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 In order to increase the drug potency and cancer treatment effectiveness, hyperthermia 

therapy is an adjuvant procedure in which perfused bodily tissues are heated to extreme 

temperatures. While certain types of hyperthermia treatments rely on thermal radiations 

from single-sourced electro-radiation measures, conjugating dual radiation field sources 

is being discussed in an effort to enhance the delivery of therapy. The thermal efficiency 

of a combined infrared hyperemia with nanoparticle recirculation near an applied 

magnetic field on subcutaneous strata of a model lesion as an ablation technique is 

investigated computationally in this research. To tackle the equation of linked 

momentum and thermal equilibrium in the blood-perfused tissue domain of a spongy 

fibrous tissue, an intricate Spectral relaxation method (SRM) was developed. The well-

known Roseland diffusion approximation was used to define thermal diffusion regimes 

in the presence of external magnetic field imposition and to outline the effects of 

radiative flux inside the computational domain. Utilizing pore-scale porosity 

mechanics, the contribution of tissue sponginess was studied in a number of clinically 

relevant circumstances. Our findings demonstrated that magnetic field architecture 

could govern hemodynamic regimes at the blood-tissue interface across a significant 

depth of spongy lesion while permitting thermal transport across the depth of the model 

lesion. This parameter-indicator could be used to regulate how much hyperthermia 

therapy is administered to intravenously perfused tissue. 
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1. INTRODUCTION 

 

The development of thermal and non-thermal therapies for 

the diagnosis and treatment of tumor-related illnesses, 

however, is thought to have the potential to lessen the 

mortality load brought on by patients who are hampered by 

malignant infections. The potential of numerous techniques, 

including hyperthermic perfusion, conductive hyperthermia, 

electromagnetic and ultrasonic hyperthermia, and 

electrothermic operations, has led to the current optimism in 

the fight against cancer. This treatment is referred to as high 

temperature inducement of malignant region. For instance, 

according to experts in the field of oncology in Africa, Nigeria 

had the highest mortality rate in a study that was age-

standardized [1]. 

Over the years, hyperthermia (HT) has played a significant 

role in the management of cancer-related illnesses. There have 

been documented innovations in the use of thermal biology to 

treat tumors at various anatomical places on the body. High 

temperature field exposure on areas of tumor growth is 

supplied to produce a curative effect on the tissue [2-4]. 

Application of thermal ablation is observed to precede and 

improve the potency of clinical interventions with far-reaching 

therapeutics effects such as chemotherapy, and radiotherapy 

[5, 6]. Time-based sustained thermal management of tumor 

growth around tissues with magnitude between 40℃ and 45℃ 

is a precursor for improved reperfusion within vasculature 

during radio and chemo based cancer treatment [7]. HT 

interventions are being achieved using selected avenues such 

as microwaves HT, radio HT, waves HT, ultrasound HT [2]. 

Whole body HT entails direct exposure on the entire body 

structure especially in cases of neoplasia which entails 

confiding the entire body heat loss while direct thermal 

inducement is made on skin and tissue to effect extracorporeal 

HT into the body core [8, 9]. The advancement around 

nanotechnology, introduction of nanoparticle in thermal 

inducement for therapeutics features in recent literatures. The 

presence of metallic nanoparticles around biological tissue is 

intended to generate hysteric heating around target tissue in 

the region of tumor. Embolizing ferromagnetic HT in external 

imposed magnetic field effect could be directed to minimize 

damage of healthy cells during cancer treatment [10].  

Early reports have shown that externally imposed 

electromagnetic radiation frequency within the microwave 

range have the potential to induce localized heat effect on 

tumor growth either in the cutaneous and subcutaneous region 

of living organisms. Ali and Faramarz [11] described 

microwave HT device that could penetrate into subcutaneous 

tissue at elevate temperature. The study achieved microwave 

HT therapy on the abdominal wall of an anesthetized rat 

through multi-beam arrangements for explicit and precision 

heating around the region of malignancies. Nguyen et al. [12] 

reported a non-invasive HT strategy for mammalian cancer 

using microwave HT in a three-dimensional antenna-beam 

approach to describe electromagnetic wave penetration in 

breast cancer model. Nguyen et al. [13] experimentally 
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showed that 65-W microwave HT penetration for breast 

cancer treatment by focusing 3D-antenna in the vicinity of 

tumor embedded in glands at elevated temperature 42℃ while 

keeping healthy tissue safe at 36℃ without any hot spots. 

During hyperthermia-type treatment in cancer issues, 

perfusion of blood across the vasculature of the diseased 

region is regarded because of its impact for circulation and 

removal of thermal energy in the vicinity of neighboring tissue. 

Numerical procedures have the capacity to predict and provide 

guidance to clinicians during administration of hyperthermia 

therapy in cancer patients.  

In this investigation, a Chebyshev and pseudo-Spectral 

relaxation technique is used to investigate the effects of 

magnetic field-mediated radiative flux on infrared-type 

hyperthermia on a model of spongy tissue under perfusion. 

Our work reveals how biogenic fluid is transported through the 

perfused lesion's microvasculature. We present the first 

instance of a magnetic field being used to boost infrared-

mediated hyperthermia on a field-based basis. While 

considering the perfusion in a near-native vascular spongy 

tissue with a predicted degree of porosity, researchers looked 

at the effects of regulated infrared radiation on a 

predetermined level of substrate lesion permeability. 

 

 

2. FORMULATION OF THE RESEARCH PROBLEM 

 

Take into account the use of a magnetic field during 

hyperthermia therapy. In the study, the heat source is taken 

into account in order to act as an external device to raise the 

blood tissue's presumptive uniform temperature of 37℃. 

Convection, blood perfusion, thermal conduction, and 

metabolic heat creation are all combined in this heat transfer 

mechanism. The blood tissue motion was ignored in the earlier 

work [14]. As a result, the current work clarifies the 

momentum and thermal equilibrium between blood and tissue. 

This study makes the supposition that the local tissue's 

temperature and the blood's temperature throughout the tissue 

are comparable. Thus, the following are the one-dimensional 

momentum and energy equations: 

 
𝜕𝑢∗

𝜕𝑡∗ = 𝜐
𝜕2𝑢∗

𝜕𝑦∗2 −
𝜐

𝐾
𝑢∗ −

𝜎𝐵𝑜
2

𝜌
𝑢∗  (1) 

 

𝜌𝑏𝐶𝑝𝑏
𝜕𝑇∗

𝜕𝑡∗ = 𝐾𝑏
𝜕2𝑇∗

𝜕𝑦∗2 𝜔𝑏𝜌𝐶𝑏(𝑇𝑏 − 𝑇) + 𝑄𝑚(𝑇∗ −

𝑇𝑜) +
𝜕𝑞𝑟

𝜕𝑦∗  
(2) 

 

The boundary conditions are also: 

 

𝑢∗(𝑦∗, 0) = 37∘𝐶 

𝑢∗(0, 𝑡∗) = 37∘𝐶, 𝑢∗(𝑎, 𝑡∗) = 45∘𝐶 
(3) 

 

𝑇∗(𝑦∗, 0) = 37∘𝐶 

𝑇∗(0, 𝑡∗) = 37∘𝐶, 𝑇∗(𝑎, 𝑡∗) = 45∘𝐶 
(4) 

 

The radiative heat flux is used to calculate the Rosseland 

diffusion approximation, which is defined as: 

 

𝑞𝑟 =
−4𝜎𝑠

3𝐾𝑒

𝜕𝑇∗4

𝜕𝑦∗   (5) 

 

where, Ke stands for mean absorption coefficient and σ is the 

Stefan-Boltzman constant. It is assumed that temperature 

changes inside the blood motion are sufficiently low when the 

Taylor series is used to expand T*4 and higher orders are 

neglected. As a result, T*4 which is the quartic temperature 

function may be represented as a linear function as shown 

below: 
 

𝑇∗4 ≅ 4𝑇𝑏
3𝑇∗ − 3𝑇∗

𝑏
4
 (6) 

 

Applying Eq. (6) to Eq. (2) to get: 

 
𝜕𝑞𝑟

𝜕𝑦∗ =
−16𝜎𝑠𝑇𝑏

∗3

3𝐾𝑒

𝜕2𝑇∗

𝜕𝑦∗2  (7) 

 

There are established non-dimensional functions given 

below: 

 

𝑢 =
𝑢∗

𝜈
, 𝑦 =

𝑦∗

𝜈
, 𝑡 =

𝑡∗

𝜈2 , 𝜃 =
𝑇∗−𝑇𝑜

𝑇𝑏−𝑇𝑜
  (8) 

 

Eqns (1) and (2) in their dimensionless version become (1) 

and (2) by employing Eq. (8). 

 
𝜕𝑢

𝜕𝑡
=

𝜕2𝑢

𝜕𝑦2 −
1

𝐾𝜌
𝑢 − 𝑚𝑢  (9) 

 
𝜕𝜃

𝜕𝑡
= 𝛼(1 +

4

3
𝑅)

𝜕2𝜃

𝜕𝑦2 + (𝑟 + 𝛽) − (𝑟 − 𝜆)𝜃  (10) 

 

where, 𝜁 = 𝑎2𝜔𝑏 , 𝜂 =
𝑄𝑚𝑎2

𝜌𝑏𝐶𝑝𝑏
, 𝛼 =

𝐾𝑏

𝜌𝑏𝐶𝑝𝑏
, 𝛽 =

𝜀𝑎2

𝐾𝜌𝑏𝐶𝑝𝑏(𝑇𝑏−𝑇0)
. 

 

 

3. NUMERICAL APPROACH 

 

The modified non-dimensional Eqns. (9) and (10) are 

answered using the SRM (10). By using the Gauss-Siedel 

relaxation strategy, this iterative method linearizes and 

decouples sets of nonlinear differential equations. After that, 

the Chebyshev pseudo-spectral method developed [15-17] is 

used to discretize the linear system of equations. The non-

linear functions are presummated to exist at the previous step 

(r) whereas the linear functions are calculated at the most 

recent iteration step (r+1). 

This approach (SRM) is special since it can resolve both 

ordinary and partial differential equations. Eqns. (11) and (12) 

are obtained by applying the SRM to the modified momentum 

and energy Eqns. (9) and (10). 
 

𝜕𝑢𝑟+1

𝜕𝑡
=

𝜕2𝑢𝑟+1

𝜕𝑦2 −
1

𝐾𝑝
𝑢𝑟+1 − 𝑚𝑢𝑟+1  (11) 

 

𝜕𝜃𝑟+1

𝜕𝑡
= 𝛼 (1 +

4

3
𝑅)

𝜕2𝜃𝑟+1

𝜕𝑦2
+ (𝜁 + 𝛽) − (𝜁

− 𝜂)𝜃𝑟+1 

(12) 

 

Depending on: 
 

𝑢𝑟+1(𝑦, 0) = 37∘𝐶, 𝑢𝑟+1(0, 𝑡) = 37∘𝐶 (13) 

 

𝜃𝑟+1(𝑦, 0) = 37∘𝐶, 𝜃𝑟+1(0, 𝑡) = 37∘𝐶 (14) 

 

Setting: 𝑎0,𝑟 =
1

𝐾𝑝
, 𝑎1,𝑟 = −𝑚, 𝑏0,𝑟 = 𝛼(1 +

4

3
𝑅), 𝑏1,𝑟 =

−( 𝜁 − 𝜂); 𝑏2,𝑟 = (𝛽 + 𝜁). 

Substituting the above coefficient parameters into Eq. (11) 

and Eq. (12) to obtain: 
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𝜕𝑢𝑟+1

𝜕𝑡
=

𝜕2𝑢𝑟+1

𝜕𝑦2 + 𝑎0,𝑟𝑢𝑟+1 + 𝑎1,𝑟𝑢𝑟+1  (15) 

 
𝜕𝜃𝑟+1

𝜕𝑡
= 𝑏0,𝑟

𝜕2𝜃𝑟+1

𝜕𝑦2 + 𝑏1,𝑟𝜃𝑟+1 + 𝑏2,𝑟  (16) 

 

Subject to Eq. (13) and Eq. (14). 

We now define Gauss-Lobatto points according to [15-17] 

as:  

 

𝛴𝑗 = 𝑐𝑜𝑠
𝜋𝑗

𝑁
, 𝑗 = 0,1,2, . . . , 𝑁; 1 ≤ 𝜉 ≤ −1  (17) 

 

The physical neighborhood's realm is transformed from [0,1] 

to [-1,1], where N denotes the number of collocation points. 

An early hunch on the boundary conditions is made as 

follows: 

 

𝑢0(𝑦, 𝑡) = 𝜃0(𝑦, 𝑡) = 37∘𝐶 + 𝑒−𝜂 − 1 (18) 

 

As a result, the dimensionless Eqns. (9) and (10) were 

repeatedly solved for the unknown functions starting with the 

initial approximation defined in Eqns. (8) and (18). Whenever 

r=0, 1, 2, the iterative schemes (15) and (16) are solved 

iteratively for ur+1(y, t) and θr+1(y, t) respectively. The y-path 

equations will be discretized using the Chebyshev spectral 

collocation method, and the implicit difference method will be 

utilized to center the mid-point between tn+1 and tn. 

The middle point is indicated by: 

 

𝑡𝑛+
1

2 =
𝑡𝑛+1+𝑡𝑛

2
  (19) 

 

Thus, using the centering point about 𝑡𝑛+
1

2  to the 

unidentified functions, say u(y, t) and θ(y, t) with its associated 

derivative as noted [15] and defined in this study as : 

 

𝑢(𝑦𝑗 , 𝑡𝑛+
1

2) = 𝑢
𝑗

𝑛+
1

2 =
𝑢𝑗

𝑛+1

2
, (

𝜕𝑢

𝜕𝑡
)𝑛+

1

2 =
𝑢𝑗

𝑛+1−𝑢𝑗
𝑛

𝛥𝑡
  (20) 

 

𝜃(𝑦𝑗 , 𝑡𝑛+
1

2) = 𝜃
𝑗

𝑛+
1

2 =
𝜃𝑗

𝑛+1

2
, (

𝜕𝜃

𝜕𝑡
)𝑛+

1

2 =
𝜃𝑗

𝑛+1−𝜃𝑗
𝑛

𝛥𝑡
  (21) 

 

We then use differential matrix D to apply the idea of the 

spectral collocation approach to estimate derivatives of 

unidentified variables given in Eqns. (22) and (23): 

 
𝑑𝑟𝑢

𝑑𝑦𝑟 = ∑ 𝐷𝑖𝐾
𝑟𝑁

𝐾=0 𝑢(𝜀𝐾) = 𝐷𝑟𝑢, 𝑖 = 0,1, . . . , 𝑁  (22) 

 
𝑑𝑟𝜃

𝑑𝑦𝑟 = ∑ 𝐷𝑖𝐾
𝑟𝑁

𝐾=0 𝜃(𝜀𝐾) = 𝐷𝑟𝜃, 𝑖 = 0,1, . . . , 𝑁  (23) 

 

Applying Eqns. (22) and (23) on (15) and (16) before 

applying the finite difference scheme to obtain: 

 
𝑑𝑢𝑟+1

𝑑𝑡
= 𝑢𝑟+1𝐷2 + 𝑎0,𝑟𝑢𝑟+1 + 𝑎1,𝑟𝑢𝑟+1  (24) 

 
𝑑𝜃𝑟+1

𝑑𝑡
= 𝑏0,𝑟𝐷2𝜃𝑟+1 + 𝑏1,𝑟𝜃𝑟+1 + 𝑏2,𝑟 + 𝑏3,𝑟  (25) 

 

Subject to: 

 

𝑢𝑟+1(𝑥0, 𝑡) = 37∘𝐶, 𝑢𝑟+1(𝑥𝑁𝑥, 𝑡) = 37∘𝐶 (26) 

 

𝜃𝑟+1(𝑥0, 𝑡) = 37∘𝐶, 𝜃𝑟+1(𝑥𝑁𝑥, 𝑡) = 37∘𝐶 (27) 

Simplifying Eqns. (24) and (24) to obtain: 

 
𝑑𝑢𝑟+1

𝑑𝑡
= (𝐷2 + 𝑎0,𝑟 + 𝑎1,𝑟)𝑢𝑟+1  (28) 

 
𝑑𝜃𝑟+1

𝑑𝑡
= (𝑏0,𝑟𝐷2 + 𝑏1,𝑟)𝜃𝑟+1 + 𝑏2,𝑟   (29) 

 

We proceed to apply the finite difference scheme to obtain: 

 

(
𝑢𝑟+1

𝑛+1−𝑢𝑟+1
𝑛

𝛥𝑡
) = (𝐷2 + 𝑎𝑜,𝑟 + 𝑎1,𝑟)(

𝑢𝑟+1
𝑛+1+𝑢𝑟+1

𝑛

2
)  (30) 

 

(
𝜃𝑟+1

𝑛+1−𝜃𝑟+1
𝑛

𝛥𝑡
) = (𝑏𝑜,𝑟𝐷2 + 𝑏1,𝑟)(

𝜃𝑟+1
𝑛+1+𝜃𝑟+1

𝑛

2
) + 𝑏2,𝑟  (31) 

 

Simplifying further to obtain: 

 

(
1

𝛥𝑡
) 𝑢𝑟+1

𝑛+1 − (
1

𝛥𝑡
) 𝑢𝑟+1

𝑛 = (
𝐷2+𝑎𝑜,𝑟+𝑎1,𝑟

2
)𝑢𝑟+1

𝑛+1 +

(
𝐷2+𝑎𝑜,𝑟+𝑎1,𝑟

2
)𝑢𝑟+1

𝑛   
(32) 

 

(
1

𝛥𝑡
) 𝜃𝑟+1

𝑛+1 − (
1

𝛥𝑡
) 𝜃𝑟+1

𝑛 = (
𝑏𝑜,𝑟𝐷2+𝑏1,𝑟

2
)𝜃𝑟+1

𝑛+1 +

(
𝑏𝑜,𝑟𝐷2+𝑏1,𝑟

2
)𝜃𝑟+1

𝑛 + 𝑏2,𝑟  
(33) 

 

Upon further simplification, 

 

(
1

𝛥𝑡
) 𝑢𝑟+1

𝑛+1 − (
𝐷2+𝑎𝑜,𝑟+𝑎1,𝑟

2
) 𝑢𝑟+1

𝑛+1 = (
1

𝛥𝑡
)𝑢𝑟+1

𝑛 +

(
𝐷2+𝑎𝑜,𝑟+𝑎1,𝑟

2
)𝑢𝑟+1

𝑛   
(34) 

 

(
1

𝛥𝑡
) 𝜃𝑟+1

𝑛+1 − (
𝑏𝑜,𝑟𝐷2+𝑏1,𝑟

2
) 𝜃𝑟+1

𝑛+1 = (
1

𝛥𝑡
)𝜃𝑟+1

𝑛 +

(
𝑏𝑜,𝑟𝐷2+𝑏1,𝑟

2
)𝜃𝑟+1

𝑛 + 𝑏2,𝑟  
(35) 

 

Simplifying further to obtain: 

 

[(
1

𝛥𝑡
) − (

𝐷2+𝑎𝑜,𝑟+𝑎1,𝑟

2
)] 𝑢𝑟+1

𝑛+1 = [(
1

𝛥𝑡
) +

(
𝐷2+𝑎𝑜,𝑟+𝑎1,𝑟

2
)]𝑢𝑟+1

𝑛 + 𝐾1  
(36) 

 

[(
1

𝛥𝑡
) − (

𝑏𝑜,𝑟𝐷2+𝑏1,𝑟

2
)] 𝜃𝑟+1

𝑛+1 = [(
1

𝛥𝑡
) +

(
𝑏𝑜,𝑟𝐷2+𝑏1,𝑟

2
)]𝜃𝑟+1

𝑛 + 𝐾2  
(37) 

 

Hence, the iterative scheme becomes: 

 

𝑃1𝑢𝑟+1
𝑛+1 = 𝑄1𝑢𝑟+1

𝑛 + 𝐾1 (38) 

 

𝑃2𝜃𝑟+1
𝑛+1 = 𝑄2𝜃𝑟+1

𝑛 + 𝐾2 (39) 

 

where,  

 

𝑃1= [(
1

𝛥𝑡
) − (

𝐷2 + 𝑎𝑜,𝑟 + 𝑎1,𝑟

2
)] , 𝑄1

= [(
1

𝛥𝑡
) + (

𝐷2 + 𝑎𝑜,𝑟 + 𝑎1,𝑟

2
)] , 𝐾1 = 0 

𝑃2 = [(
1

𝛥𝑡
) − (

𝑏𝑜,𝑟𝐷2 + 𝑏1,𝑟

2
)] , 𝑄2

= [(
1

𝛥𝑡
) + (

𝑏𝑜,𝑟𝐷2 + 𝑏1,𝑟

2
)] , 𝐾2 = 𝑏2,𝑟 
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4. DISCUSSION OF RESULTS 

 
This study examined the effects of magnetic field strength 

on hyperthermia therapy using the SRM. The impacts of 

pertinent flow parameters were graphically depicted in order 

to study the model's physics. The Gauss Seidel methodology 

is used in this work's iterative numerical method to decouple 

the system's equations. 

Figure 1 illustrates the impact of changing heat source 

characteristics on the temperature field. Membrane pumps 

cause the tissue to heat up, providing both the energy needed 

for chemical processes and for active transport. Convective 

heat diffusion throughout the blood and the tissue of the 

forearm is the crucial area where heat source in tissue plays a 

significant role. The blood works as a heat sink in a heated 

steady state of biased immersion in water at 38℃, transporting 

heat away from the limb; the quantity of heat gained from the 

area is minimal. When a result, the fluid temperature decreases 

as the heat source parameter is increased. 

The effect of the heat source on velocity is seen in Figure 2. 

As the heat source parameter is increased, it is seen that the 

velocity plot expands. 

Figure 3 shows that the temperature distribution increases 

along with the blood perfusion parameter. It suggests that fluid 

velocity approaches its maximum as blood perfusion rises. 

This indicates that biological tissues rise and become linear at 

ζ=0.3, whereas they fall and become linear at ζ=0.1. Figure 4 

demonstrates that raising the blood perfusion rate causes an 

increase in the fluid temperature of natural tissue for ζ=0.1, 0.2, 

and 0.3. By blocking the iliac artery, a pressure cuff is utilized 

to manage perfusion pressure. Direct measurement of blood 

flow temperature and velocity profile is the most common 

method for determining blood flow. It is important to 

understand that blood viscosity reduces at high temperatures, 

which causes the temperature plot to rise. The effect of a 

magnetic field on a temperature plot is seen in Figure 5. The 

increase in magnetic field does not seem to have any impact 

on the temperature profile. The impact of the magnetic field 

on the velocity plot is seen in Figure 6. It is demonstrated that 

as the magnetic parameter is raised, the velocity profile 

increases. This only shows that the Lorentz force, which 

causes the fluid velocity to decrease, is zero at the maximum 

magnetic value. This indicates that the velocity plot is strongly 

affected by the existence and application of the magnetic field 

parameter. The temperature field in Figure 7 is unaffected by 

the reaction of raising the permeability term. Figure 8 depicts 

how the porosity term responds to the velocity plot. As the 

porosity parameter rises, the velocity profile quickens. This is 

brought on by the increased movement of blood cells through 

the porous tissue. Figure 9 depicts the relationship between the 

radiation and the velocity plot. Raising the radiation term is 

shown to have no impact on the velocity plot. Figure 10 

depicts how radiation affected the temperature plot. The 

temperature plot increases in response to increased radiation. 

The radiation parameter becomes more relevant at higher 

temperatures. Figure 11 illustrates how heat conductivity 

affects the velocity profile. It has been observed that the 

velocity profile increases along with the increase in heat 

conductivity. 

 

 
 

Figure 1. The impact of the heat source on the temperature 

graph 

 

 
 

Figure 2. The impact of heat source on velocity graph 

 

 
 

Figure 3. The impact of blood perfusion on temperature 

graph 

 

 
 

Figure 4. The impact of blood perfusion parameter on 

velocity graph 
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Figure 5. The impact of magnetic field on temperature graph 

 

 
 

Figure 6. The impact of magnetic field on velocity graph 

 

 
 

Figure 7. The impact of the porosity parameter on 

temperature graph 

 

 
 

Figure 8. The impact of porosity parameter on velocity graph 

 
 

Figure 9. The impact of radiation parameter on velocity 

graph 

 

 
 

Figure 10. The impact of radiation parameter on temperature 

graph 

 

 
 

Figure 11. The impact of thermal conductivity on velocity 

graph 

 

 

5. CONCLUSIONS 

 

Under the influence of the porosity term, a numerical 

investigation of the impact of radiative flux caused by 

magnetic and infrared hyperthermia has been conducted. 

While studying a heat source to use as an external device to 

intensify the temperature, we considered the blood tissue at a 

temperature of 37℃. 

The following are the main conclusions reached following 

a thorough analysis of the issue. The temperature degrades as 

the heat source's value increases. When the temperature is high, 

the blood viscosity decreases, indicating an increase in the 

temperature plot. It was discovered that a greater magnetic 

value degenerated the velocity plot but had no bearing on the 
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temperature profile while the blood cell's travel is accelerated 

by the permeable tissue. 

It was discovered that increased thermal radiation increased 

the fluid temperature profile but had no impact on the velocity 

profile. 
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NOMENCLATURE 

 

ζ Blood Perfusion 

ρb Ensity of Blood 

Cpd 
Specific Heat of Blood at Constant 

Temperature 

T Fluid Temperature 

Kb Thermal Conductivity of Blood  

ɷb Blood Volumetric Perfusion Rate 

υ Blood Perfusion Rate terms 

σ Stefan-Boltzmann Constant 

B0 Magnetic field constant 

t Time 

y Dimensionless Radial Coordinate 

K Thermal Conductivity 

ρ Fluid Density 

Cp Specific Heat at Constant Temperature 

Tb Temperature of Blood 

Qm Heat Source due to Metabolic Heat 
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Generation in the Tissue 

To Reference Temperature (Tb>To) 

qr Radioactive Heat Flux 

µ Coefficient of Viscosity 

a Antenna Constant 

σs Macroscopic Scattering Cross-section 

ke Mean Absorpion Coefficient  

Cb Specific Heat of Blood 

R Radiation Parameters 

θ Dimensionless Temperature 

ε Porosity of the Tissue 

α Blood Thermal Conductivity Terms 

β Porosity Parameters 

r Spatial Coordinate 

η Heat Source Term 

Q Heat Source Term 

m Mass of Tissue 

Ec Eckert Number 

N Number of Collocation Points 

D Differential Matrix 
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