiently handle the missing values. It also provides a 

parallel structure for the tree construction along with several 

other notable features. The objective function has two parts: a 

training loss and a regularization. The training loss is the first 

portion of the objective function. 

𝑜𝑏𝑗(𝜑) = 𝑇𝐿(𝜑) + 𝑅(𝜑) (2) 

In Eq. (2), R stands for the regularization term, while TL 

represents training loss. Simply said, the TL is a measurement 

of the proposed model's predictive power. Regularization 

helps maintain the model's complexity within desirable 

bounds by removing issues like data overstacking or 

overfitting, which may result in the model having lower 

accuracy. All of the trees created from the dataset are simply 

added together by XGBoost, who then optimizes the outcome. 

At each stage, XGBoost adds a tree while attempting to 

optimize the learned tree (training). Taylor's theorem says that, 

at step t, the new objective function usually has up to the 

second order and looks like an expansion. 

𝑜𝑏𝑗(𝑡) = ∑[𝑚𝑖𝑓𝑡(𝑝𝑖) +
1

2
𝑐𝑖𝑓𝑡

2(𝑝𝑖)]

𝑛

𝑖=1

(3) 

where, mi and ci are taken as inputs. 

The new tree that decides to join the model, the outcome 

reflects the intended optimization. In order to handle loss 

functions like logistic regression, XGBoost does it in this 

manner. To continue, regularization is crucial in determining 

the tree complexity defined in terms of R. Tree f(p) can be 

more precisely defined as: 

𝑓𝑡(𝑝) = 𝑤𝑞(𝑝), 𝑤𝜖𝑅
𝐿 , 𝑞: 𝑅𝑑 → {1,2,3… . , 𝐿} (4) 

In the above equation, the function q assigns leaves to the 

relevant data points, and w represents a vector of leaf scores 

(same score for data points utilizing the same leaf). The 

number of leaves is L. Given the intricacy of XGBoost, 

𝑅(𝑓) = 𝛼𝐿 +
1

2
𝛽∑𝑤𝑗

2

𝐿

𝑗=1

(5) 

By using the normalization equation in the theorem, it is 

possible to get the proposed control objective function at the 

step t, also known as the tth tree. The model will represent 

recently upgraded tree models and also provide an assessment 

of the quality (p) of the tree structures. Since it's hard to 

compute all tree options at the same time, the regularization, 

leaf scores, and objective function are all calculated at each 

level to define the tree structure. The gain of the tree structure 

is calculated at each and every level by splitting the leaf into a 

left leaf and a right leaf. The gain value of the current leaf is 

calculated by applying the regularization to all potential 

subsequent leaves. If the benefit is less than the additional 

regularization value, that particular branch is severed (by using 

the concept also called "tree pruning"). XGBoost uses this 

method to classify data and explore trees in depth. The 

extracted features are fed into the XGBoost model. Then, 
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during every round, we employ the weighted column method 

to subsample columns, allowing XGBoost to concentrate on 

features that can better classify attacks. As a result, this 

strategy may lower the impact of redundancy features while 

improving classification accuracy and computational resource 

savings. As a result, accuracy values and other parameters can 

be calculated. 

4. RESULTS AND DISCUSSION 

 

The data collected was classified by type of device, by type 

of botnet, and then by type of attack, since we are categorizing 

each attempt in each botnet for each device. 

 

Table 1. Provision_PT_737E Security Camera device results for Gafgyt attacks 

 
Device-

Name 

Botnet-

Name 

Attack-

Type 
Alg. Acc Pre Recall 

F1 

score 

Provision_

PT_737E 

Security 

Cameras 

Gafgyt 

Junk, 

combo, 

scan, tcp, 

udp 

LR 

RF 

XGBoost 

0.86 0.85 0.89 0.82 

0.93 0.93 0.95 0.95 

0.97 0.97 0.96 0.96 

 

Table 2. Provision_PT_737E Security Camera device results for Mirai attacks 

 
Device-

Name 

Botnet-

Name 

Attack-

Type 
Alg. Acc Pre Recall 

F1 

score 

Provision_

PT_737E 

Security 

Camera 

Mirai 

Junk, 

combo, 

scan, tcp, 

udp 

LR 

RF 

XGBoost 

0.85 0.84 0.88 0.81 

0.92 0.92 0.94 0.94 

0.97 0.97 0.96 0.96 

 

Table 3. Philips_B120N10 Baby Monitor results for Mirai attacks 

 
Device-

Name 

Botnet-

Name 

Attack-

Type 
Alg. Acc Pre Recall 

F1 

score 

Philips_B120

N10 Baby 

Monitor 

Mirai 

Junk, 

combo, 

scan, tcp, 

udp 

LR 

RF 

XGBoost 

0.86 0.85 0.89 0.82 

0.94 0.96 0.97 0.90 

0.98 0.96 0.97 0.95 

 

Table 4. SamsungSNH1011NWebcam device results for Gafgyt attacks 

 

Device-Name 
Botnet-

Name 

Attack-

Type 
Alg. Acc Pre Recall 

F1 

score 

SamsungSNH1

011NWebcam 
Gafgyt 

Junk, 

combo, 

scan, tcp, 

udp 

LR 

RF 

XGBoost 

0.83 0.85 0.83 0.80 

0.94 0.93 0.95 0.96 

0.98 0.96 0.97 0.98 

Our early findings with the three classifiers—LR, RF, and 

XGBoost—did not perform well, mostly because of how 

severely unbalanced the data was. We employed nearly equal 

amounts of malicious and benign (normal) data to address this 

problem. Before executing the algorithms, a random sample of 

roughly half of the benign data was taken from the collection 

of malicious data and added to the malicious dataset.  

The data was then normalised using z-scores as part of the 

preprocessing. The normalised data was then utilised to train 

and predict each of the classifiers (LR, RF, and XGBoost) as 

binary classifiers. 20% of the data was utilised for testing, 

while the remaining 80% was used for training. The classifiers 

were run using Scikit Learn. In this experiment, the commonly 

used multi-class performance measure "accuracy" is assessed 

in order to analyse the performances of the implemented 

models. Additionally, the precision values, recall values, and 

F1-score have been calculated. The qualitative model quality 

indices that are used to figure out these metrics are the true 

positive values, the true negative values, the false positive 

values, and the false negative values. 

Accuracy is defined as the ratio of the model’s correct data 

(TP+TN) to the total data, given by 

Accuracy =
(TP + TN)

(TP + FP + TN + FN)
 (6) 

 

Attack Detection Rate (ADR): It often known as recall 

value, sensitivity, or: The number of positive instances 

(TP+FN) in the given dataset for which the model correctly 

identified a positive case as a true positive (TP) indicates how 

good the model is at recognising an attack. 

 

Recall = sensitivity = ADR = TPR =
TP

(TP + FN)
 (7) 

 

Precision: This value represents the percentage of attack 

occurrences which are correctly categorised as attacks, or the 

number of real cases for all the positive cases (TP+FP) 

determined by the model (TP). 

 

Precision =
TP

(TP + FP)
 (8) 

 

F1-score: The F1-score value represents the relationship 

between precision_value and recall_value, given by: 
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F1 − score =
1

Precision
+

1

Recall
 (9) 

 

if the F1-score is maximum, then the proposed classification 

model will be more robust [24]. 

UCI collected data from 9 IoT devices in the three 

categories indicated below. Data is grouped by attack type for 

each and every device (Benign, Mirai, Bashlite). Benign traffic 

represents the normal traffic which is not being attacked by 

any botnet software. Malware that targets these IoT devices 

includes Bashlite and Mirai. The botnets that are used in this 

research are called Gafgyt and Bashlite. The information 

shown below is gathered for each device: 

1) Benign (Normal) 

2) Mirai malware attack 

3) Gafgyt Malware attack 

Figure 5 comparison of the Provision_PT_737E Security 

Camera IoT device's performance evaluation findings may be 

understandable given that it is based on Gafgyt botnet attacks 

which are predicted based on above Table 1 to Table 4. We 

have discussed these findings on the Gafgyt botnet and its 

attacks using the three classifiers Logistic regression (LR) [25], 

Random Forest (RF) [26], and proposed XGBoost. In this bar 

graph, each pair of colors represents a combination of the 

several performance indices that were used in this study. 

Although LR has attained an accuracy value of 0.86, lower 

than our proposed XGBoost model's 0.97, we assess three ML 

approaches in this analysis. These results also reveal a very 

high attack detection rate of over 0.96 for XGBoost as related 

to the 0.89 of LR, and 0.95 of RF models. Also, the proposed 

XGBoost model precision is 0.97 and has an F1-score of 0.96 

in almost all Gafgyt botnet attacks, which is very close to one. 

 

 
 

Figure 5. Performance comparison of Provision_PT_737E 

Security Camera device for Gafgyt attacks 

 

Figure 6 comparison of the Provision_PT_737E Security 

Camera IoT device's performance evaluation findings may be 

understandable given that it is based on Miria botnet attacks. 

From the findings on the Miria botnet and its attacks using the 

three classifiers LR, RF, and XGBoost. Although LR has 

attained an accuracy value of 0.85, lower than our trained 

XGBoost model's 0.97, we assess three ML approaches in this 

analysis. These results also reveal a very high attack detection 

rate of over 0.96 for XGBoost as related to the 0.88 of LR, and 

0.94 of RF models. Also, the proposed XGBoost model 

precision is 0.97 and has an F1-score of 0.96 in almost all 

Miria botnet attacks, which is very close to one. 

 
 

Figure 6. Performance comparison of Provision_PT_737E 

Security Camera device for Mirai attacks 

 

Figure 7 shows the performance comparison of the 

Philips_B120N10 Baby Monitor device for Mirai attacks, in 

which the proposed XGBoost outperforms in all four cases of 

evaluation indices as related to the LR and RF models. 

 

 
 

Figure 7. Performance comparison of Philips_B120N10 

Baby Monitor device for Mirai attacks 

 

Figure 8 shows the performance comparison of the 

SamsungSNH1011NWebcam device for Gafgyt attacks, in 

which the proposed XGBoost outperforms in all four cases of 

evaluation indices as related to the LR and RF models. 

 

 
 

Figure 8. Performance comparison of 

SamsungSNH1011NWebcam device for Gafgyt attacks 
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In the testing phase, the proposed XGBoost model obtains 

high DR vs the epoch's times, as shown in Figure 9. 

 

 
 

Figure 9. Attacks that were correctly identified (DR) were 

measured against both datasets epoch periods 

 

In Figure 10, the detection ratio (DR) under multiclass 

classification is compared between the XGBoost model as an 

IDS and other well-known machine learning algorithms for 

classification, such as RF and LR. The findings show that the 

proposed IDS through XGBoost records lower false alarm 

rates for each and every attack than the RF, LR, and false alarm 

rates. This demonstrates that, when compared to other models, 

the model obtains the best DR [27, 28]. 

 

 
 

Figure 10. Contrasting the proposed IDS-based XGBoost 

model on both data sets with alternative machine learning 

methods 

 

 

5. CONCLUSIONS 

 

To identify cyberattacks, we developed an intrusion 

detection system based on MBF. It is intended to accomplish 

cloud environment privacy preservation as well. The XGBoost 

algorithm, which was tested on the UNSW-NB15 dataset and 

the N-BaIoT dataset for identifying different attack events that 

leverage cloud networks, is the foundation of the suggested 

approach to intrusion detection. The results are quite precise, 

and the error rate is very small. On average, the XGBoost 

algorithm’s performance was best and the LR algorithm’s 

performance was the worst of the three algorithms when 

detecting whether an IoT device was attacked by any specific 

botnet. The results by botnet type, for each attack on each 

device, for all three classifiers show very high ADRs and 

classification accuracy values (over 98%). In XGBoost 

approaches, which essentially provide a new type of classifier 

to the already existing trained ensemble, the re-training 

component of RF is omitted. Future research studies will 

examine the typical types of traffic patterns on various IoT 

devices to expand the anomaly-sub-capabilities engine’s 

ability to efficiently identify unidentified attacks. 
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