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This paper uses the finite difference method (FDM) to provide a high-accuracy 

numerical approach to solve for the governing equations of two elastically coupled 

plates under symmetrical bending. The solution strategy, including governing equations 

and boundary conditions, is thoroughly discussed, and presented. Finally, this solution 

was used to test the effect of the key parameters of the coupled plates structure on the 

mechanical response of the system and relate that to the reliability performance of 

electronic packages under mechanical bending. 
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1. INTRODUCTION

The problem of the two elastically coupled, i.e., joined, 

beams and/or plates repetitively appears in real-life structures 

such as railways, engineering structures, and electronics [1, 2]. 

For the buildings and engineering structures, such beams are 

called composite beams and commonly joined together using 

epoxy resins [3, 4]. In electronic industries, a classic electronic 

package is usually made of a printed circuit board (PCB) that 

is connected to an integrated component (IC) using an array of 

solder interconnects. As electronics are progressively 

subjected to mechanical failures due to various static and 

dynamic loadings [5, 6], the reliability assessment of 

electronic assemblies has become a major interest of research 

studies in literature [7, 8]. Particularly, the coupled beams 

problem was much analytically investigated more than the 

coupled plates problem due to problem simplicity and less 

complexity. In the elastically attached beams model, the PCB 

and the IC are treated as two beams, both are based Euler-

Bernoulli theory, and the solder joints are as an elastic layer 

composed of finite number of axial springs. For the analytical 

research works on this problem, Wong [9] formulated a 

closed-form analytical model to compute the deformations of 

the coupling layer and this was related to the solder deflections 

and hence stresses. Wong et al. [10-13] have developed several 

solutions of the coupled beams under bending system, in 

which both axial and flexural deformations of the elastic layer 

were considered. Engle [14] and Pitarresi and Ceurter [15] 

created the analytical solution of the coupled beams with a 

centrally applied point force problem and computed solder 

stresses accordingly. Gharaibeh et al. [16] extended the 

solution of Pitarresi and used it to solve for the problem of the 

partially coupled elastic beams structure and validated that 

later with experimental data [17]. Recently, Gharaibeh et al. 

[18] used finite difference method (FDM) to numerically solve

for the symmetric bending of two coupled beams problem and

the results of this numerical solution were validated with finite

element analysis (FEA) data. 

For the two elastically coupled plate bending problem, only 

a few works are available in literature. In this model, the PCB 

and the integrated circuit package are both considered as two 

elastic rectangular isotropic plates that are joined together 

using a finite number of axial springs, i.e., solders, array. The 

first introduction of the two coupled plates structure was in 

2015 where Gharaibeh et al. [19] used Ritz method to solve 

for the free vibration characteristics of the problem and 

computed the natural frequencies and mode shapes of the 

coupled plates system. Later, Gharaibeh et al. [20-23] 

expanded this solution to solve for the forced vibrations of the 

coupled plates due to harmonic [20, 21], transient [22], and 

random vibrations excitations [23]. In all works, the solution 

was validated with experiments and thus employed to test the 

influence of the geometric and material parameters of the 

structure on solder joints deflections, strains, and stresses. 

The main goal of the current paper is to revisit the problem 

of the two elastically coupled plates and employ the finite 

difference method to solve the governing partial differential 

equations (PDE) of the system and hence compute the elastic 

coupling layer axial deformations. This numerical solution 

was then used to explore the effect of the various key material 

and geometric structural parameters of the electronic assembly 

on the expected solder stresses. The originality and the main 

value of this approach is that it can be easily modified and 

hence generalized to solve several loading and boundary 

conditions that could be imposed on two coupled plates 

structure. 

The organization of this paper starts by a detailed 

description of the coupled plates problem including the 

governing equations as well as the imposed boundary and 

loading conditions. The details of the implementation of the 

finite difference method in solving the governing equations 

was fully presented. Finally, the results of this solution are 

provided and thoroughly discussed. 
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2. MATERIALS AND METHOD 

 

2.1 Elastically coupled plates problem details 

 

2.1.1 Problem definition 

As described earlier, the two elastically coupled plates 

under bending problem is mainly directed towards the 

electronic packaging application. In this model, the board and 

the package are designated as thin elastic rectangular plates, 

and both plates are elastically connected by an evenly 

distributed matrix of linear axial springs, i.e., solder 

interconnects. Considering Figure 1, the IC package is plate 1 

and the PCB is plate 2. The current work is limited for the case 

of plate 1 and plate 2 are equal in length (a) and width (b). The 

thickness of plate 1 is (h1) and plate 2 is (h2). The bending, i.e., 

flexural, rigidity of plate 1 and plate 2 are D1 and D2, 

respectively. If the modulus of elasticity of a plate material is 

(E) and its Poisson’s ratio is (v), then the flexural rigidity is 

𝐷 =
𝐸ℎ3

12(1−𝑣2)
. Hereinafter, the subscript 1 is used for plate 1 

material and geometry (E1 and h1) and subscript 2 is for plate 

2 characteristics (E2 and h2). Also, the deflection function of 

plate 1 is u1(x, y) and plate 2 deflection is u2(x, y). 

 

 
 

Figure 1. Two elastically-coupled plates system details 

 

2.1.2 Governing equations 

The governing equations of the two coupled plates system 

with axial linear springs can be expressed as [19]: 

 

𝐷1𝛻
2𝑢1 = 𝐾𝛿(𝑥, 𝑦)  

𝐷2𝛻
2𝑢2 = −𝐾𝛿(𝑥, 𝑦) 

(1) 

 

where, 𝛻2 =
𝜕4

𝜕𝑥4
+

𝜕4

𝜕𝑥2𝜕𝑦2
+

𝜕4

𝜕𝑦4
 is the biharmonic operator; 

δ(x, y) is the elastic layer transverse deflections. Generally, δ(x, 

y) is computed as the difference between plate 1 and plate 2 

out-of-plane deflections, mathematically: 

 

𝛿(𝑥, 𝑦) = 𝑢2(𝑥, 𝑦) − 𝑢1(𝑥, 𝑦) (2) 

 

By applying the biharmonic operator differentials in Eq. (2), 

thus: 

 

𝛻2𝛿(𝑥, 𝑦) = 𝛻2𝑢2(𝑥, 𝑦) − 𝛻
2𝑢1(𝑥, 𝑦) (3) 

 

By combining Eq. (3) and Eq. (1), the governing equation 

of the elastic layer deflection is: 

 

𝛻2𝛿(𝑥, 𝑦) + 4𝛼1
4𝛿(𝑥, 𝑦) = 0 (4) 

where, 4𝛼1
4 = 𝐾 (

1

𝐷2
+

1

𝐷1
). 

 

2.1.3 Boundary conditions 

In mechanics, boundary and loading conditions play an 

essential rule in computing the mechanical behavior of the 

structural problem. In the present work, both plates are simply 

supported along all four edges. In such conditions, the plate 

deformations are restricted in the transverse direction, but the 

rotations are allowed. For the loadings, an external coupling 

moment (Ma) is applied along the opposite plate edges (x=0, 

y=a and x=b, y=a). Therefore, the problem boundary 

conditions can be written as: 

For plate 1: 

 

𝑢1(0, 𝑦) = 𝑢1(𝑎, 𝑦) = 𝑢1(𝑥, 0) =  𝑢1(𝑥, 𝑏) = 0 

𝑑2𝑢1
𝑑𝑥2

(𝑥 = 0) =
𝑀𝑎

𝐷1
 

𝑑2𝑢1
𝑑𝑥2

(𝑥 = 𝑎) =
𝑀𝑎

𝐷1
 

𝑑2𝑢1
𝑑𝑦2

(𝑦 = 0) = 0 

𝑑2𝑢1
𝑑𝑦2

(𝑦 = 𝑏) = 0 

(5) 

 

For plate 2: 

 

𝑢2(0, 𝑦) = 𝑢2(𝑎, 𝑦) = 𝑢2(𝑥, 0) =  𝑢2(𝑥, 𝑏) = 0 

𝑑2𝑢2
𝑑𝑥2

(𝑥 = 0) =
𝑀𝑎

𝐷2
 

𝑑2𝑢2
𝑑𝑥2

(𝑥 = 𝑎) =
𝑀𝑎

𝐷2
 

𝑑2𝑢2
𝑑𝑦2

(𝑦 = 0) = 0 

𝑑2𝑢2
𝑑𝑦2

(𝑦 = 𝑏) = 0 

(6) 

 

Considering Eq. (2), the boundary conditions for δ(x,y), are 

 

𝛿(0, 𝑦) = 𝑢2(0, 𝑦) − 𝑢1(0, 𝑦) = 0 

𝛿(𝑎, 𝑦) = 𝑢2(𝑎, 𝑦) − 𝑢1(𝑎, 𝑦) = 0 

𝛿(𝑥, 0) = 𝑢2(𝑥, 0) − 𝑢1(𝑥, 0) = 0 

𝛿(𝑥, 𝑏) = 𝑢2(𝑥, 𝑏) − 𝑢1(𝑥, 𝑏) = 0 

𝑑2𝛿(0, 𝑦)

𝑑𝑥2
=
𝑑2𝑢2(0, 𝑦)

𝑑𝑥2
−
𝑑2𝑢1(0, 𝑦)

𝑑𝑥2

= 𝑀𝑎 (
1

𝐷2
−
1

𝐷1
) 

𝑑2𝛿(𝑎, 𝑦)

𝑑𝑥2
=
𝑑2𝑢2(𝑎, 𝑦)

𝑑𝑥2
−
𝑑2𝑢1(𝑎, 𝑦)

𝑑𝑥2

= 𝑀𝑎 (
1

𝐷2
−
1

𝐷1
) 

𝑑2𝛿(𝑥, 0)

𝑑𝑦2
=
𝑑2𝑢2(𝑥, 0)

𝑑𝑦2
−
𝑑2𝑢1(𝑥, 0)

𝑑𝑦2
= 0 

𝑑2𝛿(𝑥, 𝑏)

𝑑𝑦2
=
𝑑2𝑢2(𝑥, 𝑏)

𝑑𝑦2
−
𝑑2𝑢1(𝑥, 𝑏)

𝑑𝑦2
= 0 

(7) 

 

2.2 Finite difference method solution 

 

2.2.1 Mathematical implementation 

In this work, the finite difference method (FDM) was 

elected to solve for the elastic layer out-of-plane deformations. 

In this solution, Newton’s finite divided differences (FDD’s) 
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are chosen to be substituted in the PDE of Eq. (4). Therefore, 

these differential equations would be transformed into a 

system of linear algebraic equations which can be solved 

conveniently. Before getting into the FDM details, the PDE of 

Eq. (4) is of the fourth order. Thus, an order reduction is 

required. This reduction will result into s system of two 

ordinary differential equations (ODE’s). this system of ODE’s 

is ready to be tackled using the FDM method. The order 

reduction process is done by letting 𝑣(𝑥) = 𝑑2𝛿/𝑑𝑥2 +
 𝑑2𝛿/𝑑𝑦2 , thus Eq. (4) can now be represented as pair of 

second order ODE’s as: 

 

𝑣(𝑥, 𝑦) =
𝑑2𝛿

𝑑𝑥2
+
𝑑2𝛿

𝑑𝑦2
 

𝑑2𝑣

𝑑𝑥2
+
𝑑4𝑣

𝑑𝑦4
= −4𝛼1

4𝛿(𝑥, 𝑦) 

(8) 

 

For the second derivatives terms of Eq. (8) above 𝑑2𝑣/𝑑𝑥2 , 
𝑑2𝑣/𝑑𝑦2, 𝑑2𝛿/𝑑𝑥2 and 𝑑2𝛿/𝑑𝑦2, the Newton’s FDD’s are: 

 

𝑑2𝑣

𝑑𝑥2
=
𝑣𝑖+1,𝑗 − 2𝑣𝑖,𝑗 + 𝑣𝑖−1,𝑗

(Δ𝑥)2
 

𝑑2𝑣

𝑑𝑦2
=
𝑣𝑖,𝑗+1 − 2𝑣𝑖,𝑗 + 𝑣𝑖,𝑗−1

(Δ𝑦)2
 

𝑑2𝛿

𝑑𝑥2
=
𝛿𝑖+1,𝑗 − 2𝛿𝑖,𝑗 + 𝛿𝑖−1,𝑗

(Δ𝑥)2
 

𝑑2𝛿

𝑑𝑦2
=
𝛿𝑖,𝑗+1 − 2𝛿𝑖,𝑗 + 𝛿𝑖,𝑗−1

(Δ𝑦)2
 

(9) 

 

where, Δx and Δy are the step size in the x and y directions, 

respectively; and i=0, 1, 2, …, n-1 , j=0, 1, 2, …, n-1 where n 

is the total number of nodes used in the FDM in x and y 

directions, respectively. Thus, Δ𝑥 =
𝑎

𝑛−1
, Δ𝑦 =

𝑏

𝑛−1
. 

Therefore, the substitution of the FDD’s of Eq. (9) into the 

system shown in Eq. (8) gives the set of equations presented 

in Eq. (10). 

It is important here to emphasize that the equations above 

(Eq. (10)) will end up in a system of 2*(N-2)2 tridiagonal 

algebraic linear equations as the exterior nodes (first and last 

nodes) are naturally satisfied by the boundary conditions of the 

problem. Where the interior nodes solutions needs to be 

calculated and this is the whole idea of FDM. The equations 

above apply for each of the interior nodes (N) of v(x, y) and 

δ(x,y), as the first and the last nodes, i.e., the exterior nodes, 

are normally specified by the boundary conditions. Such 

systems are simple and computationally effective to solve. An 

illustrative example on the use of FDM in solving Eq. (4) is 

thoroughly presented in Appendix A. 

 

(Δ𝑦)2𝑣𝑖+1,𝑗 − 2(Δ𝑦)
2𝑣𝑖,𝑗 + (Δ𝑦)

2𝑣𝑖−1,𝑗
+ (Δ𝑥)2𝑣𝑖,𝑗+1 − 2(Δ𝑥)

2𝑣𝑖,𝑗
+ (Δ𝑥)2𝑣𝑖,𝑗−1
= −4𝛼1

4(Δ𝑥)2(Δ𝑦)2𝛿𝑖 
(Δ𝑦)2𝛿𝑖+1,𝑗 − 2(Δ𝑦)

2𝛿𝑖,𝑗 + (Δ𝑦)
2𝛿𝑖−1,𝑗

+ (Δ𝑥)2𝛿𝑖,𝑗+1 − 2(Δ𝑥)
2𝛿𝑖,𝑗

+ (Δ𝑥)2𝛿𝑖,𝑗−1 = (Δ𝑥)
2(Δ𝑦)2𝑣𝑖 

(10) 

 

2.2.2 Numerical accuracy study 

Like any other numerical method, the accuracy of the FDM 

is highly dependable of the number of approximations, i.e., 

nodes, used in the solution. In fact, the more nodes considered 

is the more accurate but slower solution. Thus, a numerical 

accuracy check is required here and therefore, performed. In 

other words, the current numerical solution is optimized in 

terms of accuracy and computational efficiency. Therefore, 

several number of nodes (approximations) were considered. 

The elastic coupling layer deflections were computed for each 

approximation and recorded. Specifically, the deflections 

across the layer diagonal i.e., δ(x=y), were considered. During 

the process, the structural parameter used here are a=1, b=1, 
D1=1, D2=2, 𝐾 = 100 and Ma=1.  

Figure 2 shows the deflections across the layer diagonal for 

each tested configuration and Figure 3 presents the 

corresponding maximum diagonal deflections. In both figures 

𝑁  is the number of interior nodes in the FDM solutions 

(remember N=n-2 where n is the total number of nodes). The 

results of this accuracy check suggests that for N=30 nodes the 

deflections have reached a converged numerical value. Thus, 

this number of nodes was selected to conduct the rest of the 

numerical analysis of this present study. 

 

 
 

Figure 2. Numerical accuracy check: Elastic layer 

deformations across the diagonal for several mesh 

configurations 

 

 
 

Figure 3. Numerical accuracy check: Elastic layer maximum 

deformations for several mesh configurations 

 

 

3. RESULTS AND DISCUSSIONS 

 

This study presents the effect of the key structural 

parameters of the coupled plate configuration on solder 

deflection. During this analysis, one key parameter was varied 

at a time while all other factors are held constant. Additionally, 

unless otherwise mentioned, for generalization a unity value 
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was used for the geometric and/or material parameter as D1=1 

N.m, D2=1 N.m, K=100 N/m3, a=1 m and b=1 m. Also, the 

analysis was carried out for a unity applied coupling moment 

Ma=1 N.m. 

In practice, it is mighty believed that the relative rigidity 

between the IC package and the PCB board (D2/D1 ratio) has 

a dominant and major effect on the solder interconnect 

deformations, and thus, stresses. The current paper studied this 

effect by varying the D2/D1 ratio while keeping the stiffness of 

the coupling layer constant. Figure 4 depicts the elastic layer 

deflections across the diagonal of the plate structure. The 

corresponding maximum deflections as a function of the D2/D1 

ratio are also available in Figure 5. The first observation that 

can be made here is that, for all D2/D1 values, the maximum 

deflections of the elastic layer are at the center of the layer 

(Figure 4). Also, for D2/D1 less than 1 (stiffer IC package), the 

elastic layer is under compression as the deformations are 

negative. Furthermore, for D2/D1 larger than 1 (stiffer board), 

the layer is undergoing tensile deformations as the deflections 

are positive. Additionally, as D2/D1 increases, or the relative 

rigidity between the two plates becomes greater, larger 

coupling layer deflections are expected (Figure 5). By relating 

that to the solder interconnects, for larger difference in relative 

stiffness between the PCB and the component, shorter solder 

fatigue life is anticipated. 

The second important structural factor that affects the 

elastic coupling layer behavior is the relative stiffness between 

the elastic layer and either one of the plates. In the current 

work, relative stiffness between the layer and plate 1, or K/D1 

ratio, was selected. Figure 6 shows the elastic layer 

deformations across the diagonal of the layer for different 

K/D1 ratio values. This effect was studied at three scales. The 

first scale is for a very compliant layer (K/D1 less than 1), as 

shown in Figure 6 (a). the second is for stiffer layer (K/D1 is 

greater than 1 but less than 10), this case is presented in Figure 

6 (b). The third and last scale is for very stiff layer (K/D1 is 

greater than 10), which is available in Figure 6 (c). The result 

show that generally for stiffer layer, i.e., solders, the 

deformations are smaller and hence longer solder fatigue life. 

However, for this effect to be significant, the change in the 

relative stiffness must be quite large. For a closer look on this 

effect, the layer maximum deflections, the deflections at the 

center of the layer, versus the K/D1 ratio is plotted in Figure 7. 

 

 
 

Figure 4. Elastic layer deformations across the diagonal for 

several D2/D1 ratios 

 

 
 

Figure 5. Elastic layer maximum deformations versus D2/D1 

ratio 
 

 
(a) K/D1 less than 1 

 
(b) 1<K/D1<10 

 
(c) K/D1 greater than 10 

 

Figure 6. Elastic layer deformations across the diagonal for 

several K/D1 ratio 
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Figure 7. Elastic layer maximum deformations versus K/D1 

ratio 

 
This figure confirms the previous conclusions, the stiffer the 

layer the smaller the deformations. However, this effect is 

minor. Specifically, when K/D1 is equal to 0.25 the layer 

maximum deflection is 18.5 𝜇𝑚  while the maximum 

deflection is equal to 11.7 𝜇𝑚  when K/D1=125. Thus, to 

reduce the elastic layer deflections by almost 37% the relative 

stiffness between the layer and plate 1 must increase by 500 

times. Therefore, this effect is considered to be minor as it is 

practically impossible to achieve this value of relative stiffness. 

The third and last geometric parameter studied in the present 

work is the effect of the plate aspect ratio, i.e., the ratio 

between the plate length and width (a/b) on the coupling layer 

out-of-plane deformations. 

Figure 8 shows this effect. For small a/b values, larger 

elastic layer deflections are anticipated and the deformations 

across the diagonal are in a curved shape. However, for 

smaller aspect ratios, smaller layer deflections are expected 

and the deformations across the layers’ diagonal are flat as the 

structure becomes very stiff which prohibits the deformations. 

 

 

 
Figure 8. Elastic layer deformations across the diagonal for 

several plate aspect (a/b) ratio 

 
Additionally, as shown in Figure 9, the aspect ratio effect is 

more dominant for smaller ratios (a/b less than 2) and it 

becomes less significant for larger plate sizes. 

 

 
 

Figure 9. Elastic layer maximum deformations versus plate 

aspect (a/b) ratio 

 

 

4. CONCLUSIONS 

 

The finite difference method was employed to solve for the 

two elastically coupled under symmetrical bending problem. 

During the solution, the fourth order partial differential 

equations that governs the system was transformed into two 

second order equations and hence the finite difference method 

was applied. The numerical efficiency of this method was 

explicitly ensured. Finally, the influence of the key structural 

geometric and material parameters was thoroughly tested and 

hence discussed with special attention to its application in the 

mechanical analysis of electronic assemblies under bending. 
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APPENDIX A: FDM Application 

 

The details of the implementation of the FDM method are 

shown in this appendix with an interpretative example. In this 

example, 5 nodes along each side in the x and y-directions are 

considered as shown in Figure A.1. 

 

 
 

Figure A.1. FDM representation: Five nodes per axis 

 

The nodes were named as (i,j) where i is the node number 

along the x-axis and j is along the y-axis. Each index is 

numbered from 0 to 4. The resultant number of nodes is 25 

where 16 of them are spotted at the boundaries of the structural 

and called as the exterior nodes. The remaining 9 nodes are 

called the interior nodes as they are located inside the structure. 

The values of v(x,y) at the exterior or boundary nodes are 

naturally obtained considering the BC’s of Eq. (5) as well as 

Eq. (6) and Eq. (7), as 

 

𝑣0,0 = 𝑣(0,0) =
𝑑2𝛿(0,0)

𝑑𝑥2
+
𝑑2𝛿(0,0)

𝑑𝑦2
= 𝑀𝑎 (

1

𝐷2
−
1

𝐷1
) 

𝑣0,1 = 𝑣(0,1) =
𝑑2𝛿(0,1)

𝑑𝑥2
+
𝑑2𝛿(0,1)

𝑑𝑦2
= 𝑀𝑎 (

1

𝐷2
−
1

𝐷1
) 

(A1) 
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𝑣0,2 = 𝑣(0,2) =
𝑑2𝛿(0,2)

𝑑𝑥2
+
𝑑2𝛿(0,2)

𝑑𝑦2
= 𝑀𝑎 (

1

𝐷2
−
1

𝐷1
) 

𝑣0,3 = 𝑣(0,3) =
𝑑2𝛿(0,3)

𝑑𝑥2
+
𝑑2𝛿(0,3)

𝑑𝑦2
= 𝑀𝑎 (

1

𝐷2
−
1

𝐷1
) 

𝑣0,4 = 𝑣(0,4) =
𝑑2𝛿(0,4)

𝑑𝑥2
+
𝑑2𝛿(0,4)

𝑑𝑦2
= 𝑀𝑎 (

1

𝐷2
−
1

𝐷1
) 

𝑣4,0 = 𝑣(4,0) =
𝑑2𝛿(4,0)

𝑑𝑥2
+
𝑑2𝛿(4,0)

𝑑𝑦2
= 𝑀𝑎 (

1

𝐷2
−
1

𝐷1
) 

𝑣4,1 = 𝑣(4,1) =
𝑑2𝛿(4,1)

𝑑𝑥2
+
𝑑2𝛿(4,1)

𝑑𝑦2
= 𝑀𝑎 (

1

𝐷2
−
1

𝐷1
) 

𝑣4,2 = 𝑣(4,2) =
𝑑2𝛿(4,2)

𝑑𝑥2
+
𝑑2𝛿(4,2)

𝑑𝑦2
= 𝑀𝑎 (

1

𝐷2
−
1

𝐷1
) 

𝑣4,3 = 𝑣(4,3) =
𝑑2𝛿(4,3)

𝑑𝑥2
+
𝑑2𝛿(4,3)

𝑑𝑦2
= 𝑀𝑎 (

1

𝐷2
−
1

𝐷1
) 

𝑣4,4 = 𝑣(4,4) =
𝑑2𝛿(4,4)

𝑑𝑥2
+
𝑑2𝛿(4,4)

𝑑𝑦2
= 𝑀𝑎 (

1

𝐷2
−
1

𝐷1
) 

𝑣1,0 = 𝑣(1,0) =
𝑑2𝛿(1,0)

𝑑𝑥2
+
𝑑2𝛿(1,0)

𝑑𝑦2
= 0 

𝑣2,0 = 𝑣(2,0) =
𝑑2𝛿(2,0)

𝑑𝑥2
+
𝑑2𝛿(2,0)

𝑑𝑦2
= 0 

𝑣3,0 = 𝑣(3,0) =
𝑑2𝛿(3,0)

𝑑𝑥2
+
𝑑2𝛿(3,0)

𝑑𝑦2
= 0 

𝑣0,4 = 𝑣(0,4) =
𝑑2𝛿(0,4)

𝑑𝑥2
+
𝑑2𝛿(0,4)

𝑑𝑦2
= 𝑀𝑎 (

1

𝐷1
−
1

𝐷2
) 

𝑣1,4 = 𝑣(1,4) =
𝑑2𝛿(1,4)

𝑑𝑥2
+
𝑑2𝛿(1,4)

𝑑𝑦2
= 0 

𝑣2,4 = 𝑣(2,4) =
𝑑2𝛿(2,4)

𝑑𝑥2
+
𝑑2𝛿(2,4)

𝑑𝑦2
= 0 

𝑣3,4 = 𝑣(3,4) =
𝑑2𝛿(3,4)

𝑑𝑥2
+
𝑑2𝛿(3,4)

𝑑𝑦2
= 0 

 

Also, the values of δ(x) at the boundary nodes are given by 

 
𝛿0,0 = 𝛿(0,0) = 0 

𝛿0,1 = 𝛿(0,1) = 0 

𝛿0,2 = 𝛿(0,2) = 0 

𝛿0,3 = 𝛿(0,3) = 0 

𝛿0,4 = 𝛿(0,4) = 0 

𝛿4,0 = 𝛿(4,0) = 0 

𝛿4,1 = 𝛿(4,1) = 0 

𝛿4,2 = 𝛿(4,2) = 0 

𝛿4,3 = 𝛿(4,3) = 0 

𝛿4,4 = 𝛿(4,4) = 0 

𝛿1,0 = 𝛿(1,0) = 0 

𝛿2,0 = 𝛿(2,0) = 0 

𝛿3,0 = 𝛿(3,0) = 0 

𝛿1,4 = 𝛿(1,4) = 0 

𝛿2,4 = 𝛿(2,4) = 0 

𝛿3,4 = 𝛿(3,4) = 0 

(A2) 

 

For the remaining and the unknown interior 9 nodes, two 

equations, one for v(x,y) and one for δ(x,y), are required and 

hence formulated for each. Thus, 18 linear algebraic equations 

are derived considering Eq. (10), so. 

 

𝑖 = 1 
𝑗 = 1 

(Δ𝑦)2𝑣2,1 − 2(Δ𝑦)
2𝑣1,1 + (Δ𝑦)

2𝑣0,1 + (Δ𝑥)
2𝑣1,2

− 2(Δ𝑥)2𝑣1,1 + (Δ𝑥)
2𝑣1,0

= −4𝛼1
4(Δ𝑥)2(Δ𝑦)2𝛿1,1 

(A3.1.a) 

(Δ𝑦)2𝛿2,1 − 2(Δ𝑦)
2𝛿1,1 + (Δ𝑦)

2𝛿0,1 + (Δ𝑥)
2𝛿1,2

− 2(Δ𝑥)2𝛿1,1 + (Δ𝑥)
2𝛿1,0

= (Δ𝑥)2(Δ𝑦)2𝑣1,1 
(A3.1.b) 

𝑖 = 1 
𝑗 = 2 

(Δ𝑦)2𝑣2,2 − 2(Δ𝑦)
2𝑣1,2 + (Δ𝑦)

2𝑣0,2 + (Δ𝑥)
2𝑣1,3

− 2(Δ𝑥)2𝑣1,2 + (Δ𝑥)
2𝑣1,0

= −4𝛼1
4(Δ𝑥)2(Δ𝑦)2𝛿1,2 

(A3.2.a) 

(Δ𝑦)2𝛿2,2 − 2(Δ𝑦)
2𝛿1,2 + (Δ𝑦)

2𝛿0,2 + (Δ𝑥)
2𝛿1,3

− 2(Δ𝑥)2𝛿1,2 + (Δ𝑥)
2𝛿1,0

= (Δ𝑥)2(Δ𝑦)2𝑣1,2 
(A3.2.b) 

𝑖 = 1 
𝑗 = 3 

(Δ𝑦)2𝑣2,3 − 2(Δ𝑦)
2𝑣1,3 + (Δ𝑦)

2𝑣0,3 + (Δ𝑥)
2𝑣1,4

− 2(Δ𝑥)2𝑣1,3 + (Δ𝑥)
2𝑣1,2

= −4𝛼1
4(Δ𝑥)2(Δ𝑦)2𝛿1,3 

(A3.3.a) 

(Δ𝑦)2𝛿2,3 − 2(Δ𝑦)
2𝛿1,3 + (Δ𝑦)

2𝛿0,3 + (Δ𝑥)
2𝛿1,4

− 2(Δ𝑥)2𝛿1,3 + (Δ𝑥)
2𝛿1,2

= (Δ𝑥)2(Δ𝑦)2𝑣1,3 
(A3.3.b) 

𝑖 = 2 
𝑗 = 1 

(Δ𝑦)2𝑣3,1 − 2(Δ𝑦)
2𝑣2,1 + (Δ𝑦)

2𝑣1,1 + (Δ𝑥)
2𝑣2,2

− 2(Δ𝑥)2𝑣2,1 + (Δ𝑥)
2𝑣2,0

= −4𝛼1
4(Δ𝑥)2(Δ𝑦)2𝛿2,1 

(A3.4.a) 

(Δ𝑦)2𝛿3,1 − 2(Δ𝑦)
2𝛿2,1 + (Δ𝑦)

2𝛿1,1 + (Δ𝑥)
2𝛿2,2

− 2(Δ𝑥)2𝛿2,1 + (Δ𝑥)
2𝛿2,0

= (Δ𝑥)2(Δ𝑦)2𝑣2,1 
(A3.4.b) 

𝑖 = 2 
𝑗 = 2 

(Δ𝑦)2𝑣3,2 − 2(Δ𝑦)
2𝑣2,2 + (Δ𝑦)

2𝑣1,2 + (Δ𝑥)
2𝑣2,3

− 2(Δ𝑥)2𝑣2,2 + (Δ𝑥)
2𝑣2,1

= −4𝛼1
4(Δ𝑥)2(Δ𝑦)2𝛿2,2 

(A3.5.a) 

(Δ𝑦)2𝛿3,2 − 2(Δ𝑦)
2𝛿2,2 + (Δ𝑦)

2𝛿1,2 + (Δ𝑥)
2𝛿2,3

− 2(Δ𝑥)2𝛿2,2 + (Δ𝑥)
2𝛿2,1

= (Δ𝑥)2(Δ𝑦)2𝑣2,2 
(A3.5.b) 

𝑖 = 2 

𝑗 = 3 

(Δ𝑦)2𝑣3,3 − 2(Δ𝑦)
2𝑣2,3 + (Δ𝑦)

2𝑣1,3 + (Δ𝑥)
2𝑣2,4

− 2(Δ𝑥)2𝑣2,3 + (Δ𝑥)
2𝑣2,2

= −4𝛼1
4(Δ𝑥)2(Δ𝑦)2𝛿2,3 

(A3.6.a) 

(Δ𝑦)2𝛿3,3 − 2(Δ𝑦)
2𝛿2,3 + (Δ𝑦)

2𝛿1,3 + (Δ𝑥)
2𝛿2,4

− 2(Δ𝑥)2𝛿2,3 + (Δ𝑥)
2𝛿2,2

= (Δ𝑥)2(Δ𝑦)2𝑣2,3 
(A3.6.b) 

𝑖 = 3 

𝑗 = 1 

(Δ𝑦)2𝑣4,1 − 2(Δ𝑦)
2𝑣3,1 + (Δ𝑦)

2𝑣2,1 + (Δ𝑥)
2𝑣3,2

− 2(Δ𝑥)2𝑣3,1 + (Δ𝑥)
2𝑣3,0

= −4𝛼1
4(Δ𝑥)2(Δ𝑦)2𝛿3,1 

(A3.7.a) 
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(Δ𝑦)2𝛿4,1 − 2(Δ𝑦)
2𝛿3,1 + (Δ𝑦)

2𝛿2,1 + (Δ𝑥)
2𝛿3,2

− 2(Δ𝑥)2𝛿3,1 + (Δ𝑥)
2𝛿3,0

= (Δ𝑥)2(Δ𝑦)2𝑣3,1 
(A3.7.b) 

𝑖 = 3 
𝑗 = 2 

(Δ𝑦)2𝑣4,2 − 2(Δ𝑦)
2𝑣3,2 + (Δ𝑦)

2𝑣2,2 + (Δ𝑥)
2𝑣3,3

− 2(Δ𝑥)2𝑣3,2 + (Δ𝑥)
2𝑣3,1

= −4𝛼1
4(Δ𝑥)2(Δ𝑦)2𝛿3,2 

(A3.8.a) 

(Δ𝑦)2𝛿4,2 − 2(Δ𝑦)
2𝛿3,2 + (Δ𝑦)

2𝛿2,2 + (Δ𝑥)
2𝛿3,3

− 2(Δ𝑥)2𝛿3,2 + (Δ𝑥)
2𝛿3,1

= (Δ𝑥)2(Δ𝑦)2𝑣3,2 
(A3.8.b) 

𝑖 = 3 
𝑗 = 3 

(Δ𝑦)2𝑣4,3 − 2(Δ𝑦)
2𝑣3,3 + (Δ𝑦)

2𝑣2,3 + (Δ𝑥)
2𝑣3,4

− 2(Δ𝑥)2𝑣3,3 + (Δ𝑥)
2𝑣3,2

= −4𝛼1
4(Δ𝑥)2(Δ𝑦)2𝛿3,3 

(A3.9.a) 

(Δ𝑦)2𝛿4,3 − 2(Δ𝑦)
2𝛿3,3 + (Δ𝑦)

2𝛿2,3 + (Δ𝑥)
2𝛿3,4

− 2(Δ𝑥)2𝛿3,3 + (Δ𝑥)
2𝛿3,2

= (Δ𝑥)2(Δ𝑦)2𝑣3,3 
(A3.9.b) 

 

where, Δx=a/4 and Δy=b/4 are the step sizes along the x and y-

directions, respectively. Therefore, the 18 linear equations of 

Eq. (A3) above can be written in a matrix form as: 

 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝑑1  𝑑2 0 𝑑3   0  0  0  0  0  𝑑4 0  0  0  0  0  0  0  0
0  𝑑1  𝑑2  0  𝑑3  0  0  0  0  0  𝑑4 0  0  0  0  0  0  0
0  𝑑2  𝑑1  0  0  𝑑3  0  0  0  0  0  𝑑4  0  0  0  0  0  0
𝑑3  0  0  𝑑1 𝑑2 0  𝑑3 0  0  0  0  0  𝑑4  0  0  0  0  0
0 𝑑3 0  𝑑2  𝑑1  𝑑2 0  𝑑3  0  0  0  0  0  𝑑4  0  0  0  0
0  0  𝑑3 0  𝑑2  𝑑1  0  0  𝑑3  0  0  0  0  0  𝑑4  0  0  0
0  0  0  𝑑3  0  0  𝑑1  𝑑2 0  0  0  0  0  0  0  𝑑4  0  0
0  0  0  0  𝑑3 0  𝑑2  𝑑1  𝑑2 0  0  0  0  0  0  0  𝑑4  0
0  0  0  0  0  𝑑3  0  𝑑2  𝑑1  0  0  0  0  0  0  0  0  𝑑4 
  𝑑5  0  0  0  0  0  0  0  0  𝑑1  𝑑2  0  𝑑3  0  0  0  0  0
0  𝑑5  0  0  0  0  0  0  0  0  𝑑1 𝑑2 0  𝑑3  0  0  0  0 
0  0  𝑑5  0  0  0  0  0  0  0  𝑑2 𝑑1 𝑑2  0  𝑑3  0  0  0
0  0  0  𝑑5  0  0  0  0  0  𝑑3  0  0  𝑑1 𝑑2  0  𝑑3  0  0
  0  0  0  0  𝑑5 0  0  0  0  0  𝑑3 0  𝑑2  𝑑1  𝑑2  0  𝑑3 0
0  0  0  0  0  𝑑5  0  0  0  0  0  𝑑3  0  𝑑2 𝑑1 0  0  𝑑3
0  0  0  0  0  0  𝑑5  0  0  0  0  0  𝑑3 0  0  𝑑1  𝑑2   0
0  0  0  0  0  0  0  𝑑5  0  0  0  0  0  𝑑3  0  𝑑2  𝑑1  𝑑2
  0  0  0  0  0  0  0  0  𝑑5  0  0  0  0  0  𝑑3 0  𝑑2  𝑑1 ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

{
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
𝑣1,1
𝑣1,2
𝑣1,3
𝑣2,1
𝑣2,2
𝑣2,3
𝑣3,1
𝑣3,2
𝑣3,3
𝛿1,1
𝛿1,2
𝛿1,3
𝛿2,1
𝛿2,2
𝛿2,3
𝛿3,1
𝛿3,2
𝛿3,3

}
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 (A4) 

=

{
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 −𝑑3𝑀𝑎 (

1

𝐷2
−
1

𝐷1
)

−𝑑3𝑀𝑎 (
1

𝐷2
−
1

𝐷1
)

−𝑑3𝑀𝑎 (
1

𝐷2
−
1

𝐷1
)

0
0
0

−𝑑3𝑀𝑎 (
1

𝐷2
−
1

𝐷1
)

−𝑑3𝑀𝑎 (
1

𝐷2
−
1

𝐷1
)

−𝑑3𝑀𝑎 (
1

𝐷2
−
1

𝐷1
)

0
0
0
0
0
0
0
0
0 }

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

𝛿0,4 = 𝛿(0,4) = 0 

 

where, the diagonals 𝑑1 = −(2(Δ𝑥)
2 + 2(Δ𝑦)2), 𝑑2 = (Δ𝑥)

2, 

𝑑3 = (Δ𝑦)
2, 𝑑4 = 4𝛼1

4(Δ𝑥)2(Δ𝑦)2 and 𝑑5 = (Δ𝑥)
2(Δ𝑦)2. 

The Eq. (A4) above can be expressed in the compact form, 

thus: 

 

[𝐴]{𝑉𝛿} = {𝑐} (A5) 

 

where, [A], {Vδ} and {c} are the constants matrix, unknowns’ 

vector and the right-hand side (RHS) vector, respectively. 

Using linear algebra basic principles, therefore: 

 

{𝑉𝛿} = [𝐴]
−1{𝑐} (A6) 

 

Thus, the solution for vi and δi for each i,j can be obtained 

for the interior nodes. Combing the interior and exterior nodes 

solution ends up with the total solution of the elastically 

coupled plates under bending problem. 
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