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In this work, Lattice Boltzmann Method (LBM) is used to study the heat transfer by natural 

convection of a nanofluid (Water-Al2O3) in a square cavity with D2Q9 scheme. This 

method is used to describe and analyze the flow of nanofluid by convection in a 

differentially heated cavity. The horizontal walls of the cavity are adiabatic, while the right 

and left sides are with cold and hot constant temperature, respectively. The macroscopic 

variables which characterize the flow and the heat transfer by convection (temperature and 

two components of the velocity) are determined from the mesoscopic variable (distribution 

functions). The results of this study show the influence of the Rayleigh number and the 

volume fraction of the nanoparticles on the flow structure and the average Nusselt number. 

Two correlations of the maximum vertical velocity and the average Nusselt number with 

Rayleigh number and volume fraction are envisaged. 
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1. INTRODUCTION

The importance of heat and mass transfers appears in many 

applications. Natural convection is a precious study in the 

diverse cavity with different gradient temperatures [1-4]. The 

enhancement of heat transfer is a big challenge for researchers, 

which let them focus to use the nanoparticles in pure fluid, and 

they showed the necessity of nanofluids for increasing the 

thermal flux.  

Choi and Eastman [5] studied the enhancement of the 

thermal conductivity of fluid with nanoparticles. They showed 

that the use of nanofluids enhances heat transfer against 

conventional fluids. Oztop and Abu-Nada [6] made a 

numerical study of natural convection in partially heated 

rectangular enclosures filled with nanofluids. They indicated 

that heat transfer increase with the increase of heater size, the 

value of Rayleigh number, and the volume fraction. Boualit et 

al. [7] investigated the natural convection in a square cavity 

filled with nanofluids using a dispersion model. They have 

concluded that the using the nanoparticles with augmentation 

of their size enhance the heat transfer in different value of 

Rayleigh number. Parametric study on natural convection of 

nanofluid in a heated chamber presented by Bara et al. [8] 

Their results showed that heat transfer augments when volume 

fractions augment especially in a low value of Ra the 

conduction was dominance; the Copper give more efficacies 

on flux thermal than Al2O3 and TiO2. 

Lattice Boltzmann method (LBM) is one of the best 

methods that give researchers an advantage for studying the 

challenging geometries which were hard to solve with old 

techniques. The fundamental bases of this method are outlined 

in the book of Mohamad [9]. Yao et al. [10] made an analysis 

of nanofluids phase transition in a pipe using the lattice 

Boltzmann method. As result, they concluded that heat 

transfer is enhanced in nanofluids more than in pure fluid, but 

it becomes weak with augmenting the size of nanoparticles. 

Mahmoudi et al. [11] simulated the conduction radiation heat 

transfer in a planar medium with lattice Boltzmann. The 

effects of the scattering albedo, the wall emissivity, and 

conduction-radiation parameters on temperature distribution 

in the medium were tested and they noticed a good agreement 

result between CDM (Collapsed dimension method) and LBM. 

Mliki et al. [12] used the lattice Boltzmann to simulate the 

magnet-hydro-dynamic (MHD) natural convection in an L-

shaped enclosure. They went on to remark that the parameters 

of aspect ratio and Hartmann number reduced the free 

convection, otherwise, the heat transfer increased with 

augmentation of volume fraction. Khakrah et al. [13] studied 

a thermal lattice Boltzmann simulation of natural convection 

in a multi-pipe sinusoidal-wall cavity filled with Al2O3-

Ethylene Glycol nanofluid. They concluded that heat transfer 

improved by adding nanoparticles, on the other hand the total 

entropy generation was reduced, and that was acceptable in the 

thermal component. Naseri et al. [14] reviewed a lattice 

Boltzmann simulation of natural convection heat transfer of a 

nanofluid in an L-shape enclosure with a baffle. As a 

consequence, at low Rayleigh values, the natural convection 

increased when they added baffles, otherwise, at high 

Rayleigh values, the natural convection was more enhanced 

just with a longer baffle (L=0.3) especially in case C 

configuration. Zhang et al. [15] studied numerically the mixed 

convection of nanofluid inside an inlet/outlet inclined cavity 

under the effect of Brownian motion using LBM. They tried 

to study the influence of cavity angle, volume fraction and 

location of hot obstacle. The thermal conductivity is 

augmented when the volume fraction increases, also the 

increasing of the Richardson number reduced the effect of the 

volume fraction. Besides that the change of angle from 0° to 
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60° with the change of Ri number influenced the heat transfer, 

also heat transfer is enhanced when the hot obstacle is put in 

the flow path.  

The lattice Boltzmann method (LBM) gives more 

advantages for studying the complex flows and geometries 

with easy implementation and less calculation time, which was 

hard with other conventional methods. For this reason, the 

main objective of this study is to analyze the flow and heat 

transfer by convection in a differentially heated square cavity 

using the lattice Boltzmann method as a computational tool. 

We plan to determine the influence of several control 

parameters such as the Rayleigh number and the volume 

fraction of the nanoparticles on the flow structure and average 

Nusselt number. 

 

 

2. PROBLEM STATEMENT 

 
The physical model was depicted in Figure 1. The numerical 

investigation focuses on two-dimensional natural convection 

in a differentially heated square cavity filled with Nanofluid 

Al2O3-water. The geometry with no sleep walls is assumed to 

be H length, the left side with high temperature Th and the right 

side with low temperature Tc. Both the bottom and top walls 

are adiabatic. 

 

 
 

Figure 1. Schematic domain of the physical model 

 

 

3. MATHEMATICAL FORMULATION 

 

Natural convection flow is assumed to be steady and 

laminar, so the fluid is incompressible and Newtonian. Except 

for the density, which is calculated using the Boussinesq 

approximation, the physical properties are constants. 

 

3.1 Navier-Stokes method 

 

The dimensionless partial differential equations (PDEs) that 

describe the heat transfer and nanofluid flow used in this study 

are: 

-Dimensionless continuity equation: 

 
∂U

∂X
+

∂V

∂Y
= 0 (1) 

 

 

- Dimensionless momentum equations: 
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- Dimensionless energy equation: 
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With the following reference variables:  

 

X =
x

H
;  Y =

y

H
; U =

uH

√gβH∆T
;  V =

vH

√gβH∆T
; θ =

T−Tc

Th−Tc
; 

P =
p

ρnf
(√gβH∆T)

2;  τ =
t√gβH∆T

H
. 

 

3.2 Nanofluid formulations 

 

The following are the density, heat capacity, and thermal 

expansion equations for nanofluids, respectively: 

 
ρnf

ρf  

= 1 − ϕ + ϕRρ (5) 

 
(ρCp)nf

(ρCp)f  

= 1 − ϕ + ϕRρCp (6) 

 
βnf

βf

= 1 − ϕ + ϕRβ 
 (7) 

 

The dynamic viscosity and thermal conductivity are 

calculated respectively using the Brinkman [16] and Maxwell 

[17] models, as follows: 

 
μnf

μf

=
1

(1 − ϕ)2.5
 (8) 

 

knf 

kf

=
2 + Rk

1 + 2ϕ
1 − ϕ

Rk +
2 + ϕ
1 − ϕ

 (9) 

 

With Rρ =
ρp

ρf
; RρCp =

(ρCp)p

(ρCp)f
;  Rβ =

βp

βf
; Rk =

kp

kf
. 

The physical properties of the base fluid (water) and 

nanoparticles (Al2O3) used in this study are summarized in 

Table 1. 
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Table 1. Thermo-physical proprieties of water and Al2O3 

 
Proprieties Base fluid (water) Nanoparticles (Al2O3) 

k (w/m.K) 0.613 36 

 (kg/m3) 1000 3970 

Cp (J/Kg.K) 4183 765 

β (K−1) 21x10-5 75x10-7 

 

3.3 Lattice Boltzmann method  

 

Lattice Boltzmann Model used a double distribution 

function for the flow field (f) and temperature (g). These 

distributions are used to compute the density, velocity, and 

temperature of the macroscopic field. To write the general 

version of the lattice Boltzmann equations, the BGK 

(Bhatnagar-Gross-Krook) approach can be used. 

 

fi(𝐱 + 𝐜𝐢∆t, t + ∆t) = fi(𝐱, t) (10) 

 

gi(𝐱 + 𝐜𝐢∆t, t + ∆t)
= gi(𝐱, t)

−
1

τT

(gi(𝐱, t) − gi
eq(𝐱, t))

−
1

τf

(fi(𝐱, t) − fi
eq(𝐱, t)) + ∆t𝐜𝐢 𝐅𝐢 

(11) 

 

where,  fi(𝐱, t) , gi(𝐱, t)  are the density and temperature 

distribution function at lattice 𝐱 and time t in the i direction; ∆t 
is the time step and τf  , τT  are correspondent the relaxation 

times; Fi is the external force term. fi
eq(𝐱, t) and gi

eq(𝐱, t) are 

the equilibrium distribution for density and temperature, 

respectively and can be calculated as follow: 

 

fi
eq

= ωiρ [1 + 3
(𝐜𝐢. 𝐮)

cs
2

+
9

2

(𝐜𝐢. 𝐮)2

2cs
4

−
3

2

𝐮2

cs
2

] (12) 

 

gi
eq

= ωiT [1 +
3(𝐜𝐢. 𝐮)

cs
2

] (13) 

 

The buoyancy force 𝐅𝐢  appearing in Eq. (10) can be 

determined by: 

 

𝐅i  = 3𝛚𝐢 ρ g β (T − Tc) (14) 

 

where, 𝐜𝐢 and 𝛚𝐢 , are the lattice velocity vectors, weighting 

factor, respectively. cs is lattice velocity sound and is equal 

to 1/√3. 

For this work, we used D2Q9 as a two-dimensional, nine-

velocity model, as shown in Figure 2.  

 

 
 

Figure 2. Discrete velocity for D2Q9 

The discrete velocity as bellow:  

 
i 0 1 2 3 4 5 6 7 8 

cix 0 1 0 -1 0 1 -1 -1 1 

ciy 0 0 1 0 -1 1 1 -1 -1 

 

The weighing factor is calculated as: 

 
i 0 1 2 3 4 5 6 7 8 

i 4/9 1/9 1/36 

 

The macrospic variables T, ρ, u, can finally be determined 

as follows: 

 

Flow density ∶  ρ = ∑ fi

8

i=0

 (15) 

 

Velocity ∶  𝐮 =
1

ρ
 ∑ 𝐜𝐢fi

8

i=0

 (16) 

 

Temperature ∶  T = ∑ gi

8

i=0

  (17) 

 

 

4. RESULTS AND DISCUSSION  
 

Figures 3, 4 and 5 represent the evolution of the vertical 

component of the velocity along the horizontal passing 

through the center of the cavity for different values of the 

Rayleigh number and the volume fraction of the nanoparticles. 

Whatever the value of Ra and volume fraction, the curves 

have the same shape which is close to the sinusoidal form. 

They represent two extremums (max and min) on either side 

of the vertical axis of symmetry of the cavity. For a given 

volume fraction, the maximum velocity increases with the 

increase of Rayleigh number, that's means that the flow 

becomes intense developing heat transfer by convection. By 

fixing the temperature gradient represented by the Ra, the 

maximum velocity decreases with the growth of the 

nanoparticles fraction concentration. In this case, the nanofluid 

flow becomes less intense favouring heat transfer by 

conduction. 

The visualization of the influence of the Rayleigh number 

and the volume fraction on the flow appears clearly in Figures 

6 and 7. The flow becomes very intense as the Rayleigh 

number increases for a constant volume fraction and less 

intense for an increase in the volume fraction. By increasing 

the Rayleigh number, the area where the flow becomes 

horizontal expands. 
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Figure 3. Velocity profile at Y = 0.5 for Ra = 103 

 

 

 

 

 
 

Figure 4. Velocity profile at Y = 0.5 for Ra = 104 
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Figure 5. Velocity profile at Y = 0.5 for Ra = 105 

 

Table 2 includes the max and min values of the vertical 

component of the velocity for the different values of the 

Rayleigh number and the volume fraction of the nanoparticles. 

 

Table 2. Max and min of velocity values for different Ra and 

 

 

  0 0.04 0.06 0.08 

Ra=103 
Vmax 3.69 3.29 3.09 2.89 

Vmin -3.69 -3.29 -3.09 -2.89 

Ra=104 
Vmax 19.75 18.97 18.53 18.06 

Vmin -19.78 -18.96 -18.52 -18.04 

Ra=105 
Vmax 73.31 72.11 71.22 70.15 

Vmin -72.26 -69.99 -68.63 -67.13 

 

A correlation linking the maximum vertical component 

velocity with Rayleigh number and nanoparticles volume 

fraction is presented in Figure 8. For a given Rayleigh number, 

this variation is linear. The maximum velocity is inversely 

proportional to the volume fraction. The slope and the 

intercept of graph vary according to the number of Rayleigh 

according to the relation (20). 

 

 

 

 

 
Figure 6. Velocity variation at Y=0.5 with difference Ra 

values 

 

 

 
Figure 7. Velocity variation at Y=0.5 with difference 

fraction values 
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Figure 8. Correlation between maximal vertical component 

velocity and volume fraction 

 

V𝑚𝑎𝑥 = (−39.6 + 30.7𝑒−3.7𝑅𝑎) + 82.2 + 8
− 80.3𝑒−2.2𝑅𝑎 

(18) 

 

Figure 9 represents the evolution of the average Nusselt 

number along the left vertical wall (wall subjected to the hot 

temperature) as a function of the Rayleigh number for different 

values of the nanoparticles volume fraction. Figure 10 shows 

the variation of the average Nusselt number as a function of 

the volume fraction for different values of the Rayleigh 

number. 

By following the evolution of the curve on the left and 

whatever the volume fraction of the nanoparticles, we notice 

that the average Nusselt number increases with the increase of 

Rayleigh number thus favouring the heat transfer by 

convection. For Ra=103, the volume fraction has almost no 

effect on the average Nusselt number which means the heat 

transfer is not influenced by the volume concentration of the 

nanofluid in the particle. For other values of Ra, the rate of 

change of the Nusselt number increases until it reaches 5% for 

Ra=105. 

For the right figure (Figure 10), the Nusselt number is 

inversely proportional to the volume fraction. This variation is 

a linear decreasing. 

A correlation between average Nusselt number and volume 

fraction is presented on Figure 11 and which in form: 

 

Nuavg = B.  + A (19) 

 

With A and B represents two constant that vary according 

to the Rayleigh number. 

 

 
 

Figure 9. Variation of average Nusselt number as a function 

of Ra 

 
 

Figure 10. Variation of average Nusselt number as a function 

of volume fraction 

 

 
 

Figure 11. Correlation between average Nusselt and volume 

fraction 

 

The two graphs represented on Figures 12 and 13 represent 

this variation which has an increasing exponential evolution. 

We propose a correlation that links the average Nusselt 

number as a function of the Rayleigh number and the volume 

fraction of nanoparticles (Eq. (20)). 

 

𝑁𝑢𝑎𝑣𝑔 = −4𝑒−3𝑅𝑎 + 5 + 8.8𝑒−4.3𝑅𝑎 - 9.3 (20) 

 

 
 

Figure 12. Evolution of A as a function of Ra 
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Figure 13. Evolution of B as a function of Ra 

 

 

5. CONCLUSIONS 

 

In this paper, the lattice Boltzmann method is used to study 

the natural convection in a differentially heated square cavity 

containing Al2O3-water nanofluid. The D2Q9 scheme is used 

to determine, at the mesoscopic scale, the two distribution 

functions (f for the flow and g for the temperature) for obtain 

the macroscopic variables (U, V, ). A Matlab code is 

developed to solve the finite difference discretized Boltzmann 

equation. The effect of the Rayleigh number as well as the 

volume fraction of the nanoparticles on the structure of the 

flow is determined. The increases the intensity of the flow due 

to augmentation of Ra, while the increase in the volume 

fraction decreases the intensity of the flow thus favoring the 

transfer of heat by conduction which appears clearly in 

average Nusselt number values. The phenomena found are 

illustrated in two correlations of the maximum vertical 

velocity and the average Nusselt number with the control 

parameters used in this study (Rayleigh number and nanofluid 

volume fraction). 
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NOMENCLATURE 

 

c  Lattice velocity vector  

Cp Specific heat (J/Kg.K) 

Cs Sound velocity (m/s) 

fi density distribution function  

feq equilibrium distribution function for fi 

Fi Force term (N) 

g Gravity (m/s2) 

gi Energy distribution function 

geq Equilibrium distribution function for gi 

h  Heat transfer coefficient (W/m2.K) 

H  Length (m) 

k Thermal conductivity (W/m.K) 

Nu Local Nusselt number 

Nuavg Average Nusselt number 

p Pressure (N/m2) 

P Dimensionless pressure 

Pr Prandtl number, f/fαf 

Ra Rayleigh number, fgβf(Th-Tc)H3/fαf 

t Time (s) 

T Temperature (K) 

u x-Component velocity (m/s) 

U Dimensionless x-Component velocity 

v y-Component velocity (m/s) 

x Abscissa (m) 

X Dimensionless abscissa 

y Ordinate (m) 

Y Dimensionless ordinate 

 

Greek symbol 

 

α Thermal diffusivity (m2/s) 

β Thermal expansion coefficient (1/K) 

 Density (kg/m3) 

 Particle volume fraction 

 Dimensionless temperature         

 Relaxation time 

 Weighting factors 

 Dynamic viscosity (N.s/m2) 

 

Subscripts 

 

p Nanoparticles 

f Fluid 

nf Nanofluid 

c Cold 

h Hot 

 

1132




