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 As the number of cloud users are spontaneously growing globally, there is an urgent 

need to constantly provide quality services to consumers. Consequently, task scheduling 

plays an essential role in improving the performance of the cloud computing 

environment. Most of the published research in this field share common goals, which 

can be summarized in maximizing resource utilization, reducing cost, and increasing 

performance. This research provides the foundation knowledge on the latest works done 

to enhance and optimize the existing task scheduling algorithm in cloud computing by 

considering various parameters. Furthermore, in this study, we have applied 

comparative study to analyze the performance of three task scheduling algorithms 

namely Max-Min, First Come First Serve (FCFS), and Round Robin (RR) in cloud 

computing environments based on the performance metric of the Virtual Machines 

(VM) resources' cost, average time and makespan to find the best performing algorithm 

in the cloud environment. The experimental evaluations were conducted using 

CloudSim simulation tool. The results show that Max-Min achieved better performance 

based on makespan and average waiting time than other algorithms in Space and Time-

shared policies.  
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1. INTRODUCTION 

 

Cloud computing has been the technology trend in recent 

decades for hosting, storing, and distributing services through 

the Internet. Cloud computing offers a variety of services at 

various levels to satisfy the needs of users. These services have 

been widely used in many different applications and domains. 

Three types of cloud computing services on different layers 

are used by private and public organizations to reduce their 

operational consumption as shown in Figure 1 [1]. 

(1) Infrastructure as a service (IaaS) offers users physical 

equipment like storage, services, and virtual machine networks. 

Amazon EC2 and RackSpace Cloud are examples of IaaS [2]. 

(2) Platform as a service (PaaS) offers developers the 

required computing platform to run and develop their 

applications such as Apprenda and Google Apps engine [3].  

(3) Software as Service (SaaS) has allowed the end-user to 

access the services or applications that cloud providers offer 

directly. Cisco WebEx and Google Apps are an example of 

SaaS [3]. 

The public, private, and hybrid cloud deployment options 

are the most common. All users could access a public cloud 

based on a pay-as-you-use. However, the Private cloud is 

when a particular organization owns the cloud. The Hybrid 

cloud consists of both Private and Public Clouds [3]. 

Since there is a massive number of users using cloud 

computing, it is vital to provide good quality services for them. 

One of the most prominent roadblocks in cloud computing is 

task scheduling, which focuses on distributing activities to 

available resources at the right times to deliver a valuable 

Quality of Service (QoS) [4]. The efficiency of cloud 

computing services is influenced significantly by task 

scheduling algorithms. Many studies have been published with 

the goal of improving the quality of cloud services by reducing 

the time it takes to complete a task and the time it takes to do 

it. Furthermore, one of the key objectives used to improve task 

scheduling algorithms is to increase resource utilization. 

The primary contribution of this study is to summarize the 

recent studies in this area and to present a comparison between 

three task scheduling algorithms: FCFS, RR, and Max-Min. 

CloudSim simulator toolkit will be used to determine the best 

algorithm according to the performance metric of the VMs 

resources' cost, average time and makespan. Section 2 

introduces the key concepts in task scheduling. Section 3 

discusses previous studies on task scheduling that have been 

published. The proposed methodology is presented in Section 

4. Section 5 discusses the final outcomes. Section 6 

summarizes the findings and future research. 
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Figure 1. Different models in the cloud computing 

 

 

2. BACKGROUND 

 

This section introduces and discusses the fundamental 

concepts of task scheduling in cloud computing environments. 

The first section goes over the scheduling level in cloud 

computing, and the second section goes over the scheduling 

policies. The remaining sections go over the various 

scheduling algorithms and performance metrics. The final 

section provides an overview of the simulation tool used in this 

study to assess the efficiency of task scheduling algorithms. 

 

2.1 Cloud computing scheduling levels 

 

The techniques for assigning resources to particular 

activities are referred to as scheduling. Utilizing scheduling 

algorithms is mostly intended to raise the caliber of cloud 

computing. In order to do this, average waiting times and 

makespan must be kept to a minimum while utilization is 

increased. Scheduling the cloud's resources are categorized 

into two levels: virtual machines (VMs), and host. At the host 

level, VMs are assigned to physical machines (PMs) by using 

a VM scheduler, this level is known as VM scheduling. Tasks 

at the VM level are assigned to VMs for the purpose of 

execution by using a task scheduler, this level is known as 

Task Scheduling [5], as shown in Figure 2. This study will 

concentrate on the VM level, with the goal of scheduling tasks, 

which is the most difficult issue in cloud computing. 

 

 
 

Figure 2. Cloud Resources Scheduling level (adapted with 

modification from [5]) 

2.2 Scheduling policies 

 
According to the scheduling policy, the tasks are allocated 

to the resources. Two types of scheduling policies are provided 

by cloud computing: Space and Time-shared policies. One 

task is permitted to be performed at a given VM in Space-

Shared policy, which means that the task will own the VM 

until it completes its execution. In Time-Shared policies, the 

VM is being shared by multiple tasks, which means it allows 

several tasks to run in parallel over a VM [6, 7]. This work 

focuses on both policies to evaluate various task scheduling 

algorithms.  

 
2.3 Task scheduling classes 

 
Task scheduling is a technique that has been used to assign 

resources to a particular task to be completed effectively. This 

section contains a brief description of scheduling algorithm 

types including Static/Dynamic scheduling, Preemptive/Non-

Preemptive scheduling, and Heuristic /Metaheuristic 

scheduling approach.  

 
2.3.1 Static/Dynamic scheduling 

There are two types of task scheduling: static task 

scheduling and dynamic task scheduling. When the execution 

period is known and there is a minimum running time, static 

task scheduling is used. Dynamic task scheduling, on the other 

hand, has a maximum running time and the execution period 

is unknown [4]. 

 
2.3.2 Preemptive/ Non-Preemptive scheduling 

Preemptive scheduling enables a newly arrived task, that 

has a small job or a higher priority, to be executed instead of 

the currently running task. As a result, the current task will be 

halted, and the new task will be allocated to the instant of the 

resource in order to run. On the other hand, non-preemptive 

scheduling does not allow to a running task to be interrupted. 

As a result, if the resource is allocated to a task, this task will 

not stop even if a higher priority task arrives [8, 9]. 

 
2.3.3 Heuristic/Metaheuristic 

The problem of task scheduling is that it is a non-

polynomial complete problem for the system. There are two 

approaches to task scheduling algorithms: The heuristic 

approach and the metaheuristic approach [10]. Heuristic 

approach offers a specific solution for a particular problem. 

Whereas the metaheuristic approach provides a consistent 

solution and a master strategy that can solve a wide range of 

problems. Genetic Algorithm (GA) is an example of 

metaheuristic algorithms, whereas First Come First Serve 

(FCFS), Round Robin (RR), and Min-Max are examples of 

heuristic algorithms. The metaheuristic algorithms require 

more time to execute than heuristic algorithms [11, 12]. 

The primary goal of this research is to evaluate and compare 

the following algorithms based on the performance metrics of 

the VMs resources' cost, average time, and makespan [13].  

(1) First Come First Serve (FCFS): Is a heuristic non-

preemptive scheduling algorithm where the tasks are queued 

based on the time which the task has arrived, then they will be 

assigned to the available resource to be executed.  

(2) Round Robin (RR): Is known as a heuristic preemptive 

scheduling algorithm which works in the same way that FCFS 

does but with considering the time quantum. That means the 

task will be assigned to the available resource for a certain time 

1202



 

quantum then the task will be preempted. The preempted task 

will be queued back to get another chance to complete its 

execution.  

(3) Max-Min: Is a heuristic method for scheduling tasks 

based on their completion time on each VM. It chooses the 

task with the shortest completion time among all available 

VMs to be executed on the best free VM with the shortest 

completion time.  

 

 
 

Figure 3. CloudSim entities (adapted with modification from 

[14]) 

 

2.4 Parameter overview 

 

Several task scheduling algorithms were evaluated based on 

different parameters. This section presents a brief discussion 

about the most common parameters [15, 16]. 

(1) Makespan: The maximum amount of time for 

completing the most recent tasks that have been scheduled. 

The makespan of scheduling algorithms must be kept to a 

minimum for the system's performance. 

(2) Execution Time: The amount of time required to 

complete the assigned task. A better scheduling algorithm's 

optimal goal is to minimize execution time. 

(3) Load balancing: It is the process of managing and 

distributing workloads across multiple servers in order to 

maximize system performance and avoid system downtime. 

Many scheduling algorithms strive to maintain load balance in 

order to improve the performance of the cloud system. 

(4) Deadline: It is the maximum time in which a task must 

be completed. Efficient scheduling algorithms always attempt 

to implement tasks within the limits of the deadline. 

(5) Scalability: It is the capacity of the system to operate 

well when its size has increased or de-creased to meet the 

needs of the user. 

(6) Throughput: The throughput refers to how many tasks 

have been executed in a given amount of time. The cloud 

environment always aims to give high throughput. 

(7) Resource Utilization: It demonstrates how efficiently the 

resources at hand are used. Increasing the likelihood that 

resources will be completely utilized is a key component of 

improving resource utilization. One of the goals that cloud 

environments are aiming to accomplish is to maximize 

resource consumption. 

(8) Average Waiting Time: It refers to the time interval for 

the task before starting their execution. 

(9) Cost: It is an economic parameter that refers to the total 

amount of payment required of using the resources, which are 

charged by cloud consumers to the cloud providers. 

2.5 CloudSim overview 

 

In order to evaluate scheduling algorithms before their 

actual implementation in a cloud environment, a cloud 

computing simulator tool, such as CloudSim, can be used. 

CloudSim [17] is a simulation tool used to simulate the cloud 

computing environment's infrastructure and services. Cloud 

computing simulator tools are used to evaluate the new 

services and algorithms with-out any concern about 

performance issues that may occur when they are actually 

implemented on the real cloud. 

CloudSim affords a set of functions that form the basis of 

the cloud environment including: Cloud system entities' 

creation (data center, broker, hosts and VMs), simulation clock 

management, tasks handling and queuing, and connection 

between cloud components. The Cloud Information Service 

(CIS) is a component of CloudSim that includes the entire data 

center information. The data center has one or more physical 

machines (hosts), which include many of the VMs. VMs are 

responsible for executing the tasks and applications which are 

called cloudlets in CloudSim. The broker is responsible to 

assign the VMs to a particular host, then assign the cloudlets 

to the VMs. When the cloudlets of a specific VM completed, 

then the broker will destroy the VM that is finished all its 

cloudlets [14]. Figure 3 shows the CloudSim entities. 

 

 

3. LITERATURE REVIEW 

 

This section presents and analyzes previous research in the 

domain of task scheduling algorithms conducted in the cloud 

computing environment. The related works are divided into 

two sections: The first shows the improved task scheduling 

algorithms, and the second section presents studies that 

evaluate existing scheduling algorithms. 

 

3.1 Task scheduling enhancing algorithms 

 

Hlaing and Yee [18] proposed a new static task algorithm 

to improve the efficiency of cloud computing environments. A 

queue of independent tasks and virtual machines will be 

considered as an input to the new algorithm. An independent 

task will be allocated to a proper VM by considering the VM's 

processing cost and power. Authors used a CloudSim tool to 

assess the proposed algorithm by comparing between the 

proposed algorithm and two existing algorithms, which are 

Shortest Job First (SJF) and FCFS. Authors found that the 

proposed algorithm outperformed FCFS and SJF by 

minimizing the cost and execution time. 

Mazumder et al. [19] proposed a new strategy for 

dynamically allocating algorithms based on task types and 

minimizing the restrictions of some well-known algorithms 

such as Min-Min and Max-Min. They also presented the trade-

off between the makespan and the average waiting time. The 

results of the experiment revealed that the proposed algorithm 

outperforms the Min-Min algorithm in terms of makespan, 

while outperforming the Max-Min algorithm in terms of 

average waiting time. 

Fang et al. [20] enhanced task scheduling algorithms 

depend on an adaptive genetic algorithm (AGA). The 

suggested algorithm aims to op-timize the total task time and 

balance the load of each computing resource. They compared 

their proposed work with traditional genetic algorithm and 

adaptive genetic algorithm by using the CloudSim platform. 
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They found that the suggested algorithm achieved good 

performance compared to others. Also, they noted that if the 

jobs' number is minimal, then the proposed algorithm is not as 

efficient as AGA. 

Sarvabhatla et al. [21] suggested a new methodology for 

reducing the energy usage of virtual machines in data centers. 

The advantage of this model is that it assigns the task 

dynamically to VM that has the highest efficient of energy. 

They compared the model with two algorithms which are Most 

Efficient Server First (MESF) and Random Scheme Algorithm 

considering response time and energy cost metrics. The 

outcomes presented that the proposed approach has a high-

performance advantage over MESF and Random Scheme 

Algorithm. 

Sood et al. [22] proposed the Hybridized Firefly 

Gravitational Search Algorithm (HFGSA), which is based on 

two algorithms: The Firefly Algorithm (FA) and the 

Gravitational Search Algorithm (GSA) (GSA). The authors 

used the CloudSim toolbox to compare the proposed algorithm 

to the FA, GSA, and ACO algorithms in diverse situations. In 

certain cloud setups, the suggested approach takes less time to 

execute than others. 

Kaur and Sengupta [6] proposed an enhanced Time-Shared 

algorithm for the successful assignment of tasks to VMs. The 

proposed algorithm aims to minimize the free RAM space in 

the host and increase the task's response time. The researchers 

compared their proposed work with Time-Shared scheduling 

police by using the CloudSim tool. They evaluated these 

algorithms based on response time and total delay metrics. 

They found that their proposed work obtained better 

performance in both metrics. 

Orthogonal Taguchi-Based-Cat Swarm Optimization is a 

revolutionary work scheduling technique presented by Gabi et 

al. [23]. (OTB-CSO). The proposed approach was tested using 

the CloudSim tool and the makespan, with the goal of reducing 

dynamic scheduling execution time. Several algorithms were 

compared to the suggested work. They discovered that the 

suggested approach outperformed the competition by 

achieving the shortest possible makespan. 

Elmougy et al. [24] introduced a hybrid scheduling system 

based on SJF and RR with a dynamic variable task quantum 

termed (SRDQ). Their goal was to solve the scheduling 

algorithm starving problem in cloud computing. They put 

SRDQ to the test using the CloudSim simulation tool, 

comparing the results against the Time Slice Priority Based 

RR (TSPBRR), RR, and SJF algorithms. The experiment 

found that the proposed algorithm minimizes reaction time, 

waiting time, and moderates the task's starving issue when the 

execution time is considerable. 

Gupta and Garg [10] employed a meta-heuristic strategy to 

improve job scheduling algorithms based on the ACO 

algorithm, or load balancing ant colony optimization 

algorithm (LB-ACO). By improving load balancing and 

reducing makespan time, this technique seeks to enhance 

resource use and execution performance. They compared the 

suggested approach to a fast and elitist multiobjective genetic 

algorithm using the CloudSim tool (NSGA-II). Given the 

desired metrics, they discovered that the LB-ACO 

outperformed the NSGA-II. 

Kumari and Jain [25] introduced a new approach that 

attempted to reduce the makespan and maximize resource 

utilization. The proposed approach, known as Max-Min PSO, 

combines the Particle Swarm Optimization (PSO) technique 

with the Max-Min Algorithm. Using the CloudSim tool, the 

proposed work is assessed and compared to two existing 

algorithms: Bee Colony Optimization Algorithm and Particle 

Swarm Optimization Algorithm (PBCOPSO). When 

compared to the PBCOPSO method, the average makespan 

and CPU utilization improved by 5.01 percent and 3.63 

percent, respectively. 

Hicham and Chaker [26] devised a novel CPU allocation 

mechanism to minimize the average waiting time for the task. 

Using the CloudSim toolkit, the suggested technique, RR 

based on the Average Burst Time of the Task (RRABT), was 

compared to the original RR. Authors found that the growing 

in the cloudlets numbers, the average waiting time of the 

RRABT will be lower than the average waiting time for the 

traditional RR. Moreover, two more algorithms, which are 

FCFS and SJF, were evaluated with different numbers of 

cloudlets. They discovered that by increasing the number of 

tasks, the FCFS’ average waiting time will increase when 

compared to the SJF's average waiting time. Finally, the SJF 

has the shortest average waiting time, followed by the RRABT, 

FCFS, and RR. 

Another task scheduling technique was developed [27], 

with the goal of completing jobs with low latency in the 

shortest time possible. Tasks are classified into five groups in 

the proposed algorithm, Grouped Tasks Scheduling (GTS), 

based on the similarity of the task's features. After 

experimenting with the suggested method, they discovered 

that the GTS algorithm took less time to execute than the Min-

Min algorithm. They also achieved lower latency than the 

Min-Min and TS algorithms. 

Agarwal and Srivastava [28] suggested a Genetic 

algorithm-based task scheduling method and compared it to 

the CloudSim tool’s FCFS algorithm and Greedy-based 

approach. They discovered that genetically based task 

scheduling outperforms others in terms of the execution time 

parameter. 

 

3.2 Task scheduling evaluating algorithms 

 

Ibrahim et al. [29] conducted a comparative analysis of 

eight static task heuristic scheduling algorithms, including 

Min-Min, Load-Balanced-Improved-Min-Min (LBIMM), 

Minimum Completion Time (MCT), Resource-Aware-

Scheduling-Algorithm (RASA), Resource-Aware-Load-

Balancing-Algorithm (RALBA), Max-Average (MaxAvg 

(TASA). The study took into account the following factors: 

makespan, throughput, and resource consumption. The 

comparison of algorithms was carried by using CloudSim 

tools. In comparison to all other algorithms, the TASA attained 

a high performance in the aforementioned parameters, 

according to the output. 

Alhaidari et al. [14] compared various algorithms called 

FCFS, SJF, RR, and LTF based on the completion time by 

using the CloudSim tool. They applied 20 experiments 

according to two policies of resource allocation, which are 

Space-Shared and Time-Shared policies with distinct 

scenarios. The outcomes of the study revealed that the SJF 

achieved higher performance than the other algorithms in 

terms of the Space-Shared poli-cy in whole scenarios. 

Moreover, the performance of the Time-Shared re-source 

policy performed better than the other policy with completion 

time metric. 

A comparative evaluation of many contemporary work 

scheduling algorithms was offered by Anushree and Xavier [3]. 

The comparative study was proposed based on performance 
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indicators, algorithm benefits, and algorithm drawbacks [30, 

31]. As a result of this research, they discovered that no single 

strategy can attain all of the essential parameters. 

Pratap and Zaidi [32] worked on a comparative study 

between three of the static task scheduling algorithms, which 

are FCFS, SJF, and RR by using CloudSim tools. They used 

Time-Shared and Space-Shared policies of execution on the 

cloudlet while considering the waiting time and turnaround 

time for each algorithm. They found that the RR achieved 

higher performance com-pared with others. 

Kumar et al. [33] compared various static load balancing 

algorithms, which are SJF, FCFS, equal distribution of task, 

and unequal distribution of task. The authors contrasted the 

algorithms based on the execution time by using CloudSim 

tools to measure the performance, assuming that the tasks and 

virtual machines are using Space-Shared policies. They found 

that the equal distribution approach has better performance as 

compared to others. 

Borrowed-Virtual-Time (BVT), Start-Time-Fair-Queuing 

(STFQ), and Weighted-Round-Robin are the three task 

scheduling methods studied by Jambigi et al. [34]. (WRR). 

The CloudSim simulator was used to simulate all three 

algorithms. They discovered that the BVT had greater energy 

consumption efficiency, but had the longest execution time 

when compared to the others, based on execution time and 

energy consumed. 

The task scheduling approaches assessed in this study [35] 

were Minimum-Execution-Time (MET), Max-Min, Min-Min, 

Sufferage, Minimum-Completion-Time (MCT), and FCFS. 

The comparison was made using the following metrics: the 

degree of imbalance, cost, throughput, and makespan. The 

program that was utilized to compare all six algorithms was 

CloudSim. They discovered that Min-Min was the optimal 

method for maximizing cost, throughput, and makespan. The 

rest of the algorithms, on the other hand, performed admirably 

in terms of work scheduling in IaaS cloud computing. 

In conclusion, multiple studies have been conducted to 

assess work scheduling algorithms using a variety of 

performance indicators. We discovered that just a few studies 

looked at scheduling approaches using Time and Space Shared 

rules together. The CloudSim program was used in the 

majority of the publications to test the performance of 

scheduling approaches. As a result of the findings of previous 

studies, the algorithms employed in this study will be FCFS, 

RR, and Max-Min, with the makespan, average waiting time, 

and cost of using VMs parameters taken into account. The 

policies of Time-Shared and Space-Shared are considered. 

Finally, the CloudSim tool will be used to assess how well 

various scheduling strategies compare. 

 

 

4. METHODOLOGY 
 

The methodology used in this research for comparing the 

behavior of various task scheduling algorithms in cloud 

environments is described in this section [36, 37]. The 

comparison was carried out using CloudSim simulation tool 

which was used to configure the cloud environment and 

execute the scheduling algorithms. The study started by 

determining the characteristics of the main entities in 

CloudSim, such as Datacenter, Physical Machine/Host, and 

Virtual Machine. Then we applied the algorithms to schedule 

the set of the proposed tasks and compared their behavior 

based on the makespan, average waiting time, and cost 

parameters. Moreover, we examined these algorithms in both 

resource scheduling policies which are Space and Time shared 

policies. 

 
4.1 Simulation workflow on CloudSim (12 steps) 

 
This section discusses the simulation workflow which is 

applied in this study to compare between the three algorithms: 

FCFS, RR, and Max-Min. First, we specify the characteristics 

of the simulation entities as mentioned in steps 1 through 9. 

Then, the simulation for the task scheduling algorithm is 

initiated. Once the simulation is successfully completed, the 

Cloud Information Service (CIS) will ask the entities to shut 

down. Finally, the simulation output will be printed. The 

simulation output contains the start time and finish time for 

executing each cloudlet, which is used in the comparison 

between the performance of each algorithm. The steps of cloud 

computing task scheduling simulation are as follows [17]: 

(1) Set the users’ number (related to brokers’ number) 

(2) Set common variables (current time, user number, ...) 

(3) Create cloud information service (CIS) 

(4) Create data center (DC) instance by specifying the 

Processor Elements (PEs), hosts that house the PEs, and 

data center characteristics (time-zone, cost, 

CostperMem) 

(5) Processing Element (PE): MIPS is the computing 

capacity of the PE. 

(6) Host: 

a. RAM 

b. Storage (secondary storage) 

c. Bandwidth (BW) 

(7) Create data center broker where it gets the information 

of the data center from the CIS and assigns the cloudlets 

to the resources available in the data center. 

(8) Create VMs and identify their characteristic: 

a. Number of Cores (PEs). 

b. RAM 

c. Bandwidth (BW) 

(9) Share the VM information with broker. 

(10) Determine the characteristics of each cloudlet: 

a. Required MIPS/ length (Millions of Instructions Per 

Second) 

b. Required Bandwidth (BW) 

c. Required RAM 

d. Required number of Cores (PEs) 

(11) Share the cloudlet information with broker 

(12) Start simulation 

(13) Stop simulation (shut down the entities) 

(14) Print the results of simulation 

 
4.2 CloudSim simulation configuration 

 
This section describes the properties of CloudSim entities 

that are used for simulating the cloud environments to test and 

measure the efficiency of task scheduling techniques. The 

configuration of cloud simulation will be as follow: 

(1) One data center which has a single host. The 

characteristics of data center are presented in Table 1. 

(2) One host with one core, 1000 MIPS computing capacity, 

and 2048 MB of RAM. Table 2 presents the host’s properties. 

(3) Two VMs allocated to a single host. Time-Shared 

allocation policy is utilized for assigning the VMs to the host 

resources. The characteristics of the VMs are presented in 

Table 3. 
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(4) The experiment tested different sets of cloudlets that 

have been executed in the proposed cloud environment. Each 

cloudlet has a different length, the characteristics of the 

cloudlets are presented in Table 4. 

 

Table 1. Data center characteristics 

 
Characteristic Value 

No. of data center 1 
No. of hosts 1 

System architecture x86 
Operating system Linux 

 Time-zone 10.0 

CPU’s cost 3.0 

Memory’s cost 0.05 

Bandwidth’s cost 0 

Storage’s cost 0.001 

 

Table 2. Host properties 

 
Characteristic Value 

PEs 1 
Computing Capacity of the PEs (MIPS) 1,000 MIPS 

RAM for each host 2,048 MB 
Bandwidth (BW) 10,000 

Storage 1,000,000 

 

Table 3. Virtual machine characteristics 

 
# of VM Pe MIPS RAM Bandwidth 

VM 1 1 300 512 1,000 
VM 2 1 500 512 1,000 

Table 4. Cloudlet properties 

 
Characteristic Value 
# of Cloudlets From 10 to 50 

Cloudlets Length Different length from 1000 to 5100 
CPU Utilization Full 
RAM Utilization Full 

Bandwidth Utilization Full 

 

 

5. RESULTS AND DISCUSSION 

 

The results obtained by evaluating the three task scheduling 

algorithms in terms of makepan, average waiting time, and the 

cost of using the VM resources metrics are discussed in this 

section. The experiment has gone through several phases [38], 

we have evaluated each algorithm by considering two points: 

a) the effect of raising the number of cloudlets, and b) the 

resource allocation policies that have been applied. 

Table 5, Table 6, and Table 7 show the performance metrics 

of the FCFS, RR, and Max-Min algorithms in Space-Shared 

and Time-Shared policies. The results indicated that the Time-

Shared policy outperforms the Space-Shared policy 

considering the cost of using VMs resources and the average 

waiting time. The main reason for the superiority of the Time-

Shared policy over the Space-Shared policy is that Time-

Shared policy distributes the processing capabilities of the 

VMs among the cloudlets. Moreover, the results show that the 

two policies are approximately similar based on the makespan 

metric. 

 

Table 5. Makespan of each algorithm in both policies 
 

 Space-Shared Time-Shared 

# of cloudlets FCFS RR Max-Min FCFS RR Max-Min 

10 50.0993 50.0993 38.136 50.09 50.09 38.1667 

20 100.43 100.43 76.5847 100.4633 100.4633 76.6167 

30 151.0947 151.0947 114.53 151.12 151.12 114.4833 

40 202.094 202.094 151.972 202.1 202.1 151.954 

50 253.4253 253.4253 190.786 253.4267 253.4267 190.916 

 

Table 6. Cost of each algorithm in both policies 

 
 Space-Shared Time-Shared 

# of 

cloudlets 
FCFS RR 

Max-

Min 
FCFS RR 

Max-

Min 

10 25.1541 25.1542 25.1686 18.4560 18.4560 18.6888 

20 50.4491 50.4491 50.5707 37.0440 37.0440 37.2694 

30 75.9538 75.9538 76.0059 55.7896 55.7896 55.9844 

40 101.5806 101.5806 101.700 74.706 74.706 74.784 

50 127.378 127.378 127.522 93.764 93.764 93.903 

 

Table 7. Average waiting time of algorithm in both policies 

 
 Space-Shared Time-Shared 

# of cloudlets FCFS RR Max-Min FCFS RR Max-Min 

10 10.6893 10.6893 10.155 0 0 0 

20 25.4834 25.4834 24.0682 0 0 0 

30 40.4216 40.4216 37.9875 0 0 0 

40 55.4572 55.4571 52.0553 0 0 0 

50 70.6223 70.6223 66.2943 0 0 0 

From the results, we found that Max-Min outperformed 

FCFS and RR in terms of the makespan metric in both policies 

as shown in Figure 4 and Figure 6. Moreover Max-Min 

achieved a better average waiting time compared to FCFS and 

RR in terms of Space-Shared policy as shown in Table 7. On 

the other hand, RR and FCFS performed similar to Max-Min 

in terms of the total cost in both policies, as shown in Figure 5 

and Figure 7. Overall, the performance measurement for the 

three algorithms has increased when raising up the cloudlet’s 

number. Finally, the simulation revealed that the Max-Min has 

the best performance in terms of makespan and average 

waiting time in both policies. 
 

 
 

Figure 4. Makespan for each algorithm in Space Shared 

policy 
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Figure 5. Cost for each algorithm in Space Shared policy 

 

 
 

Figure 6. Makespan for each algorithm in Time Shared 

policy 

 

 
 

Figure 7. Cost for each algorithm in Time Shared policy 

 

 
6. CONCLUSIONS 

 

Cloud computing has become a very powerful way to 

process complicated and large jobs. Task scheduling 

algorithms in cloud computing plays an important role to reach 

a high-level of efficiency by allowing full utilization of 

resources to enhance the QoS. This study aims to compare 

three task scheduling algorithms called FCFS, RR, and Max-

Min. The three algorithms are simulated using CloudSim tool 

to be analyzed and evaluated according to the performance 

metric of the VMs re-sources’ cost, average time and 

makespan: While considering both resources allocation 

policies Time and Space Shared. The outcomes of our 

experiments show that Max-Min outperformed FCFS and RR 

in terms of makespan with the two policies. In addition, Max-

Min achieved better average waiting time than FCFS and RR 

in terms of Space-Shared Policy. Furthermore, RR and FCFS 

recorded approximately similar performance as Max-Min 

based on the total cost in both policies. In general, the Max-

Min achieved the best performance overall in all of the metric 

measures for both policies which makes Max-Min the most 

suitable scheduling technique for the proposed cloud 

computing environment. For future work, it will be very 

interesting to evaluate the three algorithms with additional 

metrics such as Throughput and Load Balancing, then show 

the effect of increasing the virtual machines’ number on these 

algorithms’ performance.  
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NOMENCLATURE 

AGA Adaptive Genetic Algorithm 

BVT Borrowed-Virtual-Time  

CIS Cloud Information Service 

DC Data Center 

FA Firefly Algorithm  

FCFS First Come First Serve 

GA Genetic Algorithm 

GSA Gravitational Search Algorithm 

GTS Grouped Tasks Scheduling 

LB-ACOA 
Load Balancing Ant Colony Optimization 

Algorithm 

LBIMM Load-Balanced-Improved-Min-Min 

MCT Minimum-Completion-Time 

MET Minimum-Execution-Time 

MESF Most Efficient Server First 

OTB-CSO 
Orthogonal Taguchi-Based-Cat Swarm 

Optimization 

PM Physical Machines 

QoS Quality of Service 

RASA Resource-Aware-Scheduling-Algorithm 

RALBA 
Resource-Aware-Load-Balancing-

Algorithm 

RR Round Robin 

SJF Shortest Job First 

VM Virtual Machines 
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