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In this paper, we apply to a class of partial differential equation the finite element 

method when the problem is involving the Riemann-Liouville fractional derivative for 

time and space variables on a bounded domain with bounded conditions. The studied 

equation is obtained from the standard time diffusion equation by replacing the first 

order time derivative by  for 0<<1 and for the second standard order space derivative 

by  for 1<<2 respectively. The existence of the unique solution is proved by the Lax-

Milgram Lemma. We present here three schemes to approximate numerically the time 

derivative and use the finite element method for the space derivative using the 

Hadamard finite part integral and the Diethlem's first degree compound quadrature 

formula, the second approach is based on the link between Riemann-Liouville and 

Caputo fractional derivative, when the third method was based on the approximation of 

the Riemann-Liouville by the Grunwald-Letnikov fractional derivative. For the 

approximation of the space fractional derivative, the finite element method is introduced 

for all the three approaches. Finally, to check the effectiveness of the three methods, a 

numerical example was given. 
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1. INTRODUCTION

We are interesting here by the existence of the unique 

solution of the Riemann-Liouville fractional derivative of the 

partial differential equations of the form. 

𝐷0
𝑅𝐿

𝑡
𝛼𝑢(𝑥, 𝑡) = 𝐷0

𝑅𝐿
𝑥
𝛽
𝑢(𝑥, 𝑡) + 𝑓(𝑥, 𝑡), 

(𝑥, 𝑡) ∈ 𝒪 ≔ [0,1] × [0, 𝑇] 
(1) 

under the initial and border conditions: 

𝑢(𝑥, 0) = 𝑢0(𝑥), 𝑥 ∈ Ω ≔ [0,1] (2) 

𝑢(0, 𝑡) = 𝑢(1, 𝑡) = 0, 𝑡 ∈ 𝐼 ≔ [0, 𝑇] (3) 

where, 0<<1 and 1<<2, T>0, 𝐷0
𝑅𝐿

𝑡
𝛼𝑢(𝑥, 𝑡) and 𝐷0

𝑅𝐿
𝑥
𝛽
𝑢(𝑥, 𝑡) 

denote the left Riemann-Liouville fractional derivative of 

order  and  respectively, 𝑓: Ω × 𝐼 → ℝ and 𝑢0: Ω → ℝ are

given functions. 

Fractional partial differential equations have many 

applications in various fields, for example electro-magnetic, 

viscoelastic mechanics, fractal media, mathematical biology, 

and chemistry and so on. Analytical solution of these problems 

has been studies using Fourier and Laplace transforms, 

Green's functions [1-7]. 

Some different numerical solution methods are proposed to 

resolve the space and time fractional partial differential 

equations [8-23].  

Meerschaert and Tadjeran [24] give a finite difference 

approximation to resolve the space fractional dispersion-

advection equation involving Riemann-Liouville fractional 

derivative. 

Zeng et al. [19] proposed two finite difference element 

methods to approximate the time-fractional sub diffusion 

equation with the Caputo fractional derivative. Li and Xu [25] 

proposed a finite difference spectral approximation method for 

the time-fractional derivative for diffusion equations. Zheng et 

al. [26] proposed a note on the finite element method for the 

space-fractional derivative for diffusion equation. Zheng et al. 

[21] proposed a novel high order for space-time spectral

method to the time-fractional derivative for Fokker-Planck

equation.

However, the references of the numerical and analysis 

methods for space-time fractional derivative for partial 

differential equations are less limited then numerical and 

analysis methods for the partial differential equations with 

only fractional derivative. Shen et al. [18] presented implicit 

and explicit difference approximation for the space-time 

Riesz-Caputo fractional derivative for diffusion-advection 

equation.  

Hejazi et al. [27] presented a finite volume method to 

resolve the time-space on two sides’ fractional derivative for 

dispersion-advection equation. 

In this paper, we study the existence of the unique solution 

of a partial differential equation class involving fractional 

derivative theoretically and numerically by the finite element 

method with three different time discretization methods: 

Hadamard-Diethlem quadrature formula, Riemann-Liouville 

and Caputo link and Grunwald-Letnikov approximation. A 

numerical example is given finally to verify the consistence of 

the theoretical and numerical results as conclusion. 
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2. PRELIMINARIES 
 

Here are some fractional integrals and fractional derivatives 

order definitions. 

 

Definition 2.1 For any positive integer 𝑛 and 𝑠 ∈ ]𝑛 − 1, 𝑛[, 
the fractional integration is defined by 

 

It
sv(t) =

1

Γ(s)
∫ (t − τ)s−1v(τ)dτ
t

0

, for all t ∈ [0, T] 

 

where, Γ(z) = ∫ xz−1e−xdx
+∞

0
is Euler’s gamma function and 

n is the integer part of s. 

 

Definition 2.2 For any positive integer n and 𝑠 ∈ ]𝑛 − 1, 𝑛[, 
the left fractional derivative is defined by: 

 

𝐷𝑡
𝑠

0
𝑅 𝑣(𝑡) =

1

Γ(𝑛 − 𝑠)

𝑑𝑛

𝑑𝑡𝑛
∫ (𝑡 − 𝜏)𝑛−𝑠−1𝑣(𝜏)𝑑𝜏
𝑡

0

 

 

and the right fractional derivative is defined by 

 

𝐷𝑡
𝑠

𝑡
𝑅 𝑣(𝑡) =

(−1)𝑛

Γ(𝑛 − 𝑠)

𝑑𝑛

𝑑𝑡𝑛
∫ (𝑡 − 𝜏)𝑛−𝑠−1𝑣(𝜏)𝑑𝜏
𝑇

𝑡

 

 

for all 𝑡 ∈ [0, 𝑇]. 
 

Definition 2.3 For any positive integer n and 𝑠 ∈ ]𝑛 − 1, 𝑛[, 
the Caputo fractional derivative is defined by 

 

𝐷0
𝑠𝐶 𝑣(𝑡) =

1

Γ(𝑛 − 𝑠)

𝑑

𝑑𝑡
∫ (𝑡 − 𝜏)𝑛−𝛼−1𝑣(𝜏)𝑑𝜏
𝑡

0

 

 

for all 𝑡 ∈ [0, 𝑇]. 
 

Definition 2.4 For any positive integer n and 𝑠 ∈ ]𝑛 − 1, 𝑛[, 
the Grunwald-Letnikov fractional derivative of a function 𝑢 is 

defined by 

 

𝐷𝑡
𝑠

0
𝐺𝐿 𝑢(𝑡) = lim

Δ𝑡→0

1

Δ𝑡s
∑𝛿𝑘

𝑠𝑢(𝑡𝑛−𝑘)

𝑛

𝑘=0

 

 

where, 𝛿𝑘
𝑠 =

(−1)𝑘Γ(𝑠+1)

Γ(𝑠+1−𝑘)Γ(𝑘+1)
. 

 

We introduce now some notations and definitions some 

functional spaces equipped with their norms, semi-norms and 

inner products, which are used hereafter. 

Let 𝛬 be a domain which may stand for I, 𝛺 and 𝒪. 𝐿2(𝛬) 
is the space of measurable function whose square is Lebesgue 

integral in 𝛬, his inner product and norm are defined by: 

 

(𝑢, 𝑣)Λ = ∫ 𝑢𝑣𝑑Λ
Λ

, ‖𝑢‖0,Λ = (𝑢, 𝑢)Λ

1
2  

 

for all 𝑢, 𝑣 ∈ 𝐿2(Λ). 
 

We define some functional spaces with their norms: 

 

𝐻1(Λ) = {𝑤 ∈ 𝐿2(Λ),
𝑑𝑤

𝑑𝑥
∈ 𝐿2(Λ)}, 

𝐻0
1(Λ) = {𝑤 ∈ 𝐿2(Λ), 𝑤|𝜕Λ},  

 

𝐻𝑚(Λ) = {𝑤 ∈ 𝐿2(Λ),
𝑑𝑘𝑤

𝑑𝑥𝑘
∈ 𝐿2(Λ), ∀𝑘 ≤ 𝑚}, 

 

where, the inner product and the corresponding norm of 

𝐻0
1(𝛬) is respectively define by: 

 

(𝑢, 𝑤)1 = (𝑢,𝑤) + (
𝑑𝑢

𝑑𝑥
,
𝑑𝑤

𝑑𝑥
) , ‖𝑤‖1 = (𝑤,𝑤)1

1 2⁄ . 

 

We use the standard norm of 𝐿2(𝛬) with the norm 

 

‖𝑤‖1 = (‖𝑤‖
2 + 𝑑 ‖

𝑑𝑤

𝑑𝑥
‖
2

)
1 2⁄

. 

 

Let 𝐻𝑚(𝛬) and 𝐻0
𝑚(𝛬) be the usual Sobolev spaces 

𝑊𝑚,2(𝛬) with usual norms denoted by ‖. ‖𝑚.𝛬:  

 

‖𝑤‖𝑚 = (∑‖
𝑑𝑘𝑤

𝑑𝑥𝑘
‖
0

2𝑚

𝑘=0

)

1 2⁄

. 

 

Let 𝐶0
∞(𝛬) be the smooth functions space with compact 

support in 𝛬. 

We also need to give some definition of some Sobolev 

spaces: For a non-negative real number s for the Sobolev space 

X with the norm ‖. ‖𝑋, let: 

 

𝐻𝑠(𝐼, 𝑋) = {𝑣; ‖𝑣(. , 𝑡)‖𝑋 ∈ 𝐻
𝑠(𝐼)} 

 

equipped with the norm 

 

‖𝑣‖𝐻𝑠(𝐼,𝑋) = ‖‖𝑣(. , 𝑡)‖𝑋‖𝑠,𝐼 .  

 

In particular, when X is 𝐻𝜎(Ω)or 𝐻0
𝜎(Ω), 𝜎 ≥ 0 the norm 

of the space HS (I, X) will be denoted by ‖. ‖𝜎,𝑠,𝒪. 

In the rest of this paper, while no confusion would arise 

about the domain symbols Ω , I or 𝒪  is omitted from the 

notation. 

Let 𝒬 = (𝑎, 𝑏) which may stand for I or 𝛺, we define the 

spaces: 

 

Definition 2.5 For any real s≥ 0, define the space 𝑙𝐻0
𝑠(𝒬) as 

the closure of the 𝐶0
∞(𝒬) with respect to the norm ‖. ‖ 𝑙𝐻0

𝑠(𝒬), 

that is: 

 

𝐻𝑙 𝑠(𝒬) = {𝑣; ‖𝑣‖
𝐻𝑙 𝑠(𝒬)

< ∞} 

 

with the norm 

 

‖𝑣‖
𝐻𝑠𝑙 (𝒬)

= (‖𝑣‖0,𝒬
2 + |𝑣|

𝐻𝑙 𝑠(𝒬)
2 )

1

2
 

 

and the semi-norm 

 

|𝑣|
𝐻𝑠𝑙 (𝒬)

= ‖ 𝐷𝑧
𝑠𝑅𝐿 𝑣‖

0,𝒬
. 

 

Definition 2.6 For any real s≥0, define the space 𝑟𝐻0
𝑠(𝒬) as 

the closure of the 𝐶0
∞(𝒬) with respect to the norm ‖. ‖ 𝑟𝐻0

𝑠(𝒬), 

that is:  
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𝐻𝑟 𝑠(𝒬) = {𝑣; ‖𝑣‖ 𝐻𝑟 𝑠(𝒬) < ∞} 

 

with the norm 

 

‖𝑣‖ 𝐻𝑠𝑟 (𝒬) = (‖𝑣‖0,𝒬
2 + |𝑣| 𝐻𝑟 𝑠(𝒬)

2 )

1

2
 

 

and the semi-norm 

 

|𝑣| 𝐻𝑠𝑟 (𝒬) = ‖ 𝐷𝑠𝑧
𝑅𝐿 𝑣‖0,𝒬 .  

 

In the above notation “l” and “r” are used to indicate the 

left and right fractional spaces and its corresponding norm and 

semi-norm. 

 

Definition 2.7 In the usual Sobolev space 𝐻0
𝑠(𝒬) , we also 

define the semi-norm  

 

|𝑣|𝐻0𝑠(𝒬)
∗ = (

( 𝐷𝑧
𝑠𝑅𝐿 𝑣, 𝐷𝑠𝑧

𝑅𝐿 𝑣)
𝒬

𝑐𝑜𝑠(𝜋𝑠)
)

1

2

 

 

for all 𝑣 ∈ 𝐻0
𝑠(𝒬). 

 

Lemma 2.1 For s>0, 𝑠 ≠ 𝑛 −
1

2
, the spaces 𝐻𝑙 𝑠(𝒬), 𝐻𝑟 𝑠(𝒬) 

and 𝐻0
𝑠(𝒬)  are equal in the sense their semi-norms are all 

equivalent to |𝑣|𝐻0𝑠(𝒬)
∗ . 

 

Lemma 2.2 For 0<s<2, s≠1,𝑤 ∈ 𝐻
𝑠

2 (𝒬), we have: 

 

𝐷𝑧
𝑠𝑅𝐿 𝑤 = 𝐷𝑧

𝑠

2𝑅𝐿 𝐷𝑧

𝑠

2𝑅𝐿 𝑤. 
 

Lemma 2.3 For 0<s<2, s≠1, 𝑤, 𝑣 ∈ 𝐻
𝑠

2 (𝒬), we have: 

 

( 𝐷𝑧
𝑠𝑅𝐿 𝑤(𝑧), 𝑣(𝑧))

𝒬
= ( 𝐷𝑧

𝑠

2𝑅𝐿 𝑤(𝑧), 𝐷
𝑠

2
𝑧

𝑅𝐿 𝑣(𝑧))
𝒬

, 

( 𝐷𝑠𝑧
𝑅𝐿 𝑤(𝑧), 𝑣(𝑧))

𝒬
= ( 𝐷

𝑠

2
𝑧

𝑅𝐿 𝑤(𝑧), 𝐷𝑧

𝑠

2𝑅𝐿 𝑣(𝑧))
𝒬

. 

 

 

3. EXISTENCE AND UNIQUENESS OF THE 

SOLUTION 
 

We define the space 

 

𝐵𝑠,𝜎(𝒪) = 𝐻𝑠(𝐼, 𝐿2(Ω))⋂𝐿2(𝐼, 𝐻0
𝜎(Ω)) 

 

with the norm 

 

‖𝑣‖𝐵𝑠,𝜎 = (‖𝑣‖𝐻𝑠(𝐼;𝐿2(Ω))
2 + ‖𝑣‖𝐿2(𝐼,𝐻0𝜎(Ω))

2 )

1

2
,  

 

where, 𝒪 = Ω × 𝐼. 
The weak formulation of our problem (1)-(3) is: 

for 𝑓 ∈ 𝐿2(𝛺), find 𝑢 ∈ 𝐵
𝛼

2
,
𝛽

2(𝒪), such that: 

𝒜(𝑢, 𝑣) = ℱ(𝑣) (4) 

 

for all 𝑣 ∈ 𝐵𝛼,𝛽(𝒪), where 𝒜(. , . ) is the bilinear form given 

by: 

 

𝒜(𝑢, 𝑣) = ( 𝐷𝑡
𝛼

0
𝑅𝐿 𝑢, 𝑣)𝐿2(𝒪) + ( 𝐷𝑥

𝛽
0
𝑅𝐿 𝑢, 𝑣)

𝐿2(𝒪)
, 

= ( 𝐷𝑡

𝛼

2
0
𝑅𝐿 𝑢, 𝐷𝑇

𝛼

2
𝑡

𝑅𝐿 𝑣)
𝐿2(𝒪)

+ ( 𝐷𝑥

𝛽

2
0
𝑅𝐿 𝑢, 𝐷𝑥

𝛽

2
0
𝑅𝐿 𝑣)

𝐿2(𝒪)

 

 

and the functional ℱ(. ) is given by: 

 

ℱ(𝑣) = (𝑓, 𝑣)𝐿2(𝒪). 

 

Theorem 3.1 For 0<α<1and 𝑓 ∈ 𝐿2(𝒪), the problem (1)-(3) 

has a unique solution. Furthermore, we have the following 

stability result: 

 
‖𝑢‖

𝐵
𝛼
2,
𝛽
2 (𝒪)

≤ 𝐶‖𝑓‖𝐿2(𝒪). (5) 

 

Proof: The existence of the unique solution is done by the 

well-known Lax-Milgram Lemma. It consists to prove the 

cœrcivity and continuity of the bilinear for 𝒜  and the 

continuity of the linear functional ℱ which is easy to prove. 

1. The cœrcivity: Using above Lemmas, ∀𝑣 ∈ 𝐵
𝛼

2
,
𝛽

2(𝒪),  we 

have: 

 

𝒜(𝑣, 𝑣) = ( 𝐷𝑡

𝛼

2
0
𝑅𝐿 𝑣, 𝐷𝑇

𝛼

2
𝑡

𝑅𝐿 𝑣)
𝐿2(𝒪)

+ ( 𝐷𝑥

𝛽

2
0
𝑅𝐿 𝑣, 𝐷𝑥

𝛽

2
0
𝑅𝐿 𝑣)

𝐿2(𝒪)

= cos (
𝜋𝛼

2
)

+ cos (
𝜋𝛽

2
) ( 𝐷𝑥

𝛽

2
0
𝑅𝐿 𝑣, 𝐷𝑥

𝛽

2
0
𝑅𝐿 𝑣)

𝐿2(𝒪)

≥ 𝐶‖𝑣‖
𝐵
𝛼
2,
𝛽
2 (𝒪)

. 

 

2. The continuity: ∀𝑣 ∈ 𝐵
𝛼

2
,
𝛽

2(𝒪), we have: 

 

|𝒜(𝑢, 𝑣)| ≤ ‖ 𝐷𝑡

𝛼

2
0
𝑅𝐿 𝑢‖

𝐿2(𝒪)
‖ 𝐷𝑇

𝛼

2
𝑡

𝑅𝐿 𝑣‖
𝐿2(𝒪)

+ ‖ 𝐷𝑥

𝛽

2
0
𝑅𝐿 𝑢‖

𝐿2(𝒪)

‖ 𝐷𝑥

𝛽

2
0
𝑅𝐿 𝑣‖

𝐿2(𝒪)

≤ ‖𝑢‖
𝐻
𝛼
2(𝐼;𝐿2(Ω))

‖𝑣‖
𝐻
𝛼
2(𝐼;𝐿2(Ω))

+ ‖𝑢‖
𝐻
𝛽
2(𝐼;𝐿2(Ω))

‖𝑣‖
𝐻
𝛽
2(𝐼;𝐿2(Ω))

≤ ‖𝑢‖
𝐵
𝛼
2,
𝛽
2(𝒪)

‖𝑣‖
𝐵
𝛼
2,
𝛽
2(𝒪)

. 

 

By the Lax-Milgram Lemma, the problem (1)-(3) has a 

unique solution in 𝐵
𝛼

2
,
𝛽

2(𝒪).  
To prove the stability, we take v=u in (4) and using the 

cœrcivity result we get: 

 

‖𝑢‖
𝐵
𝛼
2,
𝛽
2 (𝒪)

≤ 𝐶‖𝑓‖𝐿2(𝒪). 

 

The proof is complete. 
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4. FINITE ELEMENT METHOD 

 

4.1 Nodal base functions and their fractional derivatives 

properties 

 

Let Ω=[0,1] be a finite domain. Let Ωh be a uniform 

partition of Ω, which is given by: 

 

0 = 𝑥0 < 𝑥1 < ⋯ < 𝑥𝑚−1 < 𝑥𝑚 = 1 

 

where, m is a positive integer. ℎ =
1

𝑚
= 𝑥𝑖 − 𝑥𝑖−1and each 

Ωi = [𝑥𝑖−1 − 𝑥𝑖] for i=1,2,…, m. 

 

We also define the space Sh as the set of piecewise-linear 

polynomial define on Ωh. 

 

𝑆ℎ = {𝑣; 𝑣|Ωi ∈ 𝑃1(Ωi), {𝑣} ∈ 𝐶(Ω)}, 

 

where, 𝑃1(𝛺𝑖) is the space of linear polynomial define on Ωi.  

 

The nodal base functions 𝜙𝑖, 𝑖 = 0,1, … ,𝑚 of Sh are given 

as 

 

𝜙𝑖 =

{
 
 

 
 
𝑥 − 𝑥𝑖

ℎ
,              𝑥 ∈ [𝑥𝑖−1, 𝑥𝑖],

𝑥𝑖+1 − 𝑥

ℎ
,          𝑥 ∈ [𝑥𝑖 , 𝑥𝑖+1],

0,                       𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒   

 

 

and 
 

𝜙0 = {

𝑥1 − 𝑥

ℎ
,          𝑥 ∈ [𝑥0, 𝑥1],

0,                       𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒,
 

𝜙𝑚 = {

𝑥 − 𝑥𝑚−1
ℎ

,          𝑥 ∈ [𝑥𝑚 , 𝑥𝑚−1],

0,                       𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒.
 

 

Lemma 4.1 For i=1, 2,…, m-1, we have: 

 

(𝜙𝑖(𝑥), 𝜙𝑗(𝑥)) = {
1, |𝑗 − 1| = 1,                 
4, 𝑗 = 𝑖, 𝑗 = 0,1,2, … ,𝑚,
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.                  

 

 

Lemma 4.2 For i=1, 2,…, m-1 and 0 < 𝜆 < 1, we have: 
 

𝐷𝑥
𝜆𝑅𝐿 𝜙𝑖(𝑥)

= 𝜇

{
 
 

 
 
0,                                                          𝑎 ≤ 𝑥 ≤ 𝑥𝑖−1,

(𝑥 − 𝑥𝑖−1)
1−𝜆,                                    𝑥𝑖−1 ≤ 𝑥 ≤ 𝑥𝑖 ,

(𝑥 − 𝑥𝑖−1)
1−𝜆 − 2(𝑥 − 𝑥𝑖)

1−𝜆 ,       𝑥𝑖 ≤ 𝑥 ≤ 𝑥𝑖+1,

(𝑥 − 𝑥𝑖−1)
1−𝜆 − 2(𝑥 − 𝑥𝑖)

1−𝜆 + (𝑥 − 𝑥𝑖+1)
1−𝜆,   

                                                              𝑥𝑖+1 ≤ 𝑥 ≤ 𝑏,

 

 

where, 𝜇 =
1

ℎΓ(2−𝜆)
. 

 

Lemma 4.3 For i=1, 2,…, m-1, we have: 

 

∫ 𝐷𝑥
𝜆𝑅𝐿 𝜙𝑗(𝑥)𝑑𝑥

𝑥𝑖

𝑥𝑖−1

= 𝜅. 𝑝𝑖,𝑗
(1), 

∫ 𝐷𝑥
𝜆𝑅𝐿 𝜙𝑗(𝑥)𝑑𝑥

𝑥𝑖+1

𝑥𝑖

= 𝜅. 𝑝𝑖,𝑗
(2)

 

 

where, 

 

𝑝𝑖,𝑗
(1) = 𝜅

{
 

 
𝑐𝑖−𝑗 ,                 𝑗 ≤ 𝑖 − 2,

22−𝜆 − 3, 𝑗 = 𝑖 − 1,
1,                       𝑗 = 𝑖,        
0,                       𝑗 ≥ 𝑖 + 1 

 

 

and 

 

𝑝𝑖,𝑗
(2) = 𝜅

{
 

 
𝑐𝑖−𝑗+1,              𝑗 ≤ 𝑖 − 1,

22−𝜆 − 3, 𝑗 = 𝑖,         
1,                       𝑗 = 𝑖 + 1,   
0,                       𝑗 ≥ 𝑖 + 2    

 

 

where, 𝜅 =
ℎ
1−𝜆

Γ(3−𝜆)
 and  

 

𝑐𝑖 = −(𝑖 − 2)2−𝜆 + 3(𝑖 − 1)2−𝜆 − 3𝑖2−𝜆 + (𝑖 + 1)2−𝜆. 

 

4.2 The General Time Discretization Scheme (GTDS) 
 

We can rewrite the system (1)-(3) as: 

 

𝐷0
𝑅𝐿

𝑡
𝛼[𝑢(𝑡) − 𝑢0] + 𝐴𝑢(𝑡) = 𝑓(𝑡) (6) 

 

where, 𝐴 = 𝐷0 𝑥
𝛽

. 

Consider that the fractional Riemann-Liouville derivative 

can be written in the form of a finite-part integral: 
 

𝐷𝑡
𝛼

0
𝑅𝐿 𝑢(𝑡) =

1

𝛤(−𝛼)
∫

𝑢(𝜏)

(𝑡 − 𝜏)1+𝛼
𝑑𝜏

𝑡

0

 

 

where, this integral can be evaluated as a Hadamard finite part 

integral.  

Let us consider 𝑡𝑗 = 𝑗 𝑛⁄ , 𝑗 = 0,… , 𝑛 a partition of [0,1], 

then we have: 

 

𝐷𝑡
𝛼

0
𝑅𝐿 [𝑢 − 𝑢0](𝑡𝑗) =

𝑡𝑗
−𝛼

𝛤(−𝛼)
∫ 𝑔(𝑤)𝑤−1−𝛼𝑑𝑤
1

0

 

 

where, 𝑔(𝑤) = 𝑢(𝑡𝑗 − 𝑡𝑗𝑤) − 𝑢(0). 

We use now the Diethelm's first degree compound 

quadrature formula with equidistant nodes 0, 1 𝑗⁄ , 2 𝑗⁄ , … ,1 to 

obtain the following approximation of the fractional derivative: 
 

∫ 𝑔(𝑤)𝑤−1−𝛼𝑑𝑤
1

0

=
𝑡𝑗
−𝛼

𝛤(−𝛼)
∑𝛼𝑘𝑗𝑔 (

𝑘

𝑗
)

𝑗

𝑘=0

+ 𝑅𝑗(𝑔) (7) 

 

where, the remainder term 𝑅𝑗(𝑔) satisfy: 

 

‖𝑅𝑗(𝑔)‖ ≤ 𝐶𝑗
𝛼−2𝑠𝑢𝑝0≤𝑡≤𝑇‖𝑔′′(𝑡)‖ 

 

and the weights 𝛼𝑘𝑗 (for 𝑗 ≥ 1) are given by: 

 

𝛼𝑘𝑗 =
𝑗𝛼

𝛼(1 − 𝛼)

{
 
 

 
 
−1,                                       for 𝑘 = 0,

2𝑘1−𝛼 − (𝑘 − 1)1−𝛼 − (𝑘 + 1)1−𝛼 ,
                         for 𝑘 = 1,2, … , 𝑗 − 1,

(𝛼 − 1)𝑘−𝛼 − (𝑘 − 1)1−𝛼 + 𝑘1−𝛼 ,
                                             for 𝑘 = 𝑗.

 

 

So (7) can be reducing to: 
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𝐷𝑡
𝛼

0
𝑅𝐿 [𝑢 − 𝑢0](𝑡𝑗)

=
Δ𝑡−𝛼

𝛤(2 − 𝛼)
∑𝛽𝑘𝑗[𝑢(𝑡𝑗 − 𝑡𝑘)

𝑗

𝑘=0

− 𝑢(0)] +
𝑡−𝛼

𝛤(−𝛼)
𝑅𝑗(𝑔) 

(8) 

where, 

 

𝛽𝑘𝑗 =

{
 
 

 
 
1,                                            for 𝑘 = 0,

−2𝑘1−𝛼 + (𝑘 − 1)1−𝛼 + (𝑘 + 1)1−𝛼 ,
                            for  𝑘 = 1,2, … , 𝑗 − 1,

−(𝛼 − 1)𝑘−𝛼 + (𝑘 − 1)1−𝛼 − 𝑘1−𝛼 ,
                                                 for 𝑘 = 𝑗.

 

 

for t=tj, (8) is given for j=0, …, n as: 

 

Δ𝑡−𝛼

𝛤(2 − 𝛼)
∑𝛽𝑘𝑗[𝑢(𝑡𝑗 − 𝑡𝑘) − 𝑢(0)]

𝑗

𝑘=0

+ 𝐴𝑢(𝑡𝑗)

= 𝑓(𝑡𝑗) −
𝑡−𝛼

𝛤(−𝛼)
𝑅𝑗(𝑔). 

(9) 

 

Noting 𝑢𝑗  the approximation of 𝑢(𝑡𝑗) and 𝑓(𝑡𝑗) = 𝑓𝑗 , so 

we have: 

 

∑𝛽𝑘𝑗

𝑗

𝑘=0

(𝑢𝑗−𝑘 − 𝑢0) + 𝑝𝐴𝑢𝑗 = 𝑝𝑓𝑗 (10) 

 
where, 𝑝 = Δ𝑡αΓ(2 − α). 

The weak formulation of the problem (1)-(3) can also 

given by: 

 

( 𝐷𝑡
𝛼

0
𝑅𝐿 𝑢, 𝑣) + ( 𝐷𝑥

𝜆
0
𝑅𝐿 𝑢,

𝜕𝑣

𝜕𝑥
𝑣) = (𝑓, 𝑣), 0 < 𝜆 < 1. (11) 

 

So the semi-discretization is: 

 

(𝑢𝑗 , 𝑣) + 𝑝 ( 𝐷𝑥
𝜆

0
𝑅𝐿 𝑢𝑗 ,

𝜕𝑣

𝜕𝑥
)

= −∑𝛽𝑘𝑗

𝑗

𝑘=0

(𝑢𝑗−𝑘, 𝑣) + 𝑝(𝑓𝑗, 𝑣)

+∑𝛽𝑘𝑗

𝑗

𝑘=0

(𝑢0, 𝑣). 

(12) 

 

To get the full discretization, we set 𝑢𝑗 = ∑ 𝑢𝑠
𝑗
𝜙𝑠(𝑥)

𝑚
𝑠=0 , 

and choose every test function 𝑣 to be 𝜙𝑖 , 𝑖 = 1, … ,𝑚 − 1 in 

(12), we get: 

 

∑𝑢𝑠
𝑗(𝜙𝑠, 𝜙𝑖)

𝑚

𝑠=0

+ 𝑝∑𝑢𝑠
𝑗

𝑚

𝑠=0

( 𝐷𝑥
𝜆𝜙𝑠0

𝑅𝐿 ,
𝜕𝜙𝑖
𝜕𝑥
)

= 𝑝(𝑓𝑗 , 𝜙𝑖) −∑𝛽𝑘𝑗

𝑗−1

𝑘=0

∑𝑢𝑠
𝑗−𝑘(𝜙𝑠, 𝜙𝑖)

𝑚

𝑠=0

+∑𝛽𝑘𝑗

𝑗−1

𝑘=0

(𝑢0, 𝜙𝑖) 

 
for 𝑖 = 1,… ,𝑚 − 1. 

Applying Lemma 4.1 and Lemma 4.3, we obtain: 

 

ℎ

6
(𝑢𝑖−1

𝑗
+ 4𝑢𝑖

𝑗
+ 𝑢𝑖+1

𝑗
) + 𝑟 [∑(𝑝𝑠𝑖

(1) − 𝑝𝑠𝑖
(2))𝑢𝑠

𝑗

𝑚

𝑠=0

]

= −
ℎ

6
∑𝛽𝑘𝑗(𝑢𝑖−1

𝑗
+ 4𝑢𝑖

𝑗
+ 𝑢𝑖+1

𝑗
)

𝑗−1

𝑘=0

+ 𝑝(𝑓𝑗, 𝜙𝑖) +∑𝛽𝑘𝑗

𝑗−1

𝑘=0

(𝑢0, 𝜙𝑖) 

(13) 

 

where, 𝑟 =
𝑝𝜅

ℎ
. 

 

4.3 Caputo's Method (CM) 

 

We need the following lemma in order to give the second 

scheme. 

 

Lemma 4.4 For 0 < 𝛼 < 1, we have: 

 

𝐷𝑡
𝛼𝑢(𝑥, 𝑡)0

𝑅𝐿 = 𝐷𝑡
𝛼𝑢(𝑥, 𝑡)𝐶 +

𝑢(𝑥, 0)𝑡−𝛼

Γ(1 − 𝛼)
. 

 

This lemma gives the link between the Riemann-Liouville 

fractional derivative and the Caputo fractional derivative. 

So the problem (1)-(3) can be written as: 

 

𝐷0
𝐶

𝑡
𝛼𝑢(𝑥, 𝑡) − 𝐷0

𝑅𝐿
𝑥
𝛽
𝑢(𝑥, 𝑡) = 𝑓(𝑥, 𝑡) −

𝑢0(𝑥)𝑡
−𝛼

Γ(1 − 𝛼)
. (14) 

 

The time-fractional derivative is estimated [25, 28]: 

 

𝐷0
𝐶

𝑡
𝛼𝑢(𝑥, 𝑡𝑛)

=
Δ𝑡1−α

Γ(1 − 𝛼)
∑𝑏𝑘

𝑛−1

𝑘=0

𝑢(𝑥, 𝑡𝑛−𝑘) − 𝑢(𝑥, 𝑡𝑛−𝑘−1)

Δ𝑡
 

(15) 

 

where, 𝑏𝑘 = (𝑘 + 1)1−𝛼 − 𝑘1−𝛼. 

The weak form of problem (1)-(3) is given by: 

 

( 𝐷0
𝐶

𝑡
𝛼𝑢, 𝑣) + ( 𝐷0

𝑅𝐿
𝑥
𝜆𝑢,

𝜕𝑣

𝜕𝑥𝜆
) = (𝑓, 𝑣) −

𝑡−𝛼(𝑢0, 𝑣)

Γ(1 − 𝛼)
 (16) 

 

for all 𝑣 ∈ 𝐻0
1(Ω) where 0 < 𝜆 < 1. 

Denoting 𝑢𝑛 the approximation solution of 𝑢(𝑥, 𝑡𝑛)  and 

𝑓𝑛(𝑥) = 𝑓(𝑥, 𝑡𝑛). Using (15), we can write the weak form (16) 

at 𝑡𝑛 as: 

 

(𝑢𝑛 , 𝑣) + 𝑝 ( 𝐷0
𝑅𝐿

𝑥
𝜆𝑢𝑛 ,

𝜕𝑣

𝜕𝑥
)

= ∑𝑤𝑘

𝑛−1

𝑘=1

(𝑢𝑛−𝑘 , 𝑣)(𝑏𝑛−1

+ (𝛼 − 1)𝑛−𝛼)(𝑢0, 𝑣) + 𝑝(𝑓𝑛, 𝑣) 

(17) 

 

where, 𝑝 = Γ(2 − 𝛼)Δ𝑡α and 𝑤𝑘 = 𝑏𝑘−1 − 𝑏𝑘 . 
Let 𝑢𝑛 = ∑ 𝑢𝑗

𝑛𝜙𝑗(𝑥)
𝑚
𝑗=0 , choosing 𝑣  to be 𝜙𝑖(𝑥)  for 𝑖 =

1,… ,𝑚 − 1 and applying Lemma 4.1 and Lemma 4.3, we get 

the full discretization of the problem: 
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ℎ

6
(𝑢𝑖−1

𝑛 + 4𝑢𝑖
𝑛 + 𝑢𝑖+1

𝑛 ) + 𝑟 [∑(𝑝𝑖𝑗
(1) − 𝑝𝑖𝑗

(2))𝑢𝑗
𝑛

𝑚

𝑗=0

] 

=
ℎ

6
∑𝑤𝑘(𝑢𝑖−1

𝑛 + 4𝑢𝑖
𝑛 + 𝑢𝑖+1

𝑛 )

𝑗−1

𝑘=1

+ 𝑝(𝑓𝑛, 𝜙𝑖) 

+(𝑏𝑛−1 + (𝛼 − 1)𝑛
−𝛼)(𝑢0, 𝜙𝑖). 

(18) 

 

4.4 The Grunwald-Letnikov Method (GLM) 

 

The Grunwald-Letnikov fractional derivative can be 

approximated the Riemman-Liouville fractional derivative [29, 

30], which is giving by the following formula: 

 

𝐷𝑡
𝛼𝑢(𝑡)0

𝑅𝐿 |𝑡=𝑡𝑛 ≈ ∆𝑡
−𝛼∑𝛿𝑘

(𝛼)𝑢(𝑡𝑛−𝑘)

𝑛

𝑘=0

 

 

where, 𝛿𝑘
(𝛼) =

(−1)𝑘Γ(𝛼+1)

Γ(𝛼+1−𝑘)Γ(𝑘+1)
. 

Consider the following semi discretization of the problem 

(13): 

 

∆𝑡−𝛼∑𝛿𝑘
(𝛼)(𝑢𝑛−𝑘, 𝑣) +

𝑛

𝑘=0

( 𝐷𝑥
𝜆𝑢𝑛,

𝜕𝑣

𝜕𝑥0
𝑅𝐿 ) = (𝑓𝑛, 𝑣). (19) 

 

Let 𝜀𝑘
(𝛼) = −𝛿𝑘

(𝛼)
, then we have: 

 

(𝑢𝑛, 𝑣) + ∆𝑡𝛼 ( 𝐷𝑥
𝜆𝑢𝑛,

𝜕𝑣

𝜕𝑥
𝑅𝐿 ) = ∑𝜀𝑘

(𝛼)(𝑢𝑛−𝑘, 𝑣)

𝑛−1

𝑘=1

 

+∆𝑡𝛼(𝑓𝑛, 𝑣) + 𝜀𝑘
(𝛼)(𝑢0, 𝑣). 

(20) 

 

To get the full discretization, we set 𝑢𝑗 = ∑ 𝑢𝑗
𝑚𝜙𝑗(𝑥)

𝑚
𝑗=0  

and we choose 𝑣  to be 𝜙𝑖(𝑥)  for 𝑖 = 1,… ,𝑚 − 1, then we 

have 
 

∑𝑢𝑗
𝑛(𝜙𝑗, 𝜙𝑖)

𝑚

𝑗=0

+ ∆𝑡𝛼∑𝑢𝑗
𝑚

𝑚

𝑗=0

( 𝐷𝑥
𝜆𝜙𝑗,

𝜕𝜙𝑖
𝜕𝑥0

𝑅𝐿 )

= ∑𝜀𝑘
(𝛼)∑𝑢𝑗

𝑛−𝑘(𝜙𝑗, 𝜙𝑖)

𝑚

𝑗=0

𝑛−1

𝑘=1

+ ∆𝑡𝛼(𝑓𝑛, 𝜙𝑖) + 𝜀𝑛
(𝛼)(𝑢0, 𝜙𝑖). 

(21) 

 

Applying Lemma 4.1 and Lemma 4.3, we obtain: 

 

ℎ

6
(𝑢𝑖−1

𝑛 + 4𝑢𝑖
𝑛 + 𝑢𝑖+1

𝑛 ) + 𝑟1∑(𝑝𝑖𝑗
(1) − 𝑝𝑖𝑗

(2))𝑢𝑗
𝑛

𝑚

𝑗=0

 

= ∑𝜀𝑘
(𝛼)(𝑢𝑖−1

𝑛−𝑘 + 4𝑢𝑖
𝑛−𝑘 + 𝑢𝑖+1

𝑛−𝑘)

𝑛−1

𝑘=1

 

+∆𝑡𝛼(𝑓𝑛, 𝜙𝑖) + 𝜀𝑛
(𝛼)(𝑢0, 𝜙𝑖) 

(22) 

 

where, 𝑟1 =
∆𝑡𝛼𝜅

ℎ
. 

 

 

5. NUMERICAL EXAMPLES 
 

In order to verify the efficiency of the three numerical 

methods, we present the next example. The L2 norm is used to 

investigate the error. All the numerical result are evaluated at 

T=1. 
 

𝐷0
𝑅𝐿

𝑡
𝛼𝑢(𝑥, 𝑡) − 𝐷0

𝑅𝐿
𝑥
𝜆+1𝑢(𝑥, 𝑡) = 𝑓(𝑥, 𝑡),          (𝑥, 𝑡) ∈ [0,1]2 

 

subject to the initial and boundary conditions: 
 

𝑢(𝑥, 0) = 0,                 𝑥 ∈ [0,1], 
𝑢(0, 𝑡) = 𝑢(1, 𝑡) = 0,             𝑡 ∈ [0, 𝑇], 

 

where, 𝑓(𝑥, 𝑡) =
𝑡1−𝛼

Γ(2−𝛼)
𝑥3 +

6𝑡

Γ(3−𝛼)
𝑥2−𝜆.  

The exact solution is u(x,t)=tx3. 

Table 1 shows exclusively the error between the exact and 

numerical solution using the GTDS and CM, and the Table 2 

for the GLM, for a fixed value of 𝛼 = 0.5 and a fixed step time 

Δ𝑡 = 1/100, and different value of 𝜆. For the Table 3 and 

Table 4, we fixed 𝜆 = 0.75and ℎ𝜆 = 1/1000 and the result 

are gotten for a different value of 𝛼. 
 

Table 1. The error of GTDS and CM (×10-6) for α=0.5 and 

Δt=1/100 
 

h λ=0.25 λ=0.5 λ=0.75 λ=0.95 

1/8 0.08686 0.04526 0.0196 0.03116 

1/16 0.01895 0.01029 0.4755 0.7853 

1/32 0.4429 0.247 0.117 0.1971 

1/64 0.1076 6.083 0.2904 4.9937 

1/128 2.659 1.513 7.241 1.235 

 

Table 2. The error of GLM (×10-5) for α=0.5 and Δt=1/100 
 

h λ=0.5 λ=0.5 λ=0.75 λ=0.95 

1/8 0.977 0.496 0.1814 0.2822 

1/16 0.3067 0.1571 4.691 4.947 

1/32 0.1783 9.457 4.077 95.91 

1/64 0.153 8.373 4.418 2.417 

1/128 0.147 8.15 4.529 2.789 

 

Table 3. The error of GTDS and CM (×10-8) for λ=0.75 and 

h=1/10000 

 

Δt α=0.25 α=0.5 α=0.75 α=0.95 

1/20 1.11759 1.18435 1.21105 1.16581 

1/40 1.11757 1.18456 1.214 1.16724 

1/80 1.11756 1.18462 1.21177 1.16782 

1/160 1.11754 1.18468 1.21179 1.16805 

1/320 1.11761 1.18467 1.1182 1.16815 

 

Table 4. The error of GLM (×10-5) for λ=0.75 and h=1/10000 

 

Δt α=0.25 α=0.5 α=0.75 α=0.95 

1/20 0.1507 0.2257 0.1886 5.046 

1/40 7.57 0.1136 9.511 2.521 

1/80 3.794 5.703 4.79 1.264 

1/160 1.9 2.86 2.409 63.52 

1/320 0.9865 0.01404 0.01037 0.2398 

 

 

6. CONCLUSION 

 

In this paper, we studied the finite element method for 

solving a class of Riemann-Liouville space-time fractional 

partial differential equations. In the first step we approximated 

the time fractional derivative using the Hadamard finite part 

integral and the Diethlem's first degree compound quadrature 
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formula; the second approach was based on the link between 

Riemann-Liouville and Caputo fractional derivative, when the 

third method was based on the approximation of the Riemann-

Liouville by the Grunwald-Letnikov fractional derivative. For 

the approximation of the space fractional derivative the finite 

element method was introduced for all the three approaches. 

Finally to check the effectiveness of the three methods a 

numerical example was given. 
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