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Skin cancer is becoming major problems due to its tremendous growth. Skin cancer is a 

malignant skin lesion, which may cause damage to human. Hence, prior detection and 

precise medical diagnosis of the skin lesion is essential. In medical practice, detection of 

malignant lesions needs pathological examination and biopsy, which is expensive. The 

existing techniques need a brief physical inspection, which is imprecise and time-

consuming. This paper presents a computer-assisted skin cancer detection strategy for 

detecting the skin lesion in skin images using deep stacked auto encoder. Sine Cosine-based 

Harris Hawks Optimizer (SCHHO) trains deep stacked auto encoders. The proposed 

SCHHO algorithm is designed by combining Sine Cosine Algorithm (SCA) and Harris 

Hawks Optimizer (HHO). The identification of skin lesion is performed on each segment, 

which is obtained by sparse-Fuzzy-c-means (FCM) algorithm. Statistical features, texture 

features and entropy are employed for selecting the most significant feature. Mean, standard 

deviation, variance, kurtosis, entropy, and Linear Discriminant Analysis (LDP) featured are 

extracted. SCHHO-Deep stacked auto-encoder outperformed other approaches with 

91.66% accuracy, 91.60% sensitivity, and 91.72% specificity. 
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1. INTRODUCTION

The cancer is considered as foremost contributor for causing 

a sudden upsurge in mortality rate all over the world. There 

exist different kinds of cancer which are determined earlier for 

the prior diagnosis. However, skin cancer is a major disease 

that tends to be a fast-growing cancer these days. As per 

machine research, the patients undergoing skin cancer 

detection are continuously growing compared to other types of 

cancer [1]. For both dermatologists and oncologists, the notion 

of early identification of skin melanoma cancer is crucial since 

it increases the likelihood of achieving full oncological 

remission. The histology of melanoma is complicated domain 

as late diagnosis may increase the mortality rates. The 

detection of skin lesion needs high experience and competence 

and thus the medical diagnosis is a challenging task [2]. As 

compared to other kinds of skin cancer, the melanoma is not 

frequent but it is likely to spread and grow. Skin tumor like 

other tissue tumors can be benign or malignant. The status and 

nature of skin cancer is different and thus it can be hard, soft, 

moving, losing or deep with respect to size or shape [3]. 

Melanoma cancer is considered as an advanced phase that 

might overrun internal organs like lungs through blood vessels, 

by building the treatment even difficult. Meanwhile, Early 

detection is key to treating melanoma, thus dermatologists 

recommend routine skin checks to increase the likelihood of 

an accurate diagnosis. Dermatologists use digital imaging to 

identify and treat skin cancer [4]. 

The most common cancer among those with fair skin is skin 

cancer, and as non-melanoma and melanoma cases increase in 

frequency, the associated medical expenses rise. Earlier 

melanoma diagnosis tends to improve patient outcomes and 

identification of skin cancer can be enhanced by screening 

patients using intensive skin symptoms considering 

examination of overall body skin [5]. As skin cancer provides 

epidermis which is the uppermost skin layer as it is relatively 

visible. This technique illustrates that the CAD model may 

utilise skin cancer photos without considering other important 

information. Skin cancer is a leading cause of mortality. 

Melanoma affects the skin’s melanocytes. This cancer 

contains cells which may cause the skin go black color. The 

Melanoma may lead to metastasis and has the capability to 

spread. Melanoma can be determined anywhere on the human 

which is on the human legs.  

Discovery of skin cancer in the earlier stage may lead to 

effectual treatment and can be attained by the automatic 

determination of cancer types considering deep learning 

methods. The results show that deep convolutional neural 

networks (DCNNs) may be utilized to accurately and 

automatically identify skin cancer [6]. In recent days, the 

quicker extension in deep learning made prodigious 

accomplishments in several tasks of computer vision. Deep 

learning uses many processing layers to extract features and 

change data. Convolutional neural networks (CNN) is the 

major deep learning techniques that attained prodigious 

empirical successes in the computer aided diagnosis [7]. The 

analysis is performed in particular domain to precisely identify 

the skin cancer. Tenderness of the skin and the categorization 

of skin either as benign or melanoma is performed using 

different models like genetic algorithms, support vector 
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machines (SVMs), artificial neural networks (ANNs), and 

CNNs. All given methods tend to be cost-effective and highly 

effective and less painful than existing medical models. 

However, in several computer vision problems, it is 

indisputable that both deep learning and CNNs are the mostly 

used technique [8]. The majority of the classification 

techniques are applied on the computer-based melanoma 

recognition models which involve SVM [9], Bayes networks, 

ANN [10], discriminate analysis [11], k-nearest 

neighbourhood, decision trees [12], and logistic regression. On 

the other hand, some advanced models of these classifiers are 

modelled in the existing works which includes random forest 

[13], hidden naive Bayes, and logistic model tree [14]. 

The difference between the depth automatic encoder and 

stacked automatic encoder is the way the two networks are 

trained. Depth automatic encoders are trained in the same way 

as a single-layer neural network, while stacked automatic 

encoders are trained with a greedy, layer-wise approach so the 

training time required to train the depth automatic encoders is 

less compared to that of stacked automatic encoders. 

Proposed SCHHO-based Deep stacked auto-encoder is used 

in current research to present a skin cancer detection approach. 

Research’s contribution is the use of statistical and textural 

data to identify skin lesions. Here, the segments from which 

the malignant patches are diagnosed are obtained using the 

sparse FCM. Mean, standard deviation, variance, kurtosis, 

entropy, and LDP are extracted to detect lesions. A deep 

stacked auto-encoder finds skin lesions using these 

characteristics. Deep stacked auto-encoder is trained using 

SCHHO to learn model parameters. The suggested algorithm, 

SCHHO, was created by inheriting high global convergence 

property from HHO procedure. Therefore, deep stacked auto-

encoder based on SCHHO offers effective accuracy while 

enabling skin cancer detection. The SCA and HHO algorithms 

are combined in the suggested SCHHO algorithm. Main 

contribution of paper is: 

Proposed SCHHO-based Deep stacked auto-encoder for 

detection of skin cancer: Deep stacked auto-training 

encoder’s approach is modified with SCHHO algorithm that is 

newly created by combination of SCA and HHO algorithms, 

for best tuning of weights and biases. This classifier is known 

as the SCHHO-based Deep stacked auto-encoder. In order to 

identify lesions in skin images, recommended SCHHO-based 

Deep stacking auto-encoder has been updated.  

The remaining portions in this paper are: The conventional 

skin cancer detection methods used in the literature and the 

difficulties encountered are outlined in Section 2 and are used 

as inspiration for the suggested method’s development. In 

Section 3, the Deep stacked auto-encoder approach for skin 

cancer identification is described. In Section 4, the outcomes 

of the suggested approach compared to other methods are 

shown, and Section 5 concludes. 

2. MOTIVATIONS

Melanoma is a severe kind of skin cancer that can have life-

threatening effects on people. In order to increase the chance 

of survival, skin cancer should be accurately and promptly 

diagnosed. Since melanoma and non-melanoma have similar 

appearances, it might be difficult to diagnose various lesion 

situations with accuracy. As a result, a crucial step in enabling 

good lesion classification is creating an effective lesion 

representation utilising an optimization technique. Eight 

currently used methods for detecting skin cancer are examined 

here, and each approach's shortcomings served as inspiration 

for the development of a new skin cancer identification 

method. 

2.1 Literature survey 

An overview of eight existing methods for skin cancer 

identification is devised here. Burlina et al. [15] utilized deep 

convolutional neural network with a cross-sectional dataset 

containing images for training the model to perform 

classification. The capability of machine was computed to 

categorize the type of skin using the set of input images. The 

method provided precise diagnosis, but failed to involve other 

skin pathologies for distinguishing erythema, like cellulitis. 

Pandey et al. [16] devised multi-scale retinex with color 

restoration (MSR-CR) method for addressing the issues of 

skin cancer detection considering image enhancement 

methods for detecting the skin cancer. The method provided 

improved results with poor quality images, but faced several 

environmental complexities. Tan [17] devised intelligent 

decision support system for determining skin cancer. Here, 

two enhanced PSO models were devised for optimizing the 

features. The first model used remote leaders and adaptive 

acceleration coefficients for overwhelming the issues of 

stagnation. The second model employed random acceleration 

coefficients for enhancing the intensification and 

diversification. The approach, however, did not work with 

other types of medical picture data. A DCNNs based on Gabor 

wavelets was developed by Serte and Demirel for the purpose 

of identifying malignant melanoma from the photos. The 

technique was developed based on directional subbanding of 

the input pictures into seven different directions. Decision 

fusion with sum-rule was employed for classifying the skin 

lesion. The method enhanced overall performance, but was 

unable to deal with low contrast images. Zhao et al. [7] devised 

a dataset of Hospital Central South University for skin cancer 

detection. The images are divided into risk grades with 

different degree of malignancy. The method was capable to 

automatically grade the image containing skin tumour. The 

method was useful to patients undergoing initial screening 

before diagnosis, but the method failed to use images of 

different ages and ethnicities. Dorj et al. [18] utilized an 

intelligent and rapid classification system for skin cancer 

detection utilizing DCNN, and SVM. Here, pre-trained 

AlexNet CNN model was employed for extracting the 

significant features. Method enhanced the overall performance 

of system, but failed to utilize asymmetry, border, color, and 

diameter (ABCD) rule for detecting skin cancer. Saba [19] 

developed an approach for identifying the skin lesion and 

recognizing the cancerous regions using DCNN. The three 

main phases of the approach were lesion boundary extraction, 

contrast enhancement, and the extraction of depth 

characteristics. Additionally, the most important 

characteristics were chosen using an entropy-controlled 

feature selection approach. The method was effective, but 

failed to employ physics selection theorems to select optimum 

features. Kawahara et al. [5] employed multi-task DCNN 

using multi-modal data for classifying the melanoma to 

diagnose the skin cancer. The neural network was trained with 

different multi-task loss functions in which each loss consider 

multiple combinations of input modalities for skin cancer 

detection However, this model failed to detect the labels. Patil 

et al. [20-23] proposed techniques to classify melanoma, type 
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of melanoma and stage of melanoma. 

2.2 Challenges 

The challenges encountered in automatic detection of skin 

cancer are as following: 

In comparison to using only the naked eye, dermatoscopy 

increased the analytical accuracy of pigmented skin lesions. 

However, accurate diagnosis is a difficult process for amateurs 

[18]. 

As per diagnostic standards, the skin tumors can be 

categorized into different classes like high degree malignancy, 

benign or low degree malignancy. However, the determination 

of high degree malignant skin tumors may lead to serious 

issues if not detected in correct time and may require more 

time [8]. 

The automatic detection of melanoma is a challenging issue 

due to changing shapes, and texture of lesions. Other artifacts, 

like illumination color calibration, illumination, affect the 

segmentation process and minimize the accuracy of feature 

extraction [5]. 

To find skin cancer, an intelligent decision-support system 

is created. The approach is effective in classifying the lesion, 

however it is difficult to provide a precise diagnosis of various 

lesions [16]. 

The occurrence of skin tumors has progressively augmented. 

Even though, most of them are benign and does not influence 

the survival and some of the malignant skin tumors confronts 

delay in diagnosis. An ideal assessment by the skilled 

dermatologist would precisely determine the malignant skin 

tumors in the earlier stage, but it is not practical for each single 

patient to undergo rigorous screening by dermatologists. 

3. PROPOSED SCHHO-BASED DEEP STACKED

AUTO-ENCODER FOR SKIN CANCER DETECTION

SCHHO-based deep stack auto-encoder is presented for 

automated skin cancer diagnosis, extracting statistical and 

textural information for classification. The input skin images 

are first pre-processed to prepare them for subsequent 

processing. Images that have been previously processed are 

then subjected to a segmentation module, where they are 

segmented using Sparse FCM [24]. After getting the segments, 

each segment is taken into account while performing the 

feature extraction. Each segment's statistical characteristics 

are extracted.  

Figure 1. Block diagram of proposed SCHHO-based Deep 

Stacked auto-encoder method 

Feature vectors include each segment's retrieved features. 

Using the feature vector, a deep stacked auto encoder [24] 

trained with SCHHO detects skin cancer. Standard HHO and 

SCA are combined to create the suggested SCHHO, which 

inherits the benefits of both optimizations for efficient 

classifier training. The proposed SCHHO-based deep stacked 

auto encoder is used to depict framework for identification of 

skin cancer in Figure 1. 

Simplify the diagram in Figure 1. Draw only four blocks 

and label them appropriately indicating functionality of each 

block: preprocessing, segmentation, extraction of feature and 

categorization. Assume a skin cancer dataset G with f number 

of skin images, it is given as: 

𝐺 = {𝐼1, 𝐼2, . . . , 𝐼𝑔, . . . , 𝐼𝑓} (1) 

where, Ig is gth input image, and f is the overall amount of 

images. 

3.1 Pre-processing utilizing skin cancer images 

To remove noise and artefacts from image, pre-processing 

is used. The pre-processing may also be used as an image 

improvement module to boost contrast of the picture for the 

aim of identifying skin cancer. The pre-processed pictures are 

concurrently entered into segmentation to determine the 

relevant characteristics suitable for the diagnosis of skin 

cancer. 

3.2 Segmentation of preprocessed image 

Preprocessed image is input to segmentation unit while 

taking into account the Sparse FCM method [24]. Sparse FCM 

is a variant of normal FCM, and it offers high dimensional data 

clustering as a benefit. The pre-processed image has many 

segments, each of which denotes a distinct region. The sparse 

FCM is used in the skin cancer detection approach for image 

segmentation.  

Consider image pixels as V, data matrix as 𝐷 = (𝑉𝑘𝑙) ∈
ℜ𝑝×𝑞 , p and q are image size. The programme forms clusters

to make skin cancer diagnosis easier. Sparse FCM outputs 

segments. Steps of sparse FCM is described below. 

1. Initially, feature weights are initialized and are

represented as 𝜔 = 𝜔1
𝑒 = 𝜔2

𝑒 =. . . = 𝜔𝑞
𝑒 =

1

√𝑞
. Pixel location 

is determined by features considering q=2.

2. At first, attribute weights 𝜔 and cluster centres 𝑆𝜀(ℜ) is
reduced when: 

𝑃𝑘𝑡 =

{

1

𝑁𝑡
; 𝑖𝑓𝐵𝑘𝑡 = 0𝑎𝑛𝑑𝑁𝑡 = 𝑐𝑎𝑟𝑑{𝑙: 𝐵𝑘𝑡 = 0}

0; 𝑖𝑓𝐵𝑘𝑡 ≠ 0𝑏𝑢𝑡𝐵𝑘𝑗 = 0𝑓𝑜𝑟𝑠𝑜𝑚𝑒𝑗, 𝑗 ≠ 𝑡

1

∑ (
𝐵𝑘𝑡
𝐵𝑗𝑡
)𝑛

𝑗=1

(
1

𝛽−1
)
; 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(2) 

where, card(A) indicates cardinality of set A. Distance adapted 

in sparse-FCM is modelled as: 

𝐵𝑘𝑡 =∑𝜔𝑙(𝑉𝑘𝑙 − 𝑉𝑡𝑙)

𝑛

𝑡=1

2

(3) 
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3. Assume ω and ℜ be fixed and ε(S) is reduced if:

𝑆𝑡𝑙 = {

0; 𝑖𝑓𝜔𝑙 = 0

∑ 𝑃𝑘𝑡
𝛽
. 𝑉𝑘𝑙

𝑛
𝑖=1

∑ 𝑃𝑘𝑡
𝛽𝑛

𝑘=1

; 𝑖𝑓𝜔𝑙 ≠ 0
(4) 

where, t=1, ..., n and l=1, ..., q, β indicate weight component, 

and is liable to control membership degree using fuzzy clusters. 

Role of lth feature in objective function is represented as, ωl 

and dissimilarity measure is represented as, ℜ.  

4. Class value is found using fixed clusters
{𝑠1, 𝑠2, . . . , 𝑠𝑖 , . . . , 𝑠𝑛} and the membership P. Class Gl is

evaluated on basis of following objective, 𝑚𝑎𝑥
𝜔

∑ 𝜔𝑙 . 𝐺𝑙
𝑞
𝑙=1

such that ‖𝜔‖2
2 ≤ 1, ‖𝜔‖𝑓

𝑓
≤ ℓ and obtain ω*.

where, ℓ  indicate tuning parameter and (0≤f≤1); ‖𝜔‖𝑓
𝑓
=

∑ |𝜔𝑙|
𝑓𝑞

𝑙=1 .

5. Iterate till halting requirement met. Stopping criterion:

∑ |𝜔𝑙
∗ − 𝜔𝑙

𝑒|𝑞
𝑙=1

∑ |𝜔𝑙
𝑒|𝑞

𝑙=1

< 10−4 (5) 

Sparse FCM outputs image segments as: 

𝑆 = {𝑠1, 𝑠2, . . . , 𝑠𝑖 , . . . , 𝑠𝑛} (6) 

where, r indicates count of segments generated from 

preprocessed image. 

3.3 Using statistical and texture characteristics, generation 

of a feature vector 

Following the acquisition of segments, features are 

retrieved from the pre-processed image taking into account 

each segment. Statistical aspects like mean, variance, standard 

deviation, kurtosis, and entropy as well as texture features like 

LDP are among the features retrieved from the segments and 

are described below. 

Mean: The average is determined by counting all of the 

pixels in image that are expressed as: 

𝜇 =
1

|𝑑(𝑆𝑛)|
× ∑ 𝑑(𝑆𝑛)

|𝑑(𝑆𝑛)|

𝑛=1

(7) 

where, n is the total number of segments, values of each 

segment's pixels, and |d(Sn)| is total number of pixels included 

in the segment 

Variance: Based on the mean value, which is written as, the 

variance feature is computed as: 

𝜎 =
∑ |𝑆𝑛 − 𝜇|
|𝑑(𝑆𝑛)|
𝑛=1

𝑑(𝑆𝑛)
(8) 

Standard deviation: Square root of variance is used to get 

standard deviation, which is represented by ρ. 

Kurtosis: It represents evenness that defines sharpness of 

peak. It defines shape of an object depending on its numerical 

value. Probability distribution's relative peakedness is shown 

by the kurtosis.  

Entropy: Entropy is a common metric for quantifying 

uncertainty in data and is applied to increase mutual 

information in various procedures. Appropriateness 

preference for a specific operation was motivated by the 

abundance of entropy variations. In order to pinpoint the 

difference between adjacent pixels or a pixel group, entropy of 

an image is used. Entropy is further defined as comparable 

intensities levels to which individual pixels can adapt. An 

image's entropy can be utilised for quantitative analysis, 

evaluation of the image's details, and better comparison of 

image details. As a result, the resulting probability's entropy is 

calculated and is represented as: 

𝜺 = −𝑸 𝒍𝒐𝒈(𝑸) (9) 

where, Q is pixel probability distribution in an image. 

LDP: Local Directional Pattern (LDP) [25] is a directional 

component that incorporates a local pattern descriptor by 

altering Kirsch compass kernels. In comparison to the LBP 

operators now in place, the LDP is less noise sensitive. 

𝐿 = 𝐿𝐷𝑃𝑐(𝑎𝑛, 𝑏𝑛) = ∑𝑣(𝑏𝑥 − 𝑏𝑐)

7

𝑥=0

. 2𝑥 (10) 

where, c signifies pixel location, (an, bn) denotes directed bit 

responses, x neighborhood pixel number, bx denotes Kirsch 

masks, and bc denote cth directional response. 

𝑣(𝑎) = {
1; 𝑖𝑓𝑎 ≥ 0
0; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

} (11) 

3.3.1 Formation of feature vector 

Collection of statistical and texture features is shown in Eq. 

(12). Consequently, each segment’s characteristics are 

presented as follows: 

𝐽 = {𝜇, 𝜎, 𝜌, 𝜅, 𝜀, 𝐿} (12) 

where, J denotes feature vector which is extracted utilizing 

each segment, μ, σ, ρ, κ and ε denote mean, variance, kurtosis, 

standard deviation, and entropy are the statistical features, 

whereas texture features include LDP that is represented by L. 

Deep stacked auto encoder receives feature vector, which it 

uses to classify input images based on features and determine 

class label. Classifier determines class label and divides input 

image's malignant and non-cancerous areas into categories. 

3.4 The proposed SCHHO-based deep stacked auto 

encoder 

This section describes how to identify skin cancer using the 

suggested SCHHO approach and how to advance the detection 

using a feature vector. Deep stacked auto encoder [26] is used 

to present extracted features for classification, and the 

suggested training algorithm SCHHO—a combination of the 

SCA and the HHO —is utilized to train classifier. Proposed 

SCHHO’s objective is to use the extracted features to detect 

malignant areas in input image. The inclusion of SCA in HHO 

is the planned SCHHO. Here, the sine and cosine functions are 

taken into account when designing the SCA algorithm. The 

algorithm is adept at balancing exploitation and exploration 

states to identify search spaces most promising regions and 

assists in obtaining the global optimum. The strategy benefits 

from the avoidance of local optima and high exploration, 

therefore resolving practical issues. HHO, on the other hand, 
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draws inspiration from Harris hawks submissive conduct and 

chasing manner. The approach is efficient in handling various 

optimization problems that can result in efficient solutions. 

HHO can handle misleading optima, local optimum solutions, 

and multi-modality. To enhance the algorithm’s overall 

performance, SCA and HHO are integrated. The following 

describes the proposed SCHHO’s algorithmic phases as well 

as the deep stacked auto encoder's architecture. 

3.4.1 Architecture of deep stacked auto encoder 

Auto Encoder in Deep Neural Networks (DNN) is crucial. 

The relevant input characteristics are used by the auto encoder. 

The single layer auto encoder does not have directed loops in 

its output visible units, which are also hidden units at the 

encoder's input. Figure 2 shows the deep stack auto encoder's 

structural arrangement. Encoding input vector into an 

advanced phase concealed version, shown as 𝐾, advances auto 

encoder.  

Figure 2. Architecture of deep stack auto-encoder 

Deep Neural Networks use Auto Encoder (DNN). Auto 

encoder inputs are used. Single-layer auto encoder input 

visible units are concealed, and output visible units don't 

contain directed loops. Figure 2 shows the encoder's structural 

arrangement. The auto encoder advances by encoding input 

vector as K. In encoder, deterministic mapping Tθ turns input 

vector into hidden vector X. 

𝜗 = 𝑓𝑢𝑛(𝜔1𝑈 + 𝑅1𝑈) (13) 

where, R1 is to the bias vector, and U is reconstruction, and ω1 

indicates the weight matrix. The equation will be written as 

after decoding the concealed version back to reconstruction: 

𝑈̂ = 𝑓𝑢𝑛(𝜔2𝑌 + 𝑅2𝑌) (14) 

where, ω2 represent weight matrix, R2 denote bias vectors, and 

Y hidden units.  

Back propagation encounters difficulties with local minima 

and sluggish convergence. The frequent weight changes are 

what cause the local minima. Additionally, the Back 

propagation algorithm does not require input vector 

normalization. System’s performance can be improved by 

normalizing, however this technique does not allow for the 

determination of the error function's global minimum. Auto 

Encoder is trained utilizing SCHHO instead of back 

propagation to reduce cost function and squared reconstruction 

error. 

𝐽𝑎𝑐(𝜔, 𝑅) =
1

2𝑧
∑||𝑈̂𝑥

𝑧 − 𝑈𝑥
𝑋||2

𝑧

𝑥=1

(15) 

where, ω weight set, R bias vectors, z total layers where 

1≤x≤z, 𝑈𝑥
𝑧 displays the input xth and 𝑈𝑥

𝑋output reconstructions

on 𝑥𝑡ℎlayer.

To prevent overfitting, a weight regularisation term and 

scarcity restrictions are used to create a cost function. 

𝐽𝑎𝑐(𝜃) =
1

𝑧
∑ ||𝑈𝑥

𝑧 − 𝑈𝑥
𝑋||2 + 𝛼(||𝜔1||

2 +𝑧
𝑥=1

||𝜔2||
2) + 𝛽 ∑ 𝑉(𝑈||𝑈𝑦)

𝑌
𝑦=1  

(16) 

where, 𝑈𝑥
𝑧 represents input reconstruction on xth layer and 𝑈𝑥

𝑋

demonstrates output reconstruction on xth layer, α is weight for 

regulation condition, and β is weight for sparse condition, and 

|𝜔1||
2 + ||𝜔2||

2  denotes parametric conditions, U is the

sparse parameter, and Uy denotes average activation of hidden 

unit y, and V(U||Yy) denotes Kullback Leibler divergence, and 

Y is number of hidden units like 1≤y≤Y. Average hidden unit 

is formulated as: 

𝑈̂𝑦 =
1

𝑧
∑ 𝑙2,𝑥

𝑦𝑧
𝑥=1  (17) 

where, 𝑙2,𝑥
𝑦

 denote hidden layer activation function of yth entry, 

and z denote total layers where 1≤x≤z. Kullback Leibler 

divergence is formulated as: 

𝑉(𝑈||𝑈𝑦) = 𝑈 𝑙𝑜𝑔
𝑈

𝑈𝑦
+ (1 − 𝑈) 𝑙𝑜𝑔

1 − 𝑈

1 − 𝑈𝑦
(18) 

where, U denotes sparse parameter, and Uy denotes average 

activation of hidden unit y. The auto-encoder is made up of a 

number of layers of sparse auto encoder, the outputs of which 

are coupled to the inputs of succeeding layers, where Y1, Y2, 

and Y3 depicts hidden layers. Concatenation of auto-encoders 

that inputs of next layers are connected to outputs of auto-

encoders stacked on layer. Auto-encoders are finally layered 

in a hierarchical fashion. Activation output of zth layer is given 

as: 

𝑙𝑞𝑥
𝑋 = 𝑤𝑞(𝑙𝑞−1

𝑋 𝜔𝑞−1 + 𝑠𝑞−1
𝑋 ) (19)

where, l1,x=ux. By describing 𝑝𝜔,𝑂(𝑢𝑥
𝑋) = 𝑙𝑜,𝑥, cost function is:

𝑗𝑎𝑐(𝜔, 𝑂) =
1

2𝑧
∑||𝑝𝜔,𝑂

𝑧

𝑥=1

(𝑢𝑥
𝑋) − 𝑢𝑥||

2 (20) 

𝑗𝑎𝑐(𝜃) = 𝑗𝑎𝑐(𝜔, 𝑂) +
𝛼

2
∑∑∑(𝜔𝑞

𝑛,𝑜)
2

𝑗𝑧+1

𝑜=1

𝑗𝑧

𝑛=1

𝑖𝑧−1

𝑞=1

+ ∑∑𝛾𝑞𝑉(𝑈𝑞||𝑈̂𝑦
𝑞
)

𝑗𝑧

𝑦=1

𝑖𝑧−1

𝑞=𝑧

 

(21) 

where, iq denote total layers in the network, γq and Uq 

represents hyper parameters in qth layer.  

So, there are three processes involved in processing the deep 

stack auto encoder. The initialization of parameters close to a 

local minimum for each unique auto-encoder is first stage. 

Learning hidden layer activations of next auto-encoder hidden 
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layer is second stage. Using suggested SCHHO method, the 

fine tuning is carried out in the third stage. Each parameter in 

this model is changed concurrently to improve classification 

outcome. 

3.4.2 Training of deep stacked auto encoder using SCHHO 

SCHHO method is utilized to train deep stacked auto 

encoder classifier for skin cancer detection. This section 

explains how the SCHHO algorithm was implemented. The 

SCHHO method is utilized to build the optimal weights, which 

are then used to fine-tune the deep stacked auto encoder. Skin 

cancer identification uses a SCHHO-based deep stacked auto 

encoder to recognize input photos and manage fresh images 

from dispersed sources. Below are the SCHHO algorithmic 

steps: 

Step 1: Initialize solution and parameters. 

𝐴 = {𝐴1, 𝐴2, … , 𝐴𝑎, … 𝐴𝑣} (22) 

where, v is total number of solution and Aa is position of 

𝑎𝑡ℎsolution.

Step 2: The solution with least Mean Square Error (MSE) is 

best based on fitness function, or minimization problem. 

Here's how to compute MSE: 

𝑀𝑆𝐸 =
1

𝑓
∑[𝐹𝑔 − 𝐹𝑔

∗]

𝑓

𝑔=1

2

(23) 

where, Fg expected output and 𝐹𝑔
∗  predicted output, f

represents number of data samples, where 1<g≤f.  

Step 3. The SCA addresses real-world problems by 

avoiding local optima by investigating global optimum. SCA 

method is very efficient and gives higher performance while 

assessing solutions. It requires fewer parameters for fine 

tuning and has a simpler algorithmic framework. Solution 

update per SCA algorithm [9]: 

𝐴𝑜+1 = {
𝐴𝑗
𝑜 + ℎ1𝑆𝑖𝑛(ℎ2) × |ℎ3𝑀𝑗

𝑜 − 𝐴𝑗
𝑜|; ℎ4 < 0.5

𝐴𝑗
𝑜 + ℎ1𝐶𝑜𝑠(ℎ2) × ℎ3𝑀𝑗

𝑜 − 𝐴𝑗
𝑜|; ℎ4 ≥ 0.5

(24) 

where, r1 indicate movement direction, r2 determines how far 

movement should be towards or outwards the destination, r3 

provides random weight for destination, and r4 helps to switch 

between sine and cosine components, 𝐴𝑗
𝑜 indicate the current

solution, and 𝑀𝑗
𝑜 represent the position of destination point in

jth dimension and ||indicate absolute value. 

The HHO algorithm is used to enhance algorithm 

performance and handle optimization problems. In accordance 

with HHO [10], the update equation is written as: 

𝐴𝑙+1 = 𝐴𝑟𝑎𝑏
𝑙 − 𝐻|𝛥𝐴𝑡| (25) 

where, 𝐴𝑟𝑎𝑏
𝑙 represent the position of rabbit, 𝛥𝐴𝑡 indicate

difference between position of rabbit and current position, and 

𝐻represent escaping energy of prey. The above equation is 

also referred as: 

𝐴𝑙+1 = 𝐴𝑟𝑎𝑏
𝑙 − 𝐻|𝐴𝑟𝑎𝑏

𝑙 − 𝐴𝑙| (26) 

Considering 𝐴𝑟𝑎𝑏
𝑙 > 𝐴𝑙,

𝐴𝑙+1 = 𝐴𝑟𝑎𝑏
𝑙 − 𝐻(𝐴𝑟𝑎𝑏

𝑙 − 𝐴𝑙) (27) 

𝐴𝑙+1 = 𝐴𝑟𝑎𝑏
𝑙 − 𝐻𝐴𝑟𝑎𝑏

𝑙 + 𝐻𝐴𝑙 (28) 

𝐴𝑙+1 = 𝐴𝑟𝑎𝑏
𝑙 (1 − 𝐻) + 𝐻𝐴𝑙 (29) 

𝐴𝑟𝑎𝑏
𝑙 =

𝐴𝑙+1 − 𝐻𝐴𝑙

1 − 𝐻
(30) 

As 𝐴𝑟𝑎𝑏
𝑙  represent the target position in HHO, and 

𝑀𝑗
𝑙indicate destination location in SCA, both can be equated:

For h4<0.5, 

𝐴𝑙+1 = 𝐴𝑙 + ℎ1𝑆𝑖𝑛(ℎ2) × (ℎ3 (
𝐴𝑙+1−𝐻𝐴𝑙

(1−𝐻)
) − 𝐴𝑙) (31) 

𝐴𝑙+1 = 𝐴𝑙 + ℎ1𝑆𝑖𝑛(ℎ2) × (
ℎ3𝐴

𝑙+1

1−𝐻
−

ℎ3𝐻𝐴
𝑙

1−𝐻
− 𝐴𝑙) (32) 

𝐴𝑙+1 = 𝐴𝑙 + ℎ1𝑆𝑖𝑛(ℎ2)
ℎ3𝐴

𝑙+1

1−𝐻
− ℎ1𝑆𝑖𝑛(ℎ2)

ℎ3𝐻𝐴
𝑙

1−𝐻
−

ℎ1𝑆𝑖𝑛(ℎ2)𝐴
𝑙

(33) 

𝐴𝑙+1 − ℎ1𝑆𝑖𝑛(ℎ2)
ℎ3𝐴

𝑙+1

1−𝐻
= 𝐴𝑙 (1 −

ℎ1𝑆𝑖𝑛(ℎ2) (
ℎ3𝐻

1−𝐻
+ 1))

(34) 

𝐴𝑙+1 (1 −
ℎ1𝑆𝑖𝑛(ℎ2)ℎ3

1−𝐻
) = 𝐴𝑙 (1 − ℎ1𝑆𝑖𝑛(ℎ2) (

ℎ3𝐻

1−𝐻
+

1)) 
(35) 

𝐴𝑙+1 (
1−𝐻−ℎ1𝑆𝑖𝑛(ℎ2)ℎ3

1−𝐻
) = 𝐴𝑙 (1 − ℎ1𝑆𝑖𝑛(ℎ2) (

ℎ3𝐻

1−𝐻
+

1)) 
(36) 

𝐴𝑙+1 =
1−𝐻

1−𝐻−ℎ1ℎ3𝑆𝑖𝑛(ℎ2)
[𝐴𝑙 (1 − ℎ1𝑆𝑖𝑛(ℎ2) (

ℎ3𝐻

1−𝐻
+

1))] 
(37) 

Likewise for h4≥0.5, 

𝐴𝑙+1 =
1−𝐻

1−𝐻−ℎ1ℎ3𝐶𝑜𝑠(ℎ2)
[𝐴𝑙 (1 − ℎ1𝐶𝑜𝑠(ℎ2) (

ℎ3𝐻

1−𝐻
+

1))] 
(38) 

Consequently, the final update equation is written as: 

𝐴𝑙+1 =

{

1−𝐻

1−𝐻−ℎ1ℎ3𝑆𝑖𝑛(ℎ2)
[𝐴𝑙 (1 − ℎ1𝑆𝑖𝑛(ℎ2) (

ℎ3𝐻

1−𝐻
+ 1))

;

] ; ℎ4 < 0.5

1−𝐻

1−𝐻−ℎ1ℎ3𝐶𝑜𝑠(ℎ2)
[𝐴𝑙 (1 − ℎ1𝐶𝑜𝑠(ℎ2) (

ℎ3𝐻

1−𝐻
+ 1))

;

] ; ℎ4 ≥ 0.5

(39) 

In Eq. (39), exploration and exploitation are balanced by 

updating cosine and sine ranges as the iteration counter grows. 

SCA trades off exploration and exploitation to identify the best 

answers. 

Step 4: Recalculating error utilizing equation’s answer (23). 

The deep stacked auto encoder is trained to find skin cancer 

using method that produces the least amount of error. 

Step 5: The suggested SCHHO method recomputes each 

solution’s error and evaluates them such that the solution with 

the least error is utilized to train the deep stacked auto encoder. 
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Step 6: Iteratively determining optimum weights till the 

maximum number of iterations. Table 1 shows SCHHO's 

pseudocode. 

Table 1. Pseudo code of proposed SCHHO method 

Begin 

      Initialize set of solutions 

      Do 

 Evaluate each solution with MSE using Eq. (23) 

 Update the best solution obtained till execution 

Update 𝒉𝟏, 𝒉𝟐, 𝒉𝟑and 𝒉𝟒
 Update the solution using Eq. (39) 

while(𝒍 < 𝒍𝒎𝒂𝒙 )

Return optimum solution 

4. RESULTS AND DISCUSSION

This section compares suggested strategy with established 

approaches utilizing a skin cancer dataset. Analyze training 

data and K-Fold. Variable iterations are used to test the 

efficacy of SCHHO-Deep stacked auto-encoders. 

4.1 Experimental setup 

Proposed system is executed in MATLAB utilizing 

Windows 10 OS, 2GB RAM, and Intel i3 core processor.  

4.2 Dataset description 

HAM10000 database [27] consist of pigmented lesions 

using different populations. The dataset contains 10015 

dermatoscopic images, which are employed as the training set 

for machine learning and available in ISIC 2019 archive. The 

dataset contains a collection of significant diagnostic using 

pigmented lesions. We have use 80% dataset for training and 

20% dataset for testing. 

4.3 Experimental result 

Figure 3 shows experimental results of proposed SCHHO-

Deep stacked auto-encoder using set of input skin images. 

Figure 3a) shows input images acquired from skin cancer 

dataset. Figure 3b) shows segmented image, 3c) portrays the 

binary image and 3d) displays the LDP applied image for skin 

cancer detection. In segmented image, the bluish part 

represents the region affected by the cancer, whereas in binary 

image, the cancerous and non-cancerous regions are 

represented with black and white colours. Finally, the image 

obtained after applying the LDP feature is represented in 3d). 

(a) 

(b) 

(c) 

(d) 

Figure 3. Experimental results of proposed SCHHO-Deep 

stacked auto-encoder, a) Original image, b) Segmented 

image, c) Binary image, d) LDP applied image 

4.4 Evaluation metrics 

The accuracy, sensitivity, and specificity of the proposed 

SCHHO-Deep stacked auto-encoder are used for analysis 

methodologies. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑝 + 𝑇𝑛

𝑇𝑝 + 𝑇𝑛 + 𝐹𝑝 + 𝐹𝑛
(40) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑝

𝑇𝑝 + 𝐹𝑛
(41) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑛

𝑇𝑛 + 𝐹𝑝
(42) 

where, Tp denote true positive, Fp denote false positive, Tn 

denote true negative and 𝐹𝑛indicate false negative.

4.5 Comparative methods 

Among the techniques used for analysis are: K-Nearest 

neighbour (KNN) [28], Neural network (NN) [29], DCNN, 

Particle Swarm optimization (PSO-Deep CNN), Deep stacked 

Auto-encoders [30], and proposed SCHHO- Deep stacked 

Auto-encoders. 
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4.6 Performance analysis 

SCHHO-Deep stacking Auto-encoders algorithm’s 

accuracy, specificity and sensitivity are tested. Analysis 

involves 20 to 100 iterations. The suggested SCHHO-Deep 

stacking Auto-training encoder's data is varied to prove its 

efficiency. 

4.6.1 Analysis based on training data 

Figure 4 portrays analysis of proposed SCHHO-Deep 

stacked Auto-encoders based on training data using accuracy, 

sensitivity and specificity parameters. The analysis of 

proposed SCHHO-Deep stacked Auto-encoders considering 

accuracy parameter is described in Fig 4a). For 40% training 

data, the accuracies computed by proposed SCHHO-Deep 

stacked Auto-encoders with 20 iterations, 40 iterations, 60 

iterations, 80 iteration and 100 iterations are, 88.782%, 

89.698%, 91.265%, 91.625%, and 91.671%. Likewise, for 90% 

training data, the corresponding accuracies computed by 

proposed SCHHO-Deep stacked Auto-encoders with 20 

iterations, 40 iterations, 60 iterations, 80 iteration and 100 

iterations are 94.333%, 94.374%, 94.379%, 94.422%, 

94.939%. Analysis of proposed SCHHO-Deep stacked Auto-

encoders considering sensitivity parameter is described in Fig 

4b). For 40% training data, the sensitivities computed by 

proposed SCHHO-Deep stacked Auto-encoders with 20 

iterations, 40 iterations, 60 iterations, 80 iteration and 100 

iterations are 85.282%, 85.325%, 85.626%, 85.801%, and 

85.937%. Likewise, for 90% training data, the corresponding 

sensitivities computed by proposed SCHHO-Deep stacked 

Auto-encoders with 20 iterations, 40 iterations, 60 iterations, 

80 iteration and 100 iterations are 86.037%, 89.015%, 

89.809%, 89.942%, and 91.194%. Analysis of proposed 

SCHHO-Deep stacked Auto-encoders considering specificity 

parameter is described in Fig 4c). For 40% training data, the 

specificities computed by proposed SCHHO-Deep stacked 

Auto-encoders with 20 iterations, 40 iterations, 60 iterations, 

80 iteration and 100 iterations are 91.686%, 91.983%, 

92.149%, 92.297%, and 92.398%. Likewise, for 90% training 

data, the corresponding specificities computed by proposed 

SCHHO-Deep stacked Auto-encoders with 20 iterations, 40 

iterations, 60 iterations, 80 iteration and 100 iterations are 

92.972%, 93.169%, 93.342%, 93.411%, and 93.845%. 

We tried to find the time complexity for training a neural 

network that has 12 layers with respectively h, i, j, k, l, m, n, o, 

p, q, r and s nodes, with t training examples and e epochs. The 

result was O(et∗(hi+ij+jk+kl+lm+mn+no+op+pq+qr+rs)). 

(a) Accuracy

(b) Sensitivity

(c) Specificity

Figure 4. SCHHO-Deep stacked Auto-encoders based on 

training data 

4.6.2 Analysis based on K-Fold 

(a) Accuracy

(b) Sensitivity
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(c) Specificity

Figure 5. Analysis of proposed SCHHO-Deep stacked Auto-

encoders based on K-Fold 

The procedure has a single parameter called k that refers to 

the number of groups that a given data sample is to be split 

into. As such, the procedure is often called k-fold cross-

validation.  In each set (fold) training and the test would be 

performed precisely once during this entire process. It helps us 

to avoid overfitting. To achieve this K-Fold Cross Validation, 

we have to split the data set into two sets, Training and Testing 

with the challenge of the volume of the data. We have use K=5 

for K fold cross validation. 

Figure 5 portrays analysis of proposed SCHHO-Deep 

stacked Auto-encoders based on K-Fold using accuracy, 

sensitivity and specificity parameters. The analysis of 

proposed SCHHO-Deep stacked Auto-encoders considering 

accuracy parameter is described in Figure 5a). For K-Fold=5, 

the accuracies computed by proposed SCHHO-Deep stacked 

Auto-encoders with 20 iterations, 40 iterations, 60 iterations, 

80 iteration and 100 iterations are 90.151%, 92.405%, 

92.557%, 93.385%, and 94.117%. Likewise, for K-Fold=10, 

the corresponding accuracies computed by proposed SCHHO-

Deep stacked Auto-encoders with 20 iterations, 40 iterations, 

60 iterations, 80 iteration and 100 iterations are 93.062%, 

93.641%, 94.122%, 94.365%, and 95.159%. From the Figure 

5 (a) the convergence of SCHHO algorithm is 92% for 60 

iterations and with increase in number of iteration from 60 to 

100 the accuracy of SCHHO algorithm is nearly same as with 

the increase in additional training the model is not improving. 

Analysis of proposed SCHHO-Deep stacked Auto-encoders 

considering sensitivity parameter is described in Figure 5b). 

For K-Fold=5, the sensitivities computed by proposed 

SCHHO-Deep stacked Auto-encoders with 20 iterations, 40 

iterations, 60 iterations, 80 iteration and 100 iterations are 

85.239%, 85.265%, 85.365%, 85.405%, and 85.448%. 

Likewise, for K-Fold=10, the corresponding sensitivities 

computed by proposed SCHHO-Deep stacked Auto-encoders 

with 20 iterations, 40 iterations, 60 iterations, 80 iteration and 

100 iterations are 88.928%, 89.167%, 89.397%, 89.747%, and 

90.157%. The analysis of proposed SCHHO-Deep stacked 

Auto-encoders considering specificity parameter is described 

in Figure 5c). For K-Fold=5, the specificities computed by 

proposed SCHHO-Deep stacked Auto-encoders with 20 

iterations, 40 iterations, 60 iterations, 80 iteration and 100 

iterations are 92.766%, 93.273%, 93.325%, 93.362%, and 

93.592%. Likewise, for K-Fold=10, the corresponding 

specificities computed by proposed SCHHO-Deep stacked 

Auto-encoders with 20 iterations, 40 iterations, 60 iterations, 

80 iteration and 100 iterations are 93.486%, 93.534%, 

93.624%, 93.641%, and 93.761%. 

4.7 Comparative analysis 

In terms of accuracy, sensitivity, and specificity, SCHHO-

Deep stacked Auto-encoders are compared to traditional 

approaches. Variating training data and K-Fold performs the 

analysis. 

4.7.1 Analysis based on training data 

(a) Accuracy

(b) Sensitivity

(c) Specificity

Figure 6. Analysis of methods based on training data 

Figure 6 shows the accuracy, sensitivity, and specificity of 

suggested SCHHO-Deep stacked Auto-encoders. Figure 6a) 

analyses strategies based on accuracy. For 40% training data, 

the accuracies computed by KNN, NN, Deep CNN, PSO-Deep 

CNN, Deep stacked Auto-encoders, and Proposed SCHHO-

Deep stacked Auto-encoders are 74.002%, 77.863%, 

78.194%, 81.182%, 81.795%, and 84.618%. Likewise, for 

90% training data, the corresponding accuracies computed by 

KNN, NN, Deep CNN, PSO-Deep CNN, Deep stacked Auto-
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encoders, and Proposed SCHHO-Deep stacked Auto-encoders 

are 85.715%, 88.320%, 90.005%, 91.104%, 91.364%, and 

91.669%. The analysis of methods considering sensitivity 

parameter is described in Figure 6b). For 40% training data, 

the sensitivities computed by KNN, NN, Deep CNN, PSO-

Deep CNN, Deep stacked Auto-encoders, and Proposed 

SCHHO-Deep stacked Auto-encoders are 71.258%, 74.804%, 

76.924%, 77.162%, 79.921%, and 81.975%. Likewise, for 

90% training data, the corresponding sensitivities computed 

by KNN, NN, Deep CNN, PSO-Deep CNN, Deep stacked 

Auto-encoders, and Proposed SCHHO-Deep stacked Auto-

encoders are 83.465%, 85.042%, 86.660%, 88.359%, 

91.188%, and 91.610%. The analysis of proposed SCHHO-

Deep stacked Auto-encoders considering specificity 

parameter is described in Figure 6c). For 40% training data, 

the specificities computed by KNN, NN, Deep CNN, PSO-

Deep CNN, Deep stacked Auto-encoders, and Proposed 

SCHHO-Deep stacked Auto-encoders are 83.716%, 84.773%, 

85.126%, 85.203%, 85.428% and 86.155%. Likewise, for 

90% training data, the corresponding specificities computed 

by KNN, NN, Deep CNN, PSO-Deep CNN, Deep stacked 

Auto-encoders, and Proposed SCHHO-Deep stacked Auto-

encoders are 90.445%, 90.922%, 91.109%, 91.529%, 

91.540%, and 91.728%. 

4.7.2 Analysis based on K-Fold 

Figure 7 demonstrates K-Fold accuracy, sensitivity, and 

specificity analyses. Figure 7a) analyses strategies based on 

accuracy. For K-Fold=5, the accuracies computed by KNN, 

NN, Deep CNN, PSO-Deep CNN, Deep stacked Auto-

encoders, and Proposed SCHHO-Deep stacked Auto-encoders 

are 77.471%, 80.278%, 84.110%, 84.174%, 85.009%, and 

85.929%. Likewise, for K-Fold=10, the corresponding 

accuracies computed by KNN, NN, Deep CNN, PSO-Deep 

CNN, Deep stacked Auto-encoders, and Proposed SCHHO-

Deep stacked Auto-encoders are 84.092%, 87.085%, 89.747%, 

90.406%, 91.069%, and 91.216%. The analysis of methods 

considering sensitivity parameter is described in Fig 7b). For 

K-Fold=5, the sensitivities computed by KNN, NN, Deep

CNN, PSO-Deep CNN, Deep stacked Auto-encoders, and

Proposed SCHHO-Deep stacked Auto-encoders are 75.101%,

7.779%, 78.417%, 79.212%, 82.004%, and 82.204%. 

Likewise, for K-Fold=10, the corresponding sensitivities 

computed by KNN, NN, Deep CNN, PSO-Deep CNN, Deep 

stacked Auto-encoders, and Proposed SCHHO-Deep stacked 

Auto-encoders are 82.250%, 83.996%, 85.176%, 86.661%, 

87.805%, and 88.900%. The analysis of methods considering 

specificity parameter is described in Figure 7c). For K-Fold=5, 

the specificities computed by KNN, NN, Deep CNN, PSO-

Deep CNN, Deep stacked Auto-encoders, and Proposed 

SCHHO-Deep stacked Auto-encoders are 84.673%, 85.106%, 

85.565%, 85.977%, 86.144%, and 86.217%. Likewise, for K-

Fold=10, the corresponding specificities computed by KNN, 

NN, Deep CNN, PSO-Deep CNN, Deep stacked Auto-

encoders, and Proposed SCHHO-Deep stacked Auto-encoders 

are 90.674%, 90.874%, 91.196%, 91.540%, 91.689%, and 

91.912%. Figure 8 shows ROC – AUC of algorithms. 

4.8 Comparative discussion 

Table 2 illustrates comparative analysis of approaches using 

accuracy, sensitivity and specificity parameter. Based on the 

training data, accuracy of proposed SCHHO-Deep stacked 

Auto-encoders is 91.669%, accuracy of Deep stacked Auto-

encoders is 91.364%, which is lesser than the proposed method. 

The sensitivity of proposed SCHHO-Deep stacked Auto-

encoders is 91.610, whereas the specificity of proposed 

SCHHO-Deep stacked Auto-encoders is 91.728%. SCHHO-

Deep stacking Auto-encoder has 91.216 % accuracy, 88.900 % 

sensitivity, and 91.912 % specificity for K-Fold values. 

(a) Accuracy

(b) Sensitivity

(c) Specificity

Figure 7. Analysis of methods based on K-Fold 

Figure 8. ROC – AUC of algorithms 
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Table 2. Comparative analysis 

Variation Metrics KNN NN Deep CNN 
PSO- Deep 

CNN 

Deep stacked 

Auto-encoders 

Proposed SCHHO- 

Deep stacked Auto-

encoders 

Training 

data 

Accuracy 85.715 88.320 90.005 91.104 91.364 91.669 

Sensitivity 83.465 85.042 86.660 88.359 91.188 91.610 

Specificity 90.445 90.922 91.109 91.529 91.540 91.728 

K-Fold

Accuracy 84.092 87.085 89.747 90.406 91.069 91.216 

Sensitivity 82.250 83.996 85.176 86.661 87.805 88.900 

Specificity 90.674 90.874 91.196 91.540 91.689 91.912 

5. CONCLUSIONS

In this research, fully automated, deep stacked auto encoder 

is proposed for detection of skin lesions. Autoencoders are 

beneficial when you have a small dataset because they can 

learn to compress your data into a lower-dimensional space. 

Deep stacked auto encoder is trained using suggested SCHHO. 

The SCA and HHO algorithms were combined to create the 

suggested SCHHO algorithm, which can be used to establish 

excellent skin cancer diagnosis by determining the ideal 

weights. Segmentation step is performed on each input skin 

image utilizing Sparse FCM algorithm. Skin lesion regions’ 

most pertinent pixels aid in better segmentation outcomes. For 

the accurate detection of skin lesions, statistical and textural 

features are also used. Because of the preprocessing step that 

offers opportunity to enhance outcomes even when using low 

quality photographs, the approach can be modified to improve 

image quality. With maximum accuracy of 91.669 %, 

maximum sensitivity of 91.610 %, and maximum specificity 

of 91.728 %, respectively, the suggested SCHHO-Deep 

stacked auto-encoder surpassed other approaches. Other skin 

cancer datasets will be used in future to calculate effectiveness 

of suggested strategy. Advanced optimization methods will 

also be studied to increase effectiveness of current approaches. 

Autoencoders are often trained with a single layer encoder and 

a single layer decoder, but using many-layered (deep) 

encoders and decoders offers many advantages. Depth can 

exponentially reduce the computational cost of representing 

some functions. Depth can exponentially decrease the amount 

of training data needed to learn some functions. 

Experimentally, deep autoencoders yield better compression 

compared to shallow or linear autoencoders. 
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