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Applied mathematics has become widely used among the computer engineering 

community and various sciences. Not only that, but accuracy and speed are now 

required. Numerical methods have been submitted to demonstrate the efficiency and 

accuracy of these methods by assigning them to a computer that previously been 

corrected in computer formats. This key feature makes the solution perfect and easy to 

used Simpson 1/3 and Simpson 3/8 are applied to the proposed equation. A trapezoidal 

method of fractional differential equations, solved using different numerical methods to 

demonstrate the accuracy of properties, was used. We dealt with many numerical 

algorithms. Below are decisions with written and unwritten differential equations. 

Generate error analysis and stability analysis for a high-resolution digital system. 

Research objectives: Turns out numerical solutions are very accurate near the exact 

solution. This paper aims to provide numerical calculations for different methods. The 

graph is compared with the computer literary graphs for clarity. Effectiveness of 

numerical algorithms used with exact solutions and profitable MATLAB solutions. 
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exacting 

1. INTRODUCTION

Most numerical methods for understanding nonlinear 

conditions are still important, because arithmetic is a link in 

many sciences, where science and innovation are linked to a 

reasonable and clear communication so we resort to numerical 

solutions because they can to find integrations that may be 

difficult to find in analytical solutions, although numerical 

solutions are approximate [1]. Analytical solutions cannot be 

closed securely due to various difficulties that may guide us in 

the solution. It is difficult to find a solution that may be 

complex or long. Therefore, it requires that we resort to 

numerical computational techniques, and master the test in a 

number of related numerical tasks [2]. The feature of different 

answer to the request is based on Simpson's basic principle. 

Recently, several revised methods for understanding the 

nonlinear state that used the two Simpson types have appeared. 

At the moment, it is convenient for the scientist to develop a 

reasonable model of use, which can already be compared to 

the correct user application before we solved in Simpson [3]. 

The description of this delay can be considered due to the fact 

that intermediate solutions do not work when they are created, 

or that physical approximations are usually a guarantee when 

independence in differential and integral variance with 

integers is evident on the way to a better approximation [4]. 

More recently, if so, subdivisions have been evaluated 

according to Newton's laws and false deviations, just like 

Simpson's. Differential conditions have Acquired an 

impressive level of unpredictability compared to the 

hypothesis which has strong consistency with segmented 

computations. Many applications will be developed in 

different sciences that are used in applications for all purposes 

and tasks in solving complex micro-problems [5, 6]. The 

integer coefficient of variation as shown in the case type is a 

relative parameter that can be memorized in the same way as 

the start time also as shown in its format as there are many 

incomplete sections that go against the old usage patterns 

depicting the properties of the land for different materials and 

procedures Numerical solutions are also used in solving 

Boolean equations [7]. One of the reasons for the gradual 

spread of mathematics into logical and specialized fields of life 

is that it is used in solving many problems. In addition, there 

are some inconsistencies in reports about the correct 

separation with mathematical solutions. The subsequent 

influence of small parts of the course may be gradually 

appropriate in approximating numerical linear solutions [8]. 

Where the typical subprime, incomplete as a rule leads to 

many inconsistencies with numerical strategies that are 

difficult to implement, and measures are taken for them in 

solving high-order fractional equations [9]. Analytical 

solutions for most of the differential equations are complex 

and longer than the exact value as they used their polynomial 

expansion [10]. Accurate analytical solutions are often 

obtained in a few simple steps that lead to special functions. 

However, there are difficulties in finding exact solutions to 

most problems of Partial differential equations in applied 

sciences in agriculture, medicine and technology. Therefore, 

calculating numerical solutions using these equations becomes 

more important [11, 12]. It should also be noted that 

hypothetical studies of numerical methods and error estimates 

of the quarterly differential equation are very limited because 

theoretical analysis using numerical solutions of fraction 

methods is often long and complex. We mean derivatives, 

which are often used [13]. When using the Riemann method 

for contracting numerical models, the prerequisites must be 

converted into exact equations to find the parts not covered by 

Mathematical Modelling of Engineering Problems 
Vol. 9, No. 5, October, 2022, pp. 1352-1358 

Journal homepage: http://iieta.org/journals/mmep 

1352

https://crossmark.crossref.org/dialog/?doi=10.18280/mmep.090525&domain=pdf


 

any known physical studies, and thus the approach, as a 

general rule, is not well suited to the real applications of 

solving various numerical integrals [14]. Recently, impressive 

attempts have been made to validate a digital device, 

indicating that reading drugs in numerical solutions is close to 

microcomputer methods for device discovery, although it 

takes a lot of time to get proper solutions. Attempts to improve 

it with the help of MATLAB [15]. Who used the following 

system elements to access the computer architecture with 

Simpson [16]. Numerical integration methods with the 

standard PCF query are a suitable set of numerical and logical 

options for subsequent tests in applied systems using 

MATLAB [17]. This document is sorted differently by 

different digital solutions. The state of the different species in 

the solutions was understood and summarized in five 

numerical ways, and one of the models was the amplitude of 

the parts. To emphasize the use of exponential computing and 

numerical algorithms, a large extended classification that is 

close to the ideal solution will be provided, which can be 

developed or improved, because the results of the current 

study are shown to exceed the numerical methods. The 

purpose of this study is to obtain an effective method through 

irreplaceable numerical solutions, that is, its solution is easy 

and short with fewer errors. We are always looking for it, but 

a computer using MATLAB gives useful and direct results 

depending on the solving of the numerical methods used in this 

study of various numerical and analytic solutions problems 

that distinguish the trapezoid method from numerical methods 

[18]. It also adds speed to computer solutions and eliminates 

truncation errors. The change of reliability in a high-level 

advanced state is manifested in agreements with many models, 

for example, numerical methods and various strategies, to 

demonstrate the skill and accuracy of utilitarian agreements. 

In addition, many equations cannot find their integrals as we 

mentioned. 

Through our research and our knowledge of many studies 

in the field of mathematics in the solutions of numerical 

analysis methods and numerical integration methods that 

always help us in finding many integrations, including some 

functions that are difficult to find solutions, we were able to 

look in a study of several types of numerical methods for 

different problems and then compare them with The exact 

solutions and the MATLAB solution, although we cannot 

cover the whole topic, as we have chosen some diverse 

examples to illustrate, which we will consider as a measure of 

the degree of accuracy of the methods that we will choose, in 

addition to the MATLAB solution, which is a distinctive 

solution and gives useful results. In addition to that the above 

numerical solution methods, today's more advanced methods 

are limited in terms of various numerical approximation 

methods variable in order [19, 20]. However, we cannot 

dispense with numerical methods in finding solutions to 

problems Different types to cover the largest area of numerical 

solutions, which are Simpson of its two types and Trapezoidal, 

which is one of the distinctive numerical integration methods 

that overcame Simpson through solutions. General for these 

arithmetic operations, which we seek and hope to develop and 

benefit from. 
 

 

2. IMPROVE METHODS OF SOLUTIONS 

 

In this study, we will present selected methods of numerical 

solution which focus on the performance of good 

approximation methods to benefit from approximation 

solutions aimed at trapezoidal method, Simpson's methods, 

accurate analytical solution and MATLAB. In this regard it is 

suffices to compare performance in terms of numerical 

accuracy and calculation error. Let us offer solutions to solve 

various problems. 

 

2.1 Trapezoidal base 

 

Task n=1 in the general formula: 

 

∫ 𝑦
𝑥𝑛

𝑥0
𝑑𝑥 = 𝑛ℎ [𝑦0 +

𝑛

2
∆𝑦0 +

𝑛(2𝑛−3)

12
∆2𝑦0 +

𝑛(𝑛−2)2

24
∆3𝑦0 +

⋯ ]  

 

All the top first differences will be zero, and we'll get them: 

 

∫ 𝑦
𝑥1

𝑥0
𝑑𝑥 = ℎ [𝑦0 +

1

2
∆𝑦0] = ℎ [𝑦0 +

1

2
(𝑦1+𝑦0)] =

ℎ

2
(𝑦0+𝑦1)  

 

For the next interval [x1, x2] we conclude in a similar way: 

 

∫ 𝑦 𝑑𝑥
𝑥2

𝑥1

=
ℎ

2
(𝑦1+𝑦2) 

 

And so on. For our last interval [xn-1, xn] we have: 

 

∫ 𝑦 𝑑𝑥
𝑥𝑛

𝑥𝑛−1

=
ℎ

2
(𝑦𝑛−1+𝑦𝑛) 

 

Combining the express, we develop law: 

 

∫ 𝑦 𝑑𝑥
𝑥𝑛

𝑥0

=
ℎ

2
(𝑦0+2(𝑦1 + 𝑦2 + ⋯ + 𝑦𝑛−1) + 𝑦𝑛) 

 

which is known as a trapezoid law. 

 

2.2 Simpson 1⁄3 rule 

 

This rule is obtained if we put n=2, as in the formula 

 

∫ 𝑦
𝑥𝑛

𝑥0

𝑑𝑥 =  𝑛ℎ [𝑦0 +
𝑛

2
∆𝑦0 +

𝑛(2𝑛 − 3)

12
∆2𝑦0

+
𝑛(𝑛 − 2)2

24
∆3𝑦0 + ⋯ ] 

 

Replace the curve with n⁄2 quadratic or equivalent 

polynomial arcs . 

We have what: 

 

∫ 𝑦

𝑥2

𝑥0

𝑑𝑥 = 2ℎ [𝑦0 +
1

2
∆𝑦0 +

1

6
∆2𝑦0] =

ℎ

3
[𝑦0 + 4𝑦1 + 𝑦2] 

 

Similarity 

 

∫ 𝑦 𝑑𝑥
𝑥4

𝑥2

 =
ℎ

3
[𝑦2 + 4𝑦3 + 𝑦4] 

 

Ultimately 
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∫ 𝑦 𝑑𝑥
𝑥𝑛

𝑥𝑛−2

 =
ℎ

3
[𝑦𝑛−2 + 4𝑦𝑛−1 + 𝑦𝑛] 

 

Summarize, we get it: 

 

∫ 𝑦 𝑑𝑥
𝑥𝑛

𝑥0

=
ℎ

3
(𝑦0+4(𝑦1 + 𝑦3 + 𝑦5 + ⋯ + 𝑦𝑛−1)

+ 2(𝑦2 + 𝑦4 + 𝑦6 + ⋯ + 𝑦𝑛−2) + 𝑦𝑛) 

 

which is commonly known as Simpson 1⁄3. 

 

2.3 Simpson 3⁄8 rule 

 

Setting n=3 in equation: 

 

∫ 𝑦

𝑥𝑛

𝑥0

𝑑𝑥 = 𝑛ℎ [𝑦0 +
𝑛

2
∆𝑦0 +

𝑛(2𝑛 − 3)

12
∆2𝑦0

+
𝑛(𝑛 − 2)2

24
∆3𝑦0 + ⋯ ] 

 

Notice that all variations above the third become equal to 

zero, and we get them: 

 

∫ 𝑦

𝑥3

𝑥0

𝑑𝑥 = 3ℎ [𝑦0 +
3

2
∆𝑦0 +

3

4
∆2𝑦0 +

1

8
∆3𝑦0]

= 3ℎ[𝑦0 +
3

2
(𝑦1 − 𝑦0)

+
3

4
(𝑦2 − 2𝑦1 + 𝑦0) +

1

8
(𝑦3 − 3𝑦2 + 3𝑦1

− 𝑦0)] = 3ℎ 8⁄ ( 𝑦0 + 3𝑦1 + 3𝑦2 + 𝑦3) 

 

In the same way: 

 

∫ 𝑦

𝑥3

𝑥0

𝑑𝑥 =
3ℎ

8
(𝑦3 + 3𝑦4 + 3𝑦5 + 𝑦6) 

 

And so on. Summing up all this, we get it: 

 

∫ 𝑦 𝑑𝑥
𝑥𝑛

𝑥0

=
3ℎ

8
[(𝑦0+3𝑦1 + 3𝑦2 + 𝑦3)

+ (𝑦3 + 3𝑦4 + 3𝑦5 + 𝑦6) + ⋯
+ (𝑦𝑛−3 + 3𝑦𝑛−2 + 3𝑦𝑛−1 + 𝑦𝑛)]
= 3ℎ 8⁄ (𝑦0 + 3𝑦1 + 3𝑦2 + 2𝑦3 + 3𝑦4

+ 3𝑦5 + 2𝑦6 + ⋯ + 2𝑦𝑛−3 + 3𝑦𝑛−2

+ 3𝑦𝑛−1 + 𝑦𝑛) 

 

This rule is called Simpson 3⁄8. 

 

2.4 Exacting solutions 

 

This section demonstrates the ability to solve overlapping 

generations of different algorithms using an accurate solution. 

Rather than converge in developing a multifaceted and 

detailed model for many practical reasons for real systems and 

provide a comprehensive analysis, we intend to describe the 

procedure to implement the solution of these algorithms and 

present its computational behavior. Not all functions have an 

analytical solution, with the help of this motivation we resort 

to approximate solutions. 

2.5 MATLAB method 
 

The MATLAB function attempts to approximate the 

integration of numerical function pleasure from the use of 

high-precision global adaptive quadrature and default error 

tolerance. 
 

Example 1. Evaluate ∫
1

1+𝑥
 𝑑𝑥

1

0
 by trapezoidal, Simpson 

1⁄3 Rule and Simpson 3⁄8 Rule, also exciting and MATLAB 

solutions with h=0.25, and 0.125, respectively its shown in the 

results of Table 1 and graph 1. 

When h=0.25, 𝑦 = 𝑓(𝑥) =
1

1+𝑥
, x0=0, y0=1, x1=0.25, y1=0.8, 

x2=0.50, y2=0.6667, x3=0.7, y3=0.5714, x4=1, y4=0.5. 
 

By using trapezoidal rule 
 

∫
1

1 + 𝑋

1

0

=
ℎ

2
 [𝑦0 + 𝑦4 + 2(𝑦1 + 𝑦2 + 𝑦3 )]

=
0.25 

2
[1 + 0.5

+ 2(0.8 + 0.6667 + 0.5714)] = 0.6970 
 

Using Simpson rule as 1⁄3 
 

∫
1

1 + 𝑥

1

0

=  
ℎ

3
 [𝑦0 + 𝑦4 + 2(𝑦2) +  4(𝑦1 +  𝑦3 )]

=
0.25

3
[1 + 0.5 2( 0.6667)

+ 4( 0.8 + 0.5714)] = 0.6932 
 

Using Simpson rule as 3⁄8 
 

∫
1

1 + 𝑥

1

0

=  
3ℎ

8
 [𝑦0 + 𝑦4 + 2(𝑦3) +  3(𝑦1 +  𝑦2 )]

=
3(0.25)

8
[1 + 0.5 + 2(0.5714)

+ 3(0.8 + 0.6667)] = 0.6602 
 

Now h=0.125, 𝑦 = 𝑓(𝑥) =
1

1+𝑥
, x0=0, y0=1, x1=0.125,  

y1=0.8889  ,x2=0.250, y2=0.8, x3=0.375, y3=0.7273,  x4=0.5, 

y4=0.6667, y5=0.6154, x5=0.625, x6=0.750, y6=0.5714, 

x7=0.875, y7=0.5333, x8=1, y8=0.5. 
 

Trapezoidal results with Example 1 
 

∫
1

1 + 𝑥

1

0

=
ℎ

2
[𝑦0 + 𝑦8

+ 2(𝑦1 + 𝑦2 + 𝑦3 + 𝑦4 + 𝑦5 + 𝑦6 + 𝑦7)]

=
0.125

2
 [1 + 0.5 + 2 ( 0.8889 + 0.8

+ 0.7273 + 0.667 + 0.6154 + 0.5714]  
=  0.6941 

 

Simpson Rule 1⁄3 results 
 

∫
1

1 + x

1

0

=  
h

3
 [y0 + y8

+ 2(y2 + y4 + y6) + 4(y1 + y3 + y5 + y7)

=
0.125

3
[1 + 0.5 + 2(0.8 + 0.6667 + 0.5714)

+ 4(0.8889 + 0.7273 + 0.6154 + 0.5333]
= 0.6932 
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Simpson Rule 3⁄8 solutions 
 

∫
1

1 + 𝑥

1

0

=  
3ℎ

8
 [𝑦0 + 𝑦8

+ 2(𝑦3 + 𝑦6) + 3(𝑦1 +  𝑦2 + 𝑦4 + 𝑦5

+ 𝑦7 )]

=
3(0.125)

8
[1 + 0.5

+ 2(0.7273 + 0.5714)] + 3(0.8889 + 0.8
+ 0.6667 + 0.6154 + 0.5333)] = 0.6848 

 

By Exacting solution for first example 

 

∫
1

1 + 𝑥

1

0

𝑑𝑥 

 

Let u=1+x, du=dx 

 

∫
1

𝑢

1

0

𝑑𝑢 = ln(𝑢)0
1 = ln(1 + 𝑥)0

1 = ln(1 + 1) − ln(1 + 0)

= ln 2 − ln 1 = 0.6931 − 0 = 0.6931 

 

By using script will receiving the results: 

 

𝑐𝑙𝑐 

𝐶𝑙𝑒𝑎𝑒 

𝐶𝑙𝑜𝑠𝑒 𝑎𝑙𝑙 
Fun =  @(𝑥) 1./ (1 + 𝑥); 
q =  integral (fun, 0,1); 

q =  0.6931 

 

Table 1. Numerical results with Simpson 1/3, Simpson3/8 

and exacting  

 

Matlab global 
Exacta 

solution 

Simpson 

3⁄8 

Simpson 

1⁄3 
Trapezoidal 

0.6931 0.6931 0.6848 0.6932 0.6941 

 

Discussion of three numerical outcomes with demanding 

arrangement and MATLAB on partial errors we understood 

Simpson 1/3 its best estimate to correct and MATLAB so he 

is the, winner with fragmentary capacity in Figure 1. 

 

𝑥 = 0: 0.001: 1 

y = 1./ (1 + x); 
Plot(x, y, ′r′, ′linewidth′, 2); 

Grid on 

xlabel (′x − axis′) 

ylabel (′y − axis′) 

 

Example 2. Find the approximation value of ∫ 𝑠𝑖𝑛 𝑥 𝑑𝑥
𝜋

0
 

using three numerical methods trendy matlab solutions with 

ℎ =
𝜋

6
 and Simpson 1⁄3, Simpson 3⁄8 rules it will be 

represented in the Table 2 and Figure 2. 

 

Solution of Trapezoidal rule 

 

𝑦 = 𝑓(𝑥) = ∫ 𝑠𝑖𝑛 𝑥 𝑑𝑥
𝜋

0

 

𝑥0 = 0, 𝑦0 = 0, 𝑥1 =
𝜋

6
, 𝑦1 = 0.5, 𝑥2 =

𝜋

3
, 𝑦2 = 0.8660, 

𝑥3 =
𝜋

2
, 𝑦3 = 1, 𝑥4 =

2𝜋

3
, 𝑦4 = 0.8660, 𝑥5 =

5𝜋

6
, 𝑦5 = 0.5, 

𝑥6 = 𝜋, 𝑦6 = 0. 
 

By Trapezoidal Rule getting the results from example 

second 
 

∫ sin 𝑥

𝜋

0

 𝑑𝑥 =
ℎ

2
[𝑦0 + 𝑦6 + 2(𝑦1 + 𝑦2 + 𝑦3 + 𝑦4 + 𝑦5)

=
𝜋

12
 [0 + 0

+ 2 ( 0.5 + 0.8660 + 1 + 0.8660 + 0.5 )]
=  1.9540 

 

Simpson 1⁄3 rule results 
 

∫ 𝑠𝑖𝑛 𝑥 𝑑𝑥
𝜋

0

=  
ℎ

3
 [𝑦0 + 𝑦6

+ 2(𝑦2 + 𝑦4) +  4(𝑦1 + 𝑦3 + 𝑦5 )]

=
𝜋

18
[0 + 0 + 2(0.8660 + 0.86660)

+  4(0.5 +  1 + 0.5)] = 2.0008 
 

Simpson 3⁄8 rule solution 
 

∫ 𝑠𝑖𝑛 𝑥 𝑑𝑥
𝜋

0

=  
3ℎ

8
 [𝑦0 + 𝑦6

+ 2(𝑦3) + 3(𝑦1 + 𝑦2 + 𝑦4 + 𝑦5)]

=
𝜋

16
[0 + 0 + 2(1)

+ 3(0.5 + 0.8660 + 0.8660 + 0.5)]
=  2.0019 

 

Exacting solution of example two 
 

∫ 𝑠𝑖𝑛 𝑥 𝑑𝑥 =  [− cos 𝑥]0
𝜋

𝜋

0

= [−𝑐𝑜𝑠𝜋] − [−𝑐𝑜𝑠0] =  2 

 

Using MATLAB script system as shown in Figure 1. 
 

𝑐𝑙𝑐 

Clear 

Close all 
Fun =  @(x) sin(x); 

q = integral(𝑓𝑢𝑛, 0, 22/7); 
q =  2.0000 

 

 
 

Figure 1. Trail of numerical solutions with the exact and 

MATLAB on distances of h=0.25 
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Table 2. The results of the second example are numerically 

solved with accurate and MATLAB solution  

 
MATLAB 

(global 

adaptive 

quadrature) 

Exacta 

solution 

Simpson 

3⁄8 

Simpson 

1⁄3 
Trapezoidal 

2 2 2.0019 2.0008 1.9540 

 

Exchange the estimates of numerical arrangements with a 

trapezoid on the sin function, include many disturbing errors 

but both are approaching strict and confused conformity, we 

note that Simpson's best digital technique from trapezoid to 

correct them in Figure 2. 

 

𝑥 = 0: 0.001: 22/7; 
𝑦 =  𝑠𝑖𝑛(𝑥); 

Plot(x, y, ′r′, ′linewidth′, 2); 
𝐺𝑟𝑖𝑑 𝑜𝑛 

 

 
 

Figure 2. Paths of label ('y-axis') and ('x-axis') responses 

the function thrut MATLAB 

 

Example 3. Find the approximation value of ∫ log 𝑥 𝑑𝑥
5

1
 

using Trapezoidal, Simpson 1⁄3, Simpson 3/8 rules in addition 

to the exact solution and MATLAB solution, which will be 

explained in the result of Table 3 and will draw in Figure 3. 

 

With h=0.5, 𝑦 = 𝑓(𝑥) = ∫ log 𝑥 𝑑𝑥
5

1
, 𝑥0 = 1 , 𝑦0 = 0 , 

𝑥1 = 1.5 , 𝑦1 = 0.4055 , 𝑥2 = 2 , 𝑦2 = 0.6931 , 𝑥3 = 2.5 , 

𝑦3 = 0.9163, 𝑥4 = 3, 𝑦4 = 1.0986, 𝑥5 = 3.5, 𝑦5 = 1.2528, 

𝑥6 = 4, 𝑦6 = 1.3863, 𝑥7 = 4.5, 𝑦7 = 1.5041, 𝑥8 = 5, 𝑦8 =
1.6094. 

 

Trapezoidal 

 

∫ log 𝑥 𝑑𝑥
5

1

=  
ℎ

2
 [𝑦0 + 𝑦8

+ 2(𝑦1 +  𝑦2 +  𝑦3 + 𝑦4 + 𝑦5 + 𝑦6 + 𝑦7 )]

=
0.5

2
 [0 + 1.6094

+ 2(0.4055 + 06931 + 0.9163 + 1.0986
+ 1.2528 + 1.3863 + 1.5041)] =  4.0307 

 

Simpson 1⁄3 

 

∫ log 𝑥

5

1

𝑑𝑥 =
ℎ

3
[𝑦0 + 𝑦8 + 2(𝑦2 + 𝑦4 + 𝑦6)

+ 4(𝑦1 + 𝑦3 + 𝑦5 + 𝑦7)]

=
0.5

3
[0 + 1.6094

+ 2( 0.6931 + 1.0986 + 1.3863)
+ 4( 0.4055 + 0.9163 + 1.2528
+ 1.5041) ] 

 

Simpson 3⁄8 

 

∫ log 𝑥 𝑑𝑥
5

1

=  
3ℎ

8
 [𝑦0 + 𝑦8 + 2(𝑦3 + 𝑦6) + 3(𝑦1 + 𝑦2 + 𝑦4

+ 𝑦5 + 𝑦7)

=
3(0.5)

8
 0 + 1.6094 + 2(0.9163

+ 1.3863) +  3(0.4055 +  0.6931
+ 1.0986 + 1.2528 + 1.5041)] =  3.9519 

 

Exacting solution 

 

∫ log x dx = [x log x − x]1
5

5

1

= (5log5 − 5) − (1 log 1 − 1)

=  4.0471 

 

MATLAB scrip results 

 

𝑐𝑙𝑐 
𝐶𝑙𝑒𝑎𝑟 

𝐶𝑙𝑜𝑠𝑒 𝑎𝑙𝑙 
Fun =  @(𝑥) 𝑙𝑜𝑔(𝑥) 

q =  integral (𝑓𝑢𝑛, 1, 5) 

q =  4.0472 

 

Table 3. The results from logarithmic function with 

numerical solutions, exact and MATLAB 

 
MATLAB 

(globa 

adaptive 

quadrature) 

Exacta 

solution 

Simpson 

3⁄8 

Simpson 

1⁄3 
Trapezoidal 

4.0472 4.0471 3.9519 4.0467 4.0307 

 

Examine the logarithmic arrangement that we note from 

numerical outcomes, just Simpson 3/8 being adjusted away 

from numerical arrangements but other estimation techniques 

are great have about 0.160 decimal mistake, MATLAB in 

every case superior to anything and numerical errors has only 

0.1 as apparently in Table 3. 

Now, using MATLAB to explain the values through Figure 

3.  

 
𝑥 = 1: 0.001: 5; 

𝑦 = 𝑙𝑜𝑔(𝑥); 
𝑃𝑙𝑜𝑡(𝑥, 𝑦, ′𝑟′, ′𝑙𝑖𝑛𝑒𝑤𝑖𝑑𝑡ℎ′, 2); 

𝐺𝑟𝑖𝑑 𝑜𝑛 

𝑥𝑙𝑎𝑏𝑒𝑙 (′𝑥 − 𝑎𝑥𝑖𝑠′) 

𝑦𝑙𝑎𝑏𝑒𝑙 (′𝑦 − 𝑎𝑥𝑖𝑠′) 
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Figure 3. Answer of the function with x-axes and y-axes by 

MATLAB 

 

 
 

Figure 4. Comparing between Trapezoidal, Simpson 1/3, 

Simpson3/8, Exacting and MATLAB 

 

Discussions of numerical methods it's come near mtalab 

solutions in exact order, we see that each of the formulas is 

settled through the different methods as shown in the models. 

The different outlines start from dark blue trapezoid to the 

light blue MATLAB, arrangement in three stages with five 

solutions. In the first step when h=0.25 the main model on all 

methods have a small error ratio less than one, in the second 

step of second formula with Simpson at h=0.52 We estimate 

the best numerical arrangements near specified order, in stage 

3 of the model third h=0.5 trapezoid and Simpson 1/3 move 

towards a small number of errors but less than accurate in 

solutions as Simpson 3/8, column shows the green color is less 

accurate number, MATLAB recorded the best digital union 

where it contains an error very simple with the ability of the 

algorithmic equation a single decimal error number. 

 

 

3. CONCLUSIONS 

 

From the schematic diagram of the high-precision 

numerical solution of the numerical methods used in the 

solution, it is shown in the first stage that all methods give 

useful results at the initial values. The trapezoidal method 

represents close-range results with an exponential function of 

the exact solution and MATLAB. Simpson's rule 1/3 is used 

to solve all numerical formulas, as it gives less accurate results 

than the 1/8 trapezoid and Simpson's 8/3. Computer results 

remain better with MATLAB solutions that are close to the 

exact solution most of the time. We analyzed the discussed 

error to illustrate the higher order accuracy of the methods and 

are illustrated in Figure 4. Stability analysis is presented in 

numerical examples for comparison with the results 

corresponding to the various functions used, such as 

exponential solutions, analytic formulas, and partial formulas. 

Arithmetic errors are generally accepted in technology. 

Through these results, which were represented in different 

solutions for several types of arithmetic problems, and that 

MATLAB records the best from numerical results for the 

function that distinguish it from other methods of speed and 

accuracy in solutions to save time and effort, so we hope that 

we have given an idea of the aforementioned methods, as we 

did not find a studies that combines these Solutions Although 

we cannot cover the whole topic, so we seek to develop the 

MATLAB solution and the numerical solution to give more 

accurate for many solutions. 
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