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 This study aims to investigate the dynamic Load allowance variation (DLA) of dynamic 

tank Loads and compare it with Iraq's standard specifications for road bridges. DLA is 

considered a simple measurement of the dynamic variation magnitude of the tank load 

for a specific combination of road roughness and speed. In addition to determining the 

stochastic dynamic response of the bridge. Al-Awsej bridge in Iraq, with a span of 33.2 

m and a principal road with four pavement roughness classes (very good, good, average, 

and poor), was proposed as a case study in this analysis. A spectral closed-form solution 

was used for evaluating the dynamic tank load due to the passage of a tank type-72A at 

a constant speed of 40,50,60 and 70 km/hr along a bridge with different types of rough 

pavement surface. The results show the less value of DLA for very good pavement at 

40 km/hr is about 0.032, and the largest value is about 0.293 at 70 km/hr for poor 

pavement. Also, road surface roughness greatly influences vehicle-bridge interactions 

and bridge responses. Where at 40 km/hr, the Root mean square of bridge deflection 

range from 0.31 to 2.75 mm and 0.39 to 3.14 mm at 70 km/hr. 
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1. INTRODUCTION 

 

The dynamic force generated by the interaction of the 

bridge caused by the passage of vehicles plays an important 

role in the design of the bridge structure. In practice, usually, 

a moving static load is used to model the vehicle force on 

bridges, and the static design loads are increased by a dynamic 

load allowance (DLA) to account for the dynamic effects from 

the vehicle vibrations due to the interaction between the 

vehicle and bridge [1]. 

Many codes specify the DLA as a function of span length 

only which might not lead to a reliable prediction of the 

dynamic loads on the bridge due to avoiding dynamic response 

analysis of the vehicle vibration that is moving along the 

bridge allow for a straightforward estimation of the vehicle 

loads in the bridge design [2]. The dynamic load that is caused 

by the interaction between the vehicle and the bridge is a 

difficult problem that is impacted by a wide variety of 

parameters including, the level of roughness of the road 

surface, the speed of the vehicle, and the dynamic properties 

of both the vehicle and the bridge. Therefore, there has been 

an increasing interest in and concern about bridge design 

forces [3]. 

Thus, determining the vehicle's dynamic load due to the 

vehicle's passage through the span of the bridge is a problem 

of great interest to bridge engineers. Therefore, an approach 

was developed, and a simple closed-form solution was derived 

to predict a vehicle's dynamic load for bridge design 

applications. Two sets of equations of motion were written to 

solve the problem of vehicle-bridge interaction, one for the 

vehicle and the other for the bridge, and in order to 

mathematically relate the motion of the vehicle and the bridge, 

the interactive force existing at the contact point between the 

vehicle and bridge is considered [4, 5]. 

In this study, numerical analysis has been carried out to 

calculate the dynamic load allowance and the stochastic 

response of the bridge because of the passage of a vehicle 

moving at constant speed along a rough bridge surface. The 

vehicle has been replaced by a simple, linear, damped spring-

mass system which moves on a bridge at a constant speed. The 

bridge has been represented as simply support with a single 

degree of freedom. 

 

 

2. EQUATION OF MOTION OF VEHICLE 

 

In this study, the vehicle is modeled as a single degree of 

freedom (SDOF) with mass m1, constant spring k, and 

damping coefficient c0 with constant speed V along a rough 

bridge pavement (see Figure 1 (a)). A possible profile of the 

irregularities of pavement surface on a bridge, as shown in 

Figure 1 (b), the height, yr of the surface is plotted as a function 

of distance x along the bridge [3, 5]. The pavement-surface 

elevation �̃� (𝑑, 𝑡)  represent the sum of the pavement 

roughness and displacement of the bridge. The equation of 

motion of the vehicle is given by: 

 

𝑚1�̈̃�(𝑡) + 𝑐0(�̇̃�(𝑡) − �̇̃�𝑥=𝑑) + 𝑘(�̃�(𝑡) − �̃�𝑥=𝑑)
= 𝑓(𝑡) − 𝑚1𝑔 

(1) 

 

where, �̈̃� , �̇̃� , and �̃�  are absolute acceleration, velocity, and 

displacement of the vehicle, respectively. f(t) and m1g are the 

engine-induced force and the vehicle gravity force, 

respectively. The d=Vt expresses the moving distance of the 

vehicle on the bridge. Rearranging Eq. (1) to become: 

 

𝑚1�̈̃�(𝑡) + 𝑐0�̇̃�(𝑡) + 𝑘�̃�(𝑡)

= 𝑓(𝑡) − 𝑚1𝑔 + 𝑐0�̇̃�𝑥=𝑑 + 𝑘�̃�𝑥=𝑑 
(2) 
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Since y(x, t)=y(x=d=Vt, t), Eq. (2) reductions into the typical 

form of a linear SDOF system. The time-varying parameter 

y(d, t), the engine-induced force f(t), and the vehicle gravity 

force m1g are all inputs to the suspension system. Note that y(d, 

t) may be represented as the sum of the bridge deflection 

𝑦𝑏1(𝑑, 𝑡)  due to moving vehicle gravity force (a constant 

moving force), the bridge deflection yb(d, t) due to moving 

random dynamic vehicle load F(t), and the pavement 

roughness yr(t). Let: 

 

𝑍(𝑡) = 𝑍1(𝑡) + 𝑍(𝑡) (3) 

 

�̃�(𝑑, 𝑡) = 𝑦𝑏1(𝑑, 𝑡) + 𝑦𝑟(𝑡) + 𝑦𝑏(𝑑, 𝑡) (4) 

 

and 

 

𝑦(𝑑, 𝑡) = 𝑦𝑟(𝑡) + 𝑦𝑏(𝑑, 𝑡) (5) 

 

Eq. (2) is divided into two equations: 

 

𝑚1�̈�1(𝑡) + 𝑐0�̇�1(𝑡) + 𝑘𝑧1(𝑡)
= 𝑐0�̇�𝑏1(𝑑, 𝑡) + 𝑘𝑦𝑏1(𝑑, 𝑡) 

(6) 

 

𝑚1�̈�(𝑡) + 𝑐0�̇�(𝑡) + 𝑘𝑧(𝑡)
= 𝑓(𝑡) − 𝑚1𝑔 + 𝑐0�̇�(𝑑, 𝑡)
+ 𝑘𝑦(𝑑, 𝑡) 

(7) 

 

where, 𝑦𝑏1(𝑑, 𝑡)  is the bridge deflection as a result of the 

constant moving force m1g and the vehicle displacement z1(t) 

in Eq. (6) are deterministic functions; f(t), y(d, t), and Z(t) in 

Eq. (7) are random functions. If 𝑦𝑏1(𝑑, 𝑡) is known, z1(t) of Eq. 

(6) can be easily resolved using any available methods [6, 7]. 

 

 
(a) 

 
(b) 

 
(c) 

 

Figure 1. (a) Road roughness profile, (b) Vehicle model, (c) 

Bridge model subjected to dynamic vehicle load [6] 

 

3. POWER SPECTRAL DENSITY FUNCTION OF 

VEHICLE DISPLACEMENT 

 

Suppose a vehicle's equation of motion is expressed in the 

static-equilibrium position. In that case, it will be referenced 

to the vehicle's displacements in future discussions when the 

vehicle's dynamic "random" response will be calculated [1, 8]. 

The analytical model of the dynamic vehicle-bridge interactive 

system is shown in Figure 1 (c). The total response of the 

vehicle, such as spring force, displacement, etc., is achieved 

by including the static response to the dynamic analysis results. 

The static responses that cause by gravity force from vehicle 

weight. The static force of the vehicle also represents the mean 

of the stochastic load, and it's considered the reference position 

when the system vibrates. Then to study the dynamic response 

separately from the static, the static force was ignored when 

considering the zero mean gaussian process. Then, Eq. (7) 

becomes [9]: 

 
𝑚1�̈�(𝑡) + 𝑐0�̇�(𝑡) + 𝑘𝑧(𝑡) = 𝑓(𝑡) + 𝑐0�̇�(𝑑, 𝑡) + 𝑘𝑦(𝑑, 𝑡) (8) 

 

If y(d, t) and f(t) have, respectively, power spectral density 

function Syy(d, ω) and Sff(ω) with respect to time, the relation 

of the power spectral density function of the vehicle response 

Szz(d, ω) and of the inputs is then given by: 

 

𝑆𝑧𝑧(𝑑, 𝜔) =∑∑𝐻𝑟
∗(𝜔)𝐻𝑠

∗(𝜔) 𝑆𝑟𝑠(𝑑, 𝜔)

𝑠𝑟

,  

𝑟, 𝑠 = 𝑦(𝑑, 𝑡), 𝑓(𝑡) 

(9) 

 

where, 𝐻𝑟
∗(𝜔) is the complex conjugate of Hr(ω). 

In general, the engine-induced force f(t) exhibits a harmonic 

form and little correlative with the pavement roughness and 

the moving distance of a vehicle. For uncorrelated inputs, Szz 

(d, ω) can be expressed by the relation: 

 

𝑆𝑧𝑧(𝑑, 𝜔) = |𝐻𝑦(𝜔)|
2
𝑆𝑦𝑦(𝑑, 𝜔) + |𝐻𝑓(𝜔)|

2
𝑆𝑓𝑓(𝜔) (10) 

 

where, 

 

𝐻𝑦(𝜔) =
𝑘 + 𝑖𝑐0𝜔

(𝑘 − 𝑚1𝜔
2) + 𝑖𝑐0𝜔

 (11) 

 

and 

 

𝐻𝑓(𝜔) =
1

(𝑘 −𝑚1𝜔
2) + 𝑖𝑐0𝜔

 (12) 

 

If the influence of engine motion on vehicle vibration is 

ignored as in this study, the Szz (d, ω) become: 

 

𝑆𝑧𝑧(𝑑,𝜔) = |𝐻𝑦(𝜔)|
2
𝑆𝑦𝑦(𝑑, 𝜔) (13) 

 

 

4. PAVEMENT ROUGHNESS 

 

The degree of unevenness of the road surface is the most 

important component that determines the dynamic load 

allowance for the bridge design [10]. In most cases, the 

method of variation of a bridge surface as a distance function 

is considered to be a zero-mean stationary random process. 

During the earlier stages of pavement roughness 

characterization, this assumption of Gaussian was prevalent 
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and was based on numerous and extensive pavement profile 

surveys undertaken across the world that have shown that 

pavement profiles can be considered random with an 

approximately zero-mean stationary Gaussian probability 

distribution. The power spectral density is a function of yr 

m2⁄(cycle⁄m) and it is approximated by Eq. (14) [11]: 

 

𝑆𝑦𝑟𝑦𝑟(𝜔)

= { 

1
2𝜋𝑉

𝑆(𝑛0) (
𝜔

2𝜋𝑉𝑛0
)
−𝜔1

, 𝜔 ≤ 2𝜋𝑉𝑛0

1
2𝜋𝑉

𝑆(𝑛0) (
𝜔

2𝜋𝑉𝑛0
)
−𝜔2

, 𝜔 > 2𝜋𝑉𝑛0

} 
(14) 

 

where, n is the spatial frequency or wave number (cycle/m), 

which expresses the rate of change with respect to distance, 

and it is a function of wavelength Lw. S(n0) is the pavement 

roughness coefficient (m3/cycle). n0, discontinuity frequency 

(cycle/m) is the reference spatial frequency, ω1, and ω2 are the 

parameters of spectral shape . V is the vehicle speed and the 

time angular frequency ω by (rad/sec) expressed [12, 13]: 

 

𝜔 = 2𝜋𝑛𝑉 (15) 

 

The parametric values for typical principal roads as shown 

in Table 1. 

 

Table 1. Pavement classes are based on principal roads [14] 

 

Pavement 

class 

𝑺(𝒏𝟎) 
𝒎𝟑

𝒄𝒚𝒄𝒍𝒆
 

ω1 ω1 

Mean 
Standard 

deviation 
Mean 

Standard  

deviation 

Very good 2×10-6 

2.05 0.487 1.44 0.266 
Good 8×10-6 

Average 32×10-6 
Poor 128×10-6 

 

 

5. DYNAMIC VEHICLE LOAD SPECTRUM 

 

The dynamic vehicle load F(t) is calculated empirically for 

a specific stretch of pavement, and it is supposed to have the 

properties of a stationary Gaussian random process with zero 

mean value. Considering that the power spectral density 

function was used to characterize the F(t), and that the F(t) is 

defined [15]: 

 

𝐹(𝑡) = 𝐶0 (�̇� − �̇�) + 𝑘(𝑍 − 𝑦) = 𝑓(𝑡) − 𝑚1�̈� (16) 

 

The spectral density function of F(t) is approximately given 

by Eq. (17): 

 

𝑆𝐹𝐹(𝜔) = 𝑇𝑓 (𝜔) 𝑆𝑓𝑓  (𝜔) + 𝑇𝑟  (𝜔) 𝑆𝑦𝑟𝑦𝑟(𝜔) (17) 

 

The Tf and Tr are expressed by Eq. (18) and Eq. (19), 

respectively: 

 

𝑇𝑓(𝜔) = 1 +𝑚1
2 𝜔4 |𝐻𝑓(𝜔)|

2
 (18) 

 

𝑇𝑟(𝜔) = 𝑚1
2 𝜔4 |𝐻𝑦(𝜔)|

2
 (19) 

 

Then, the mean square and Root mean square of F(t) is 

related to SFF(ω) by Eq. (20), and Eq. (21), respectively: 

𝜎𝐹
2 = ∫ 𝑆𝐹𝐹(𝜔) 

∞

0

𝑑𝜔 (20) 

 

𝜎𝐹 = √𝜎𝐹
2 (21) 

 

 

6. DYNAMIC LOAD ALLOWANCE (DLA) 

 

The DLA is a significant design and assessment parameter. 

The magnitude of the dynamic load allowance, which is 

determined by Eq. (22), depends on the bridge's vibrations, the 

roughness of the pavement, the vehicle's speed, and the 

vehicle's suspension system [5]. Hence, the wavelength is 

considered a function of spatial frequency n and the spatial 

frequency converts to cyclic or circular frequency ω through 

Eq. (15); one of the most essential variables in this equation is 

vehicle speed because it can increase the frequency range of 

the load when increasing the vehicle speed. 

 

𝐷𝐿𝐴 =
𝜎𝐹
𝑚1𝑔

 (22) 

 

 

7. DYNAMIC RESPONSE OF BRIDGE 

 

7.1 Equation of motion of bridge 

 

The transverse deflection yb (x, t) of the bridge at time 𝑡 and 

distance 𝑥 satisfies the partial differential equation given by 

Eq. (23) because the bridge with length L and mass per unit 

length �̅� is elastic uniform straight and subjected to a viscous 

damping force 𝑐  per unit length per unit velocity and a 

transverse force p(x, t) per unit length [1, 16]. 

 

�̅�
𝜕2�̃�𝑏
𝜕𝑡2

+ 𝑐
𝜕�̃�𝑏
𝜕𝑡

+ 𝐸𝐼
𝜕4�̃�𝑏
𝜕𝑥4

= 𝑝 (𝑥, 𝑡) (23) 

 

where, EI is the constant bending stiffness of the bridge. p(x, 

t) replaced by Eq. (26) for constant vehicle speed [17]. 

 

𝑝 (𝑥, 𝑡) = 𝛿(𝑥 − 𝑑)𝑝(𝑡) = 𝛿(𝑥 − 𝑑)(𝑚1𝑔 + 𝐹(𝑡))  

= 𝛿(𝑥 − 𝑑)𝑚1𝑔 + 𝛿(𝑥 − 𝑑)𝐹(𝑡) 
(24) 

 

where, δ(·) is the Dirac distribution, F(t) is a stationary 

Gaussian random process with zero mean; m1g is the vehicle 

gravity; the total vehicle load on the bridge P(t) is a stationary 

Gaussian random process with a mean value of 𝑚1𝑔.If F(t) 

assumed is independent of the mean deterministic deflection 

of the bridge. Eq. (23) is written as two separate equations as 

follows: 

 

�̅�
𝜕2𝑦𝑏1
𝜕𝑡2

+ 𝑐
𝜕𝑦𝑏1
𝜕𝑡

+ 𝐸𝐼
𝜕4𝑦𝑏1
𝜕𝑥4

= 𝛿(𝑥 − 𝑑)𝑚1𝑔 (25) 

 

�̅�
𝜕2𝑦𝑏
𝜕𝑡2

+ 𝑐
𝜕𝑦𝑏
𝜕𝑡

+ 𝐸𝐼
𝜕4𝑦𝑏
𝜕𝑥4

= 𝛿(𝑥 − 𝑑)𝐹(𝑡) (26) 

 

Eq. (25) for deterministic mean values of random function 

yb (x, t), and p(x, t). while the second, Eq. (26), is valid for their 

centered "random" components. The total deflection �̃�𝑏(𝑥, 𝑡) 
of the bridge due to the moving vehicle is the sum of the 

deflection 𝑦𝑏1 of the bridge subject to the constant force 𝑚1𝑔 

and the deflection yb due to dynamic vehicle load F(t) (see 
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Figure 1 (c)). 𝑦𝑏 = y𝑏1 + y𝑏 , y𝑏1  is a deterministic function, 

and yb is a random function. 

 

7.2 Response of bridge to dynamic vehicle load 

 

The statistical properties of the second-order (variation of 

𝑦𝑏) that can be derived from Eq. (26) [1, 18]. One form of a 

solution of Eq. (26) obtained by separation of variables, 

assuming that the solution has the form: 

 

𝑦𝑏(𝑥, 𝑡) =∑𝜓𝑗(𝑥)𝑌𝑗(𝑡)

∞

𝑗=1

 (27) 

 

It is believed that the free-vibration motions consist of a 

series of constant shapes ψj(x), and that the amplitude of these 

motions varies with time by Yj(t). When analyzing undamped 

free vibration, it is possible to estimate the undamped angular 

frequencies readily ωj of the bridge as well as the mode shapes 

ψj(x) of the bridge by considering the boundary conditions at 

the ends of the bridge segment. The ωj and ψj(x) values of the 

bridge can be calculated as follows for a simply supported 

bridge: 

 

𝜔𝑗 = (𝑗
𝜋

𝐿
)2√

𝐸𝐼

�̅�
 (28) 

 

or 

 

𝑓𝑗 = (𝑗
𝜋

2𝐿2
)√

𝐸𝐼

𝑚
 (29) 

 

and 

 

𝜓𝑗(𝑥) = √2 𝑠𝑖𝑛 (𝑗
𝜋𝑥

𝐿
) (30) 

 

The modes ψj(x) satisfy the orthogonal conditions: 

 

∫ 𝜓𝑗(𝑥) 𝜓𝑘(𝑥)𝑑𝑥
𝐿

0

= 𝐿 𝛿𝑗𝑘 (31) 

 

where, δjk is the Kronecker delta function. 

Substituting Eq. (27) into Eq. (26), multiplying through by 

ψj(x), integrating over 𝑥, and using the orthogonal conditions, 

here the ψj(x) is considered a filter to choose the mode required, 

all mods that are j≠k are disappearing. Hence, transforming 

from a multi-degree of freedom to a single degree of freedom 

leads to the uncoupled equation of motion for Yj(t): 

 

�̈�𝑗 + 𝛽�̇�𝑗 + 𝜔𝑗
2𝑌𝑗 = 𝐺𝑗  (𝑡) (32) 

 

where 

 

𝛽𝑗 =
𝑐

�̅�
 (33) 

 

and 

 

𝐺𝑗 (𝑡) =
1

�̅�𝐿
∫ 𝜓𝑗(𝑥) 
𝐿

0

 𝛿(𝑥 − 𝑑)𝐹(𝑡)𝑑𝑥 (34) 

The convolution integral gives the formal solution to Eq. 

(32): 
 

𝑌𝑗  (𝑡) = ∫ 𝐺𝑗 (𝑡 − 𝜃) 
𝑡

0

ℎ𝑗(𝜃)𝑑𝜃 (35) 

 

where, the impulse response function is: 

 

ℎ𝑗  (𝑡) =

{
 
 

 
 

𝑒−0.5 𝛽𝑗𝑡

𝜔𝑗√1 −
𝛽𝑗
2

4𝜔𝑗
2

𝑠𝑖𝑛 (𝜔𝑗√1 −
𝛽𝑗
2

4𝜔𝑗
2
𝑡)

}
 
 

 
 

,

𝑡 ≥ 0 

(36) 

 

Substituting Eq. (34) into Eq. (35), the modal amplitude Yj(t) 

may then be written as: 

 

𝑌𝑗 (𝑡) = ∫  
1

𝑚𝐿̅̅ ̅̅
 ∫ 𝜓𝑗(𝑥) 

𝐿

0

 𝛿(𝑥 − 𝑑)𝐹(𝑡 − 𝜃)𝑑𝑥
𝑡

0

 ℎ𝑗(𝜃)𝑑𝜃

=
𝜓𝑗(𝑑)

𝑚𝐿̅̅ ̅̅
 ∫ 𝐹(𝑡 − 𝜃)ℎ𝑗(𝜃)𝑑𝜃

𝐿

0

 

(37) 

 

Thus, yb(x, t) can be obtained in the form: 
 

𝑦𝑏(𝑥, 𝑡) =∑𝜓𝑗(𝑥) 𝑌𝑗(𝑡)

∞

𝑗=1

 (38) 

 

𝑦𝑏(𝑥, 𝑡) =∑
𝜓𝑗(𝑥) 𝜓𝑗(𝑑)

𝑚𝐿̅̅ ̅̅

∞

𝑗=1

∫ 𝐹(𝑡 − 𝜃)ℎ𝑗(𝜃)𝑑𝜃
𝑡

0

 (39) 

 

In according to random vibration theory, the spectral 

density function of yb(x, t) give: 

 

𝑆𝑦𝑏𝑦𝑏  (𝑥, 𝜔) =
1

2𝜋
∫ 𝑅𝑦𝑏𝑦𝑏  
∞

−∞

(𝑥, 𝜏)𝑒−𝑖𝜔𝜏𝑑𝜏 (40) 

 

where, 

 

𝑅𝑦𝑏𝑦𝑏  (𝑥, 𝜏) = 𝐸[𝑦𝑏(𝑥, 𝑡)𝑦𝑏(𝑥, 𝑡 + 𝜏)] (41) 

 

The power spectrum density of bridge deflection is given by 

Eq. (42): 
 

𝑆𝑦𝑏𝑦𝑏  (𝑥, 𝜔)

= 𝑆𝐹𝐹(𝜔)∑∑
𝜓𝑗(𝑥) 𝜓𝑗(𝑑)𝜓𝑘(𝑥) 𝜓𝑘(𝑑)

(�̅�𝐿)2

∞

𝑘=1

∞

𝑗=1

𝐻𝑗(𝜔)𝐻𝑘(−𝜔) 
(42) 

 

where, SFF (ω) is the power spectral density function of F(t) 

and Hj(ω) is the transfer function of the bridge. 
 

𝐻𝑗(𝜔) =
1

(𝜔𝑗
2 − 𝜔2) + 𝑖𝛽𝑗𝜔

 (43) 

 

and 
 

𝐵(𝑥, 𝜔)

=∑∑
𝜓𝑗(𝑥) 𝜓𝑗(𝑑)𝜓𝑘(𝑥) 𝜓𝑘(𝑑)

(�̅�𝐿)2

∞

𝑘=1

∞

𝑗=1

𝐻𝑗(𝜔)𝐻𝑘(−𝜔)  
(44) 
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Finally, the power spectrum density for single degree of 

freedom system of a bridge may be written as: 

 

𝑆𝑦𝑏𝑦𝑏  (𝑥, 𝜔)

= 𝑆𝐹𝐹(𝜔)
1

(�̅�𝐿)2
1

(𝜔𝑗
2 −𝜔2) + 𝑖2𝜉𝜔𝑗𝜔

 
(45) 

 

 

8. NUMERICAL EXAMPLE 

 

In the following, a numerical example is presented and 

analyzed to evaluate dynamic load allowance and determine 

the Root mean square of deflection for the Al-Awsej bridge 

when stochastic responses due to randomness in dynamic tank 

load are taken into account. 

 

8.1 Description of parameters in the analysis 

 

In this study, tank T-72A has been proposed to evaluate the 

variation of dynamic vehicle load. The suspension weight, 

stiffness, and damping of T-72A have been taken at 37430 kg, 

3501 kN/m, and 9 percent of the critical damping. The 

vibration frequency of the tank T-72 system was equal to 9.67 

rad/s (1.54 Hz). Four constant speeds along a rough bridge 

surface have been considered, 40, 50, 60, and 70 km/ hr. Four 

classes of pavement roughness (very good, good, average, and 

poor pavements) have been used. The parameters 𝑛𝑜, 𝜔1, and 

𝜔2 are taken as 0.1 (cycle/m), 2.05, and 1.44, respectively. The 

effect of engine motion on vehicle vibration has been 

disregarded. 

The bridge has been modeled as a simply-supported with a 

span length of 33.2 m. The mass per unit length m and EI of 

the bridge were taken as 13761 kg and 33×106 kN.m2, 

respectively. The modal damping ratio is assumed to be 0.02, 

and natural frequency was obtained by modal analysis using 

ABAQUS software. The first six vibration modes are deduced, 

as shown in Figure 2 and the natural frequency in (Hertz) 

represented the characteristics of these modes. Rainbow 

colours represent the mode shapes normalized in such a way 

to have generalized mass of one unit. The second mode that 

has been used is equal to 2.51 Hz. 
 

 

 

 

 

 

 
 

Figure 2. Mode shapes and Frequencies of a bridge 

 

8.2 Results of the analysis 

 

8.2.1 Dynamic vehicle response due to road unevenness 

The tank load power spectrum density is deduced from a 

random process due to pavement roughness which is 

dependent on the vehicle-pavement coupled model formula. 

The power spectrum density (PSD) of the dynamic tank load 

has been generated for different classes of pavement 

roughness with a constant speed tank vehicle ranging from 40 

to 70 km/hr. The PSD has been presented in Figure 3. The 

results showed that the peak detected refers to a maximum 

response that occurs near the frequency of the vehicle. 

Numerical integration analysis has been performed to 

deduce the mean square of dynamic tank loads. Consequently, 

the Root mean square (Rms) of dynamic tank loads has been 

determined, as shown in Figure 4. It is considered a key feature 

related to mean energy distribution when the Root mean 

square formulation translates the power spectral density curve 

for each response quantity into a single value. 

In the case of pavement roughness (very good and good), 

insignificant effect in Rms of dynamic load with speed 

increasing. In contrast, in (average and poor) rough pavement 

conditions, the vehicle speed affects the Rms of dynamic load. 

At a specified tank speed, the dynamic load increase two times 

with increased pavement roughness coefficient S(n0)  four 

times. That led to the Rms being proportional to the square 

Root of the pavement roughness coefficient S(n0). 
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Figure 3. PSD of dynamic tank load versus tank speed for 

four classes of pavement roughness 

 

 
 

Figure 4. Rms of dynamic tank load for four classes of 

pavement roughness 

 

8.2.2 Dynamic load allowance 

The dynamic load allowance, DLA, has been estimated 

based on the Rms of dynamic loads achieved in the previous 

section in Figure 4. the result showed The DLA increases 

linearly with the increases in vehicle speed and pavement 

roughness coefficient, as shown in Figure 5. 

 

 
 

Figure 5. DLA versus vehicle speed for four classes of 

pavement roughness 

 

All results of the DLA for various speeds and classes of 

pavement roughness are illustrated in Table 2, and the result 

shows the average dynamic load allowance for good and 

average pavement roughness from 0.068 to 0.137. Generally, 

most roads belong to these classes, and the DLA of 0.05-0.3 is 

typical under normal operating conditions and close to zero 

when the vehicle moves over a perfectly smooth road [19]. 

 

Table 2. Dynamic load allowance, DLA 

 

Speed (km/hr) 
DLA 

Very good good Average Poor 

40 0.032 0.065 0.130 0.252 

50 0.033 0.066 0.133 0.267 

60 0.035 0.070 0.140 0.280 

70 0.036 0.073 0.146 0.293 

Average 0.034 0.068 0.137 0.273 

 

8.2.3 Response bridge 

In order to estimate the stochastic response of the bridge due 

to the dynamic effects of the vehicle vibration when traveling 

along the bridge resulting from the interaction between the 

vehicle and bridge, the output power spectrum density of 

dynamic tank loads at various vehicle speeds and pavement 

roughness classes will be used as input power spectral density 

of dynamic load applied on a bridge. 

The PSD of bridge deflection has been presented in Figure 

6, which is due to more of one realization of the randomly 

varying road surface roughness, which is sufficient to describe 

the possible road surface roughness effect on vehicle-bridge 

interaction. One peak of the PSD of deflection curves can be 

observed with the increase of the pavement roughness because 

of the resonance of the coupling system. 

Numerical integration analysis has been performed to 

deduce the mean square and the Root mean square of bridge 

deflection, as shown in Figure 7. The increase in the Root 

mean square of bridge deflection at the vehicle speed (40, 50, 

60 and 70) km/hr appears clearly in the case of average and 

poor roughness pavement. The relationship between the Rms 

of the bridge deflection and velocity appears to be 

approximately linear. The underlying reason for this 

phenomenon is that, at a specified vehicle speed, the Rms of 

dynamic vehicle load is proportional to the square root of the 

pavement roughness coefficient S(n0). 
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Figure 6. PSD of deflection bridge 
 

 
 

Figure 7. Rms of bridge deflection 

 

The results of Root mean square of bridge deflection at 

various speeds and for four classes of roughness pavement 

(very good, good, average, and poor) are illustrated in Table 3. 

 

Table 3. Rms of bridge deflection for four classes of 

pavement roughness 

 
Speed 

(km/hr) 

Rms of bridge deflection (mm) 

Very good Good Average Poor 

40 0.31 0.67 1.35 2.75 

50 0.36 0.71 1.43 2.85 

60 0.37 0.75 1.49 2.99 

70 0.39 0.78 1.57 3.14 

 

 

9. CONCLUSIONS 

 

A stochastic dynamic analysis of the Al-Awsej bridge has 

been performed in this paper due to the passage of tank T-72 

along a bridge with four classes of pavement surface 

roughness. The bridge is located in Iraq with a span of 33.2 m. 

Several vital concepts were presented, including: 

· For pavement roughness (very good and good), 

insignificant effect in Rms of dynamic load with speed 

increasing. In contrast, in (average and poor) rough pavement 

conditions, the vehicle speed affects the Rms of dynamic load. 

At a specified tank speed, the dynamic load increase two times 

with increased pavement roughness coefficient S(n0) four 

times. That led to the Rms being proportional to the square 

root of the pavement roughness coefficient S(n0). 

· The dynamic load allowance increases linearly with 

vehicle speed, and the pavement roughness coefficient 

increases. 

·In the case of the very good pavement roughness surface 

with increasing vehicle speed, it did not significantly affect the 

value of the dynamic load allowance. In contrast, in poor 

rough pavement conditions, the roughness and vehicle speed 

has significantly affected the dynamic load allowance, where 

the value approached 0.293 when the vehicle speed 

approaches 70 km/hr. 

·As compared with good and average pavement roughness 

surface, the dynamic load is still within a limit on Iraq standard 

specifications for road bridges, while in the case of poor 

pavement reaches 0.293 at a tank speed of 70 km/hr. So, it can 

be considered the results of the DLA within the Iraq standard 

specifications for road bridges because of most roads are 

classified as good and average pavement roughness. 

The road surface roughness greatly influences the vehicle-

bridge interactions and dynamic bridge responses at a 

specified tank speed. At the tank speed of 40 km/hr, the Root 

mean square of deflection of the bridge increase from 0.31 to 

2.75 mm, and at the tank speed of 70 km/hr, the Root mean 

square of deflection of the bridge increase from 0.39 mm to 

3.14 mm. 
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