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The greenhouse environment control system is a type of non-linear system since the 

temperature and humidity of the system are highly coupled. Besides, the time lag of the 

temperature and humidity control process is large, so it’s quite difficult to linearize and 

decouple the temperature and humidity of the system. To cope with this issue, this paper 

proposed a novel control strategy for greenhouse environment control system based on 

Back Propagation Neural Network (BPNN) and inverse model, the proposed method can 

perform inverse identification on the temperature and humidity control system to attain 

higher accuracy. Then, the inverse model and the original system were connected in series 

to form a pseudo linear system to realize the decoupled control of temperature and 

humidity. After that, aiming at the impact of some non-linear factors on the greenhouse 

environment system, this paper adopted the adaptive fuzzy Proportion Integration 

Differentiation (PID) controller to enhance the adaptability of the system, thereby reducing 

control error and the interference caused by non-linear factors of the temperature and 

humidity control system. At last, the experimental results showed that, the temperature 

error of the system could be controlled within 1.2℃ and the error of relative humidity was 

less than 2.5%. The proposed method can improve the control effect of the greenhouse 

environment to a certain extent, and it provides a novel approach of greenhouse control. 
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1. INTRODUCTION

Greenhouses are now have been widely used in agriculture 

as basic facilities. Compared with common lands for growing 

field crops, the greenhouse production process is not 

vulnerable to external interference, and can satisfy the 

requirements of crops in different life cycles for the 

environment [1]. Common greenhouses are film greenhouses 

or glass greenhouses equipped with heating and humidifying 

devices to create an environment suitable for crop growth. 

Among the various influencing factors of greenhouse 

environment, temperature and humidity are the most important 

factors for the yield and quality of crops. Generally, 

greenhouses are in a closed state, the temperature and 

humidity are coupled, if they are not adjusted in time, then it’s 

easy to form a high temperature and high humidity 

environment, which can affect the growth of the crops [2]. 

Therefore, improving the multi-variable decoupling 

performance of the temperature and humidity control system 

of the greenhouse and reducing the impact of the nonlinearity 

of the system are important works for increasing crop yield 

and improving crop quality. 

The research on greenhouse environment control system 

started in the 1970s, relevant studies can be divided into three 

main aspects: conventional PID control, modern control 

theory, and intelligent control, however, few of them have 

concerned about the decoupled control. Simply adopting the 

fuzzy PID control method to control the complex greenhouse 

environment can only achieve unsatisfactory effect. In view of 

the decoupling of temperature and humidity and the 

nonlinearity problems of greenhouse environment [3], this 

paper proposed to introduce the inverse model into the field of 

greenhouse environment control, perform inverse 

identification on the original system through neural network, 

build a pseudo linear composite system with the controlled 

object, and adopt the fuzzy PID control strategy to realize the 

control of temperature and humidity in the system. This 

method doesn’t rely on the mathematical model of the original 

system, for systems like greenhouses that are non-linear, 

highly coupled, and have multiple variables, it can well 

improve the control accuracy and robustness of the system and 

reduce the effect of nonlinearity. The method provides a new 

research idea for the temperature and humidity control of 

greenhouse environment. 

2. PRINCIPLE OF THE INVERSE MODEL OF

GREENHOUSE ENVIRONMENT AND THE

CONTROL SCHEME

2.1 Decoupling principle of the inverse model 

Definition of the inverse system: in a greenhouse 

temperature and humidity control system, assuming: u(t) =

[u1, u2,⋯ , up]
T

 and y(t) = [y1, y2, ⋯ , yp]
T

, wherein p = 2

represents the two-dimensional inputs of fan rotate speed and 

heating device current; q = 2 represents the two-dimensional 

actual outputs of temperature and humidity, then the input-

output relationship can be described by the state equation 

shown in Formula 1 below: 
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{
�̇� = 𝑓(𝑠, 𝑢)

𝑦 = ℎ(𝑠, 𝑢), 𝑠(𝑡0) = 𝑠0
 (1) 

 

Assuming: 𝜃  represents the operator for describing the 

mapping relationship from inputs to the outputs, there is 𝑦(∙
) = 𝜃(𝑥0, 𝑢(∙)), which can be written in a simpler form 𝑦 =
𝜃𝑢; assuming 𝑢𝑑 = �̅�𝑦𝑑 represents the mapping relationship 

of system Π, wherein 𝑦𝑑(𝑡) = [𝑦𝑑1, 𝑦𝑑2, … , 𝑦𝑑𝑞]
𝑇

, 𝑢𝑑(𝑡) =

[𝑢𝑑1, 𝑢𝑑2, … , 𝑢𝑑𝑞]
𝑇

, and 𝑦𝑑(𝑡)  represents any given 

differentiable function vector in a certain domain and it 

satisfies the initial conditions at 𝑡0 , if operator �̅�  meets 

Formula 2: 

 
𝜃�̅�𝑦𝑑 = 𝜃𝑢𝑑 = 𝑦𝑑 (2) 

 

Then, it’s called that system Π is the unit inverse system of 

system Σ, correspondingly, system Σ is called the original 

system [4]. 

Assuming: 𝑢𝑑 = �̅�𝜑 represents the mapping relationship of 

system Πα, wherein input 𝜑(𝑡) = [𝜑1, 𝜑2, … , 𝜑𝑞]
𝑇

, output 

𝑢𝑑(𝑡) = [𝑢𝑑1, 𝑢𝑑2, … , 𝑢𝑑𝑞]
𝑇
, 𝜑 is any given continuous function 

vector in a certain domain, and it satisfies the initial conditions 

at 𝑡0 . When it takes 𝜑(𝑡) = 𝑦𝑑
(𝛼)(𝑡) , and 𝛼(𝑡) =

[𝛼1, 𝛼2, … , 𝛼𝑞]
𝑇
, that is, 𝜑𝑖  is the 𝛼𝑖-order derivative of 𝑦𝑑 , if 

operator �̅�𝛼 meets Formula 3: 

 

𝜃�̅�𝛼𝜑 = 𝜃�̅�𝛼 (𝑦𝑑
(𝛼)) = 𝜃𝑢𝑑 = 𝑦𝑑 (3) 

 

Then, it’s called that system Πα is the α-th order integral 

inverse system of the original system Σ, in simpler words, it’s 

called the α-order inverse system [5].  

If an original system Σ has a unit inverse system or a α-order 

inverse system as shown in Figure 1(a) and 1(b), then it’s 

called that system Σ is a reversible system.  

According to the definition of the α-order inverse system 

the composite system denoted as 𝜃�̅�𝛼  is equivalent to the 

linear transfer function in the form integrators, as shown in 

Figure 2, the controlled system had achieved decoupling and 

linearization, and there is 𝑦(𝛼) = 𝜑 , then the input-output 

relationship of the composite system can be theoretically 

expressed as a linear integral decoupling transfer function, as 

shown in Formula 4: 

 

𝐺(𝑠) = 𝑑𝑖𝑎𝑔 (𝐺1(𝑠), 𝐺2(𝑠), … , 𝐺𝑞(𝑠))

= 𝑑𝑖𝑎𝑔(𝑠−𝛼1 , 𝑠−𝛼2 , … , 𝑠−𝛼𝑞) 
(4) 

 

The α-order inverse system Πα was put in series before the 

original system Σ, together they formed a composite system 

𝜃�̅�𝛼  with a transfer relationship similar to the linear 

relationship, and this system can be called a α-order pseudo 

linear composite system, referred to as a pseudo linear system 

for short. Figure 2 shows the principle of the linearization of 

the α-order inverse system with multiple inputs and outputs. 

By constructing the inverse model of the system and 

combining it with the original system into a pseudo linear 

system, linearization and decoupling of the nonlinear system 

can be realized. Therefore, adopting the linear system control 

method could meet the requirements and reduce the 

complexity of system control [6, 7]. 

 

2.2 Composition of the fuzzy control system 

 

Controller of the greenhouse temperature and humidity 

control system adopted the fuzzy PID control strategy, and its 

structure is shown in Figure 3. The application of fuzzy control 

does not rely on the mathematical model of the controlled 

object, and fuzzy reasoning is carried out according to the 

knowledge of fuzzy rules to obtain the appropriate controlled 

quantity and to reach the online-tuned PID parameters, it has 

the merits of real-time, good robustness, and high control 

accuracy. After the identified inverse system was combined 

with the original system, the fuzzy PID was directly applied to 

the pseudo linear composite system, which could effectively 

reduce the impact of nonlinearity on the system [8]. 
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Figure 1. Unit inverse system, α-order inverse system, and composite system 
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Figure 3. Structure of the control system 

 
 

3. INVERSE MODEL IDENTIFICATION OF NEURAL 

NETWORK 

 

According to the multi-variable environmental factors in the 

greenhouse, researchers have proposed a few research 

methods such as the diagonal matrix method, feedforward 

compensation decoupling method, and fuzzy decoupling 

method [9], and these methods all require that the 

mathematical model of the controlled system is accurate and 

the specific internal parameters are known. The identification 

of the neural network can approximate the complex static 

nonlinear mapping with any accuracy, and adapt to the system 

through learning, therefore, using neural networks to identify 

nonlinear systems has been widely used in the field of 

nonlinear control and achieved good effect. 

Neural network has the merit of fast learning, it can perform 

dynamic learning on the greenhouse environment control 

system within a certain time period under the condition that 

the process parameters are relatively stable, thereby 

identifying the inverse model of the original system. The 

neural network was designed from several aspects including 

the determined number of network layers, the number of 

hidden layer neurons, the number of input and output points, 

the activation function, the initial values, and the learning rate, 

etc. [10]. 

 

3.1 Determination of the number of neural network layers 

 

Before using BPNN to identify the inverse model of the 

original system, it’s necessary to determine the number of 

neural network layers, and select the three-layer structure of 

the neural network that contains the input layer, hidden layer, 

and output layer. According to the analysis of the temperature 

and humidity control principle of the greenhouse environment, 

the system inputs were the controlled quantity of the heating 

device and the controlled quantity of the dehumidifier fan of 

the greenhouse, which were respectively represented by 

𝑢1 and  𝑢2 . The system inputs were the temperature and 

humidity of the greenhouse, which were respectively 

represented by 𝑦1  and 𝑦2 . In order to realize the inverse 

identification of the original system, the outputs of the original 

system were taken as the inputs of the inverse model, and the 

inputs of the original system were taken as the outputs of the 

inverse model. Since the numbers of input and output layer 

nodes are determined by the number of controlled quantities, 

therefore, according to the requirements of the controlled 

quantities of the system, it’s determined that the number of 

input layer nodes in the BPNN was N=2, the number of hidden 

layer nodes was M=4, and the number of output layer nodes 

was L=2. 

2h

3h

1h

4h
2y
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Figure 4. Inverse system BPNN structure 

 

Structure of the BPNN used for inverse model identification 

is given in Figure 4. In the figure, 𝑦1 is the temperature, 𝑦2 is 

the humidity, ℎ1,ℎ2,ℎ3,ℎ4  are hidden layer nodes, u1  is the 

working current of the heating device, u2 is the rotate speed of 

the dehumidifier fan. The entire network realizes the inverse 

identification of the original system via the 2-dimensional 

output layer consisted of fan rotate speed and electric wire 

current, the single hidden layer consisted of four neurons, and 

the 2-dimensional input layer consisted of temperature and 

humidity. 

 

3.2 Data preprocessing and operator selection 

 

The opening degree of the heating device is the ratio of the 

current opening degree to the maximum opening degree. Since 

the relative humidity of air is a decimal number between (0,1), 

in order to minimize the damage to the measured data caused 

by normalization, the relative humidity of air was represented 

by the decimal number and didn’t participate in normalization, 

and the rest values were all normalized by Formula 5: 

 

𝑦𝑖 =
𝑥 − 0.95𝑥𝑚𝑖𝑛

1.05𝑥𝑖𝑚𝑎𝑥 − 0.95𝑥𝑖𝑚𝑖𝑛
 (5) 

 

In Formula 5, yi is the normalized value, its variation range 

is [0,1]; xi is the measured value, xmin is the minimum value 

among the measured values, ximax is the maximum value 

among the measured values. 

Since the environment in the greenhouse is quite 

complicated and the various factors of the greenhouse have 

mutual influence on each other, which can affect the 

convergence speed of the BPNN to a certain extent and result 

in the problem of local results, making the inverse model 

unable to achieve the global optimal effect or meet the 

accuracy requirement, therefore, in order to solve the slow 

convergence speed and improve the accuracy of the model, the 

momentum method had been introduced. The momentum 

method adopts the changing learning rate and the changing 

momentum [11, 12], wherein the changing learning rate means 

that the learning rate 𝛿 keeps changing constantly, in the early 

stage of the neural network training, 𝛿 takes a larger value, so 

as to attain a faster learning speed. During the neural network 

training process, when the model established by the neural 

network is closer to the required network, 𝛿  could take a 

smaller value, so as to accelerate the convergence of the neural 

network. Formula 6 gives the introduced momentum term: 

 
𝜔𝑖(𝑘 + 1) = 𝜔𝑖(𝑘) + 𝛿[(1 − 𝛼)𝐷(𝑘) + 𝛼𝐷(𝑘 − 1)] (6) 

 

In Formula 6, δ is the learning rate, δ> 0; α is the momentum 

factor, and it satisfies 0 ≤ α ≤ 1; 𝐷(𝑘) is a single weight value; 
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𝐷(𝑘) =
−αE

∂ω(k)
 is the negative gradient at time moment k; ωi(k) 

represents the weight coefficient between the input layer and 

the hidden layer at time moment T; ωi(k + 1) represents the 

weight coefficient between the input layer and the hidden layer 

at time moment (𝑘 + 1)𝑇. 

 

 

4. FUZZY PID CONTROL 

 

4.1 Principle of fuzzy controller 

 

The temperature and humidity controller in the greenhouse 

determines the changes of temperature and humidity in the 

greenhouse environment, and it plays an important role in 

stabilizing the changes of temperature and humidity in the 

greenhouse. During the temperature and humidity control 

process of the system, the temperature and humidity will 

change with the changes of the overall environment. Since 

internal factors will cause some deviations to the performance 

of the electric wire and the rotate speed curve of the fan, and 

this will bring certain interference to the control accuracy of 

the entire system, the conventional PID controller can hardly 

meet the requirements of the complex greenhouse 

environment [13]. 
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Figure 5. Structure of fuzzy PID controller 

 

Fuzzy PID controller has the characteristics of being able to 

control nonlinear systems, it contains a few aspects including 

fuzzification, fuzzy reasoning, and defuzzification. Because it 

does not require accurate mathematical models to control, it is 

more suitable for nonlinear and time-varying control systems 

[14]. As shown in Figure 5, by taking deviation e and deviation 

change rate ec as inputs and using the fuzzy change parameters 

to adjust the PID parameters, the different requirements of e 

and ec for PID controller parameters could be satisfied. 

 

4.2 Design of fuzzy controller 

 

4.2.1 Fuzzification 

During the temperature and humidity control process of the 

system, due to the limitation of the measurement range of 

thermocouple and humidity detection device, the measured 

value of the temperature and humidity won’t be any value. In 

view of such limitation, the fuzzification of the temperature 

and humidity inputs of the fuzzy controller, namely the 

mapping relationships of the detected values of temperature 

and humidity to their respective domain, was calculated 

according to the method shown in Formula 7: 

 

𝐸 = 𝐿 ×
𝑒 − (𝑒𝐿 − 𝑒𝐻)/2

(𝑒𝐿 − 𝑒𝐻)/2
 (7) 

 

In Formula 7: L represents the value range of the domain; 

𝑒𝐿 and 𝑒𝐻  represent the detected minimum value and 

maximum value of temperature and humidity; E represents the 

fuzzification result of temperature and humidity. 

 

4.2.2 Fuzzy rule reasoning 

The fuzzy controller of the system adopts a double-input 

single-output structure to adjust the controlled quantity. 

Taking temperature control as an example, the two inputs of 

the controller are respectively the deviation 𝑒𝑓 and deviation 

change rate 𝑒𝑐𝑓  between the real-time collected temperature 

and the set temperature of the greenhouse, and the output is the 

amount of current adjustment. The deviation 𝑒1between the 

actual temperature and the set temperature was divided into 7 

levels: {PB positive bigger, PM positive moderate, PS positive 

smaller, ZO moderate, NS negative smaller, NM negative 

moderate, NB negative bigger}, its domain 𝐸1 is [-7,7]. The 

deviation change rate 𝑒𝑐1 between the actual temperature and 

the set temperature was divided into 7 levels: {PB, PM, PS, 

ZO, NS, NM, NB}, and its domain 𝑒𝑐1 is [-6, 6]. The amount 

of current adjustment of the electric wire 𝑢1 was also divided 

into 7 levels: {PB fast speed temperature drop, PM medium 

speed temperature drop, PS slight temperature drop, ZO 

holding, NS slight temperature rise, NM medium speed 

temperature rise, NB fast speed temperature rise}, and its 

domain 𝑢1 is: [-7, 7]. The fuzzy control of the humidity was 

carried out in the same way, and the membership function is 

an important factor to determine the control effect of the fuzzy 

controller. In order to better suppress the impact of the changes 

of environmental parameters on the greenhouse environment, 

this paper took the triangle function as the membership 

function of the input and output of the temperature fuzzy 

controller [15], as shown in Formula 8. 

 

𝐹 =

{
 
 

 
 

0           𝑥 ≤ 𝑎
𝑥 − 𝑎

𝑏 − 𝑎
       𝑎 ≤ 𝑥 ≤ 𝑏

𝑐 − 𝑥

𝑐 − 𝑏
       𝑏 ≤ 𝑥 ≤ 𝑐

0           𝑥 ≥ 𝑐

 (8) 

 

In Formula 8, F is the value of membership degree; x is the 

value of the domain of the fuzzy controller; a, b, c are the 

parameters of the triangle membership function. Then, 

according to the reasoning and defuzzification methods 

mentioned above, the fuzzy control rules were attained, as 

shown in Table 1. All rules in the table were attained based on 

the logic results of the experiments [16].  

 

Table 1. Fuzzy control rules 

 

U 
E 

NB NM NS ZO PS PM PB 

EC 

NB PB PB PM PM PS ZO ZO 

NM PB PB PM PS PS ZO NS 

NS PM PM PM ZO ZO ZO NM 

ZO PM PM PS ZO NS NS NM 

PS PS PS ZO NS NS NM NM 

PM PS PS ZO ZO NM NM NB 

PB ZO NS NS NM NM NB NB 

 

4.2.3 Defuzzification 

Fuzzy reasoning and defuzzification were performed, and 

the fuzzy control query table was calculated. During the fuzzy 

control process, the calculation of the control variables must 

be obtained through fuzzy reasoning according to the fuzzy 

rules. In this paper, the Mamdani reasoning method based on 

weighted average was adopted [17, 18]. 

 

1274



 

5. SIMULATION ANALYSIS 

 

5.1 Inverse system identification 

 

 
(a) Temperature prediction simulation curve 

 
(b) Humidity prediction simulation curve 

 

Figure 6. Fitting results of temperature and humidity 

 

BPNN was adopted to perform inverse identification on the 

original temperature and humidity control system. The 

identification sample is a greenhouse located in the Daqing 

City (46.35°N, 125°E). In order to reduce the interference of 

other factors on the greenhouse system, the sunshade curtains 

in the greenhouse were kept closed, and the wet curtains were 

in a closed state as well. 1000 groups of measured data of 

temperature, humidity, electric wire current, and fan rotate 

speed generated during the normal operation of the greenhouse 

were collected, among which 200 groups of data were taken as 

the experimental samples to perform simulation tests. The 

fitting curves of temperature and humidity corresponding to 

the inverse system identified by the neural network are shown 

in Figure 6. 

According to Figure 6, for non-linear systems with large 

time-delay such as the greenhouse, BPNN can effectively 

identify them with a small amount of data samples and attain 

high-accuracy inverse system models, in this paper, the fitting 

errors of temperature and humidity were 3.7% and 6.7% 

respectively, which had basically met the requirements for 

system identification. 

 

5.2 System performance test 

 

By combining the inverse model of the system with the 

fuzzy PID controller, a composite controller was built and 

used to adjust the original system. Experiment was conducted 

to compare with that of controlling the original using the fuzzy 

controller alone, and the simulation results are shown in Figure 

7 and Figure 8. According to the results, by introducing the 

identified inverse model before the original system, a pseudo 

linear composite system was built, which had effectively 

reduced the coupling between temperature and humidity, in 

the meantime, both the electric heating wire and the 

dehumidifier fan can directly act on the controlled object, 

speeding up the system response time. By introducing fuzzy 

PID, it can be clearly seen from the simulation results that the 

control accuracy of temperature and humidity in the 

greenhouse had been improved significantly and the steady-

state error had been reduced further.  

In Figure 7 and Figure 8, Curve 1 is the fuzzy PID control 

curve of the original system, Curve 2 is the curve of the 

composite control system constituted by the fuzzy PID and the 

inverse system. In the simulation process, the initial 

temperature was set to 0℃, the expected temperature was 

25 ℃; the initial humidity was set to 90%, and the expected 

humidity was 70%. The data of Simulink simulation showed 

that, the fuzzy PID controller of temperature reached the stable 

state at around 1700s with an overshoot of 11%, the composite 

temperature controller reached the stable state at around 800s 

with an overshoot of 1.2%; the fuzzy PID controller of 

humidity reached the stable state at around 2000s with an 

overshoot of 12%, and the composite humidity controller 

reached the stable state at around 800s with an overshoot of 

2.5%. Through the above test verification, after the original 

system was decoupled and linearized by the inverse model, the 

temperature error can be kept less than 1.2℃, and the relative 

humidity error was only 2.5%, which means that the high 

accuracy of the system had been ensured, the system control 

error had been reduced, and the composite system achieved a 

better effect in terms of control stability and response than 

only applying fuzzy PID to system control. 

 

 
 

Figure 7. Comparative experiment curve of temperature 

control 

 

 
 

Figure 8. Comparative experiment curve of humidity control 

 

 

6. CONCLUSION 

 

Aiming at the problems of nonlinearity, time delay and high 

coupling in conventional greenhouse environment control 

systems, this paper proposed to use BPNN to perform inverse 

identification on the original system and build the pseudo 

linear composite system, in this way, the linearization and 
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decoupling of the system had been realized. The simulation 

results have verified that: (1) The inverse model identified by 

BPNN for multi-input/output systems exhibited a high 

accuracy, and the fitting errors of temperature and humidity of 

the system had been controlled at 3.7% and 6.7%, which had 

met the accuracy requirements of system identification; (2) By 

combining fuzzy PID with inverse system to build composite 

controller, the control accuracy of temperature and humidity 

of the system had been improved, the errors of temperature and 

humidity in the system had been reduced, the response time 

and stability of the system had been obviously improved, and 

the impact of multi-variable coupling and nonlinearity in the 

greenhouse environment control system had been solved. 
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