
 

 
 
 

 
 

 
1. INTRODUCTION 

 

Heat transfer is a natural phenomenon but under certain 

conditions it becomes inevitable to transfer heat or remove 

the excess heat from the hot primary surface at a faster rate. 

Heat transfer can be enhanced either by using highly 

conductive material or by increasing the heat transfer 

coefficient, which may require the installation of artificial 

heat transfer systems like pumps or fans etc. Another way of 

enhancing the heat transfer is the increasing of surface area. 

But virtually, the material, operating and geometric 

properties can be enhanced up to a certain limit and hence the 

objective of necessary amount of heat removal turns down. In 

such situations, the alternative is to increase the surface area 

by attaching extension to the primary hot surface. This 

extension is called extended surface or fin. 

The primary objective of fin is to enhance the heat transfer 

rate per unit area between the base surface and its convective, 

radiative and convective- radiative environment. Today, due 

to increasing demand of high performance parametric values 

but at the same time compactness in heat bearing structures, 

the extended surfaces or fins of different geometries and 

material properties are found to be used in wide range of 

general as well as sophisticated engineering applications 

which include air conditioning, aerospace, automobile, 

chemical processing equipments, from large industrial heat 

exchangers to small systems such as transistors and other 

electronic components. 

Increasing use and the potential development of fins in the 

wide engineering domains have attracted many authors to 

concentrate their research on the performance of fins under 

variable and dynamic conditions. Over the period of time 

different numerical methods have been employed by the 

researchers to analyse the behavior of fins. Singh et al. [1] 

have used meshless element free Galerkin method; Cole et al. 

[2] have employed Green’s functions (GF) in the form of 

infinite series; Basri et al. [3] have shown confidence on 

efficient finite element method and differential quadrature 

method; Wang et al. [4] have presented method of 

superposition and separation variables; Singh et al. [5] and 

Sao and Banjare [6] have used quasi- steady theory; finite 

volume method has been employed by Lotfi and Belkacem [7] 

and Al- Rashed et al. [8]; Taler and Taler [9] have presented 

the coupling of finite volume method- finite element method; 

B- spline based finite element method has been highlighted 

by Reddy et al. [10] and field synergy principle optimization 

analysis has been conducted by Wei et al. [11] to analyse the 

heat transfer problems of fins. 

But general engineering applications including heat 

transfer problems, in actual, are non-linear in nature. This 
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ABSTRACT  

 

A mathematical model describing nonlinear and transient heat transfer through a straight insulated tip fin 

with temperature-dependent heat transfer coefficient has been addressed by the meshless local Petrov- 

Galekin (MLPG) method. Moving least square approximants are used to approximate the unknown function 

of temperature T(x) with Th (x).These approximants are constructed by using a linear basis, a weight function 

and a set of non-constant coefficients. Essential boundary conditions are imposed by penalty method. An 

iterative predictor-corrector scheme is used to handle nonlinearity and two-level  method for temporal 

discretization. The accuracy of MLPG method is verified by comparing the results for the simplified versions 

of the present model with an exact analytical solution. Once the accuracy of MLPG method is established, the 

method is used to generate results for the complex heat transfer problems formulated here. Temperature 

variation along the fin length over the discrete time range till the attainment of steady state, under convective 

and convective-radiative environment has been demonstrated. 
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nonlinearity arises due to the reliance of thermal as well as 

material properties on the temperature or cross- sectional area 

of the fin. Optimal linearization method has been used by 

Jordan et al. [12]; Frobenius expanding series has been 

employed by Kundu and Das [13]; homotopy analysis 

method has been presented by Khani et al. [14] and 

Amirkolaei and Ganji [15]; incremented differential 

quadrature method has been highlighted by Malekzadeh and 

Rahideh [16]; Ganji et al. [17] and Sobamowo [18] have used 

Galerkin method; Moradi and Ahmadikia [19], Sadri et al. 

[20], Ndlovu and Moitsheki [21], Mosayebidarchech et al. 

[22], Ghasemi et al. [23] and Ganji and Dogonchi [24] have 

used differential transformation method; homotopy 

perturbation method has been presented by Arslanturk [25], 

Ganji et al. [26] and Hoshyar et al. [27]; Aziz and Bouaziz 

[28] have employed method of least squares; Kirchoff’s 

transformation method has been used by Moitsheki and 

Rowjee [29]; lie point symmetry method has been 

highlighted by Moitsheki and Harley [30], Mhlongo and 

Moitsheki [31], Ali et al. [32] and Kader et al. [33]; 

Hajabdollahi et al. [34] has presented genetic algorithm; 

symbolic programming has been used by Fatoorehchi and 

Abolghasemi [35]; and Latif et al. [36] have used symmetry 

reduction method successfully, to address nonlinear heat 

transfer problems of fins. Mahmoudi and Mejri [37] have 

investigated the effect of variable thermal conductivity and 

variable refractive index on transient conduction and 

radiation heat transfer by Lattice Boltzmann method. Sun et 

al. [38] have demonstrated the convective-radiative fin with 

temperature dependent properties. 

 To the best of authors’ knowledge, meshless local Petrov- 

Galerkin (MLPG) method has not been used to study the 

behavior of fins. MLPG method was developed by Atluri and 

Zhu [39- 40]. Unlike FEM and most other meshfree methods, 

MLPG method operates on local weak form and performs 

integration over overlapping simple local domains. This has 

removed the need of mesh at any stage of analysis. Hence, it 

is truly a meshfree method. 

 The method was further elaborated and developed by 

Sladek et al. [41], Atluri and Shen [42], Qian and Batra [43], 

Xue-Hong et al. [44], Baradaren and Mahmoodebadi [45], 

Thakur et al. [46], Dai et al. [47] and Zhang et al. [48] and 

concluded that MLPG has a very high rate of convergence, it 

does not need any post processing technique and also not 

exhibit any volumetric locking. MLPG method works on 

Petrov-Galerkin formulation i.e. trial and test functions are 

selected from different spaces. This provides a large number 

of possible combinations to formulate MLPG method. In the 

present article, the MLPG method is used to solve linear and 

nonlinear heat transfer problems of insulated tip fin under 

steady and transient conditions. The analysis is structured in 

two sections- first section establishes the validity of MLPG 

method by solving the linear problem under steady state 

condition for a straight longitudinal fin. Second section 

solves the nonlinear heat transfer problems under transient 

condition. Natural convection model is generally adopted for 

the analysis of heat transfer through fin to reduce complexity 

in calculations but it renders inaccuracy in the results. To 

overcome this inadequacy, the radiation with convection is 

additionally considered to solve the heat transfer problem 

through fin in this article.  

 

2. GOVERNING EQUATION AND MLPG 

FORMULATION 
 

One dimensional heat transfer equation is considered. Heat 

transfer coefficient follows the power law and is temperature-

dependent. Other properties are taken as constant. There is no 

heat generation in the solid. The governing differential 

equation Ω is given by 
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Initial and boundary conditions: 
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MLPG method is based on local weak form. Weighted 

residual formulation for Eq. (2) in local domain Q can be 

expressed as 

 

 

 

2

2
( )

0

Q

r

a

c

r

r s

c

PT
k h T T T

Ax
v d

P T
h T T c

A t




  
   

   
  

      
   


           

(5) 

 

Where, v is the test function. According to Atluri and Shen 

[42], the MLPG method is classified into six sub- methods, 

based on the way the test function is chosen as MLPG 1 

(MLS weight function); MLPG 2 (Dirac’s Delta function); 

MLPG 3 (discrete least sqaures); MLPG 4 (fundamental 

solution); MLPG 5 (Heaviside unit step function); MLPG 6 

(identical to trial function). Although, all the MLPG methods 

possess higher accuracy, still MLPG 1 is claimed as one of 

the strongest method to address complicated heat transfer 

problems as it yields the better results and higher rate of 

convergence than the established methods [40-47]. Hence 

MLPG 1 is employed in this study.  

Using divergence theorem, Eq. (5) yields the desired weak 

form as: 
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Where Q is the boundary of the local domain, Q . In 

case of 1-D problem, boundary integrals turn to be a point 

value on boundaries. Taking advantage of MLPG method’s 

flexibility, the test function “v” is selected such that it 

vanishes at the boundary of local domain. Hence, boundary 

integral remains non-zero only when local domain intersects 

the global boundary. The essential boundary conditions are 

imposed by penalty function method, developed by Zhu and 

Atluri [49]. Therefore, Eq. (6) can be written as: 
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Where 1 1 2 2 3 3,  , Q Q Q Q Q Q             and 

α is the penalty function parameter = 1 x 1010 

The unknown function, T, at any instant of time t, is 

approximated by moving least square scheme (Lancaster and 

Salkauskas [50]) as follows: 
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whereΦ is the vector of meshfree shape functions 
i , T 

represents the vector of nodal parameters Ti at time t and ns is 

the number of nodes in the support domain at point x. 

Substituting the approximation (8) in Eq. (7) and performing 

integration over all local domains corresponding to all field 

nodes, the semi-discrete system can be obtained as follows: 
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Spatial discretization of governing partial differential 

equation (2) results in a system of semi-discrete ordinary 

differential equations. Two- level  method for temporal 

discretization has been used in the present analysis. It can 

vary between explicit and implicit strategies and results in the 

algebraic system. 
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where, n’ denotes the time level. 

According to Morgan [53], nonlinear systems can be very 

complicated, if not impossible, to solve explicitly. The 

majority of nonlinear analysis of systems of ODEs focuses on 

whether or not the systems have stable equilibria. The 

equilibrium characterizes as stable or unstable based on the 

behavior of solutions whose initial conditions are in the 

neighborhood of the equilibrium. If solutions near a critical 

point of a system stay close to the critical point as time 

approaches infinity, the critical point is assumed to be stable.  

An iterative predictor-corrector scheme, based on direct 

substitution iteration (Lewis and Roberts [51]) is used to 

handle nonlinearity in the current work. This scheme is an 

algorithm that proceeds in two steps. It calculates a rough 

approximation of the desired quantity in the first step and 

refines approximation in the next by any other means. It 

combines the advantages associated with explicit and implicit 

time schemes and hence provides the stable solution to solve 

complex nonlinear problems: 
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where p = 0, 1, 2, 3…up to convergence and  
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3. RESULTS AND DISCUSSIONS 
 

Consider a sample problem of one-dimensional fin as 

shown in the figure 1. 
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Figure 1. Schematic of cylindrical fin 

 

The different parameters used for the transient analysis are 

listed in Table 1 

 

Table 1. Thermo-geometric parameters of fin  

 

S. 

No. 

Thermo- Geometric 

Parameters 

Value of 

Parameters 

1 d 0.02 m 

2 L 0.10 m 

3 Pr 0.0628 m 

4 c 0.48 kJ/kg.0C 

5 ρ 7800 kg/m3 

6 Ac 1.57 x 10-4 m2 

7 k 12 W/m.0C 

8 h (temperature dependent) 9.0 ∆T0.175 W/m2.0C 

9 h (constant) 22 W/m2.0C 

10 Ta 300C 

11 Tb 2000C 

12 Tinit 2000C 

13 ∆t 10 sec 

 

3.1 Validation of results 

 

Table 2. Validation of results  

 

Dimensionless Temperature ( ) /( )a b aT T T T   

x, m MLPG FVM (Holman, [52]) Exact 

0.02 0.6952 0.6968 0.6949 

0.04 0.4943 0.4964 0.4935 

0.06 0.3667 0.369 0.3657 

0.08 0.2936 0.2959 0.2925 

0.10 0.2640 0.2665 0.2630 

Heat Transfer Through Fin 

Qfin, 

W 
11.9700 12.0820 11.8740 

 

In this section, the problem is solved with constant value 

of heat transfer coefficient and without considering the 

effects of radiation. The results obtained by MLPG method 

are compared with exact solution of the problem and also 

with the result obtained by using finite volume method [52]. 

Results obtained by using MLPG method are found to be 

very close to the exact solution as shown in Table 2. Results 

of MLPG method depend on various parameters and a set of 

parameters are also searched to obtain best possible results. 

The one dimensional problem domain is equally distributed 

in 21 local domains represented by 21 nodes. Extent of 

quadrature domain is finally taken as, αQ = 1.66 and support 

domain as, αS =2.5. The penalty method is employed to 

impose the essential boundary conditions. The maximum 

relative error with exact solution is found to be 0.38%. Heat 

transfer through fin is also calculated and shown in Table 2. 

  

3.2 Steady state analysis 

 

Fin equation is solved initially for steady state condition 

using MLPG method. Parameters are chosen as discussed in 

previous section. Fin is investigated under three different 

conditions -- under the condition of constant heat transfer 

coefficient, under the condition of variable heat transfer 

coefficient which is a function of temperature difference 

between the fin surface and the surroundings and finally 

under the combine effects of convection and radiation. For 

radiation, emissivity of the fin surface is assumed to be one. 
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Figure 2. Variation of temperature along the fin under 

steady state condition 

 

Variation of temperature under all three conditions is 

plotted in Fig. 2. Two plots represent constant and variable 

heat transfer coefficients respectively which are coinciding 

initially but part away as moving towards the tip of the fin. 

This is due to the fact that variable heat transfer coefficient is 

a function of temperature difference between the fin surface 

and surrounding medium. This difference in temperature is 

higher near the base of the fin and results a very closer value 

to the constant value of heat transfer coefficient in this region. 

Temperature difference decreases along the length of fin and 

so will be the heat transfer coefficient. The plot of combined 

convection and radiation starts with steepest slope and 

reaches at the lowest value of the temperature. This is due to 

increased value of heat transfer along the fin due to radiation.  

 

3.2.1 Effect of emissivity 

Actual fin surfaces are always not black and the emissivity 

of the real surfaces lies between 0 to 1. Different values of 

emissivity will yield different values of heat transfer in 

radiation. Temperature distribution for different values of 

surface emissivity is plotted in Fig. 3. Fin with black surface 

attains lowest temperature at its tip showing maximum 

amount of heat transfer. 
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Figure 3. Effect of emissivity on variation of temperature 

along the fin 

 

3.3 Transient analysis 

 

After steady state analysis, the transient analysis is 

performed to understand fin response with respect to time. 

Three cases taken in of the previous section are considered 

and compared. Emissivity is taken as 1. Figure 4 shows 

variation of temperature along the fin at different instant of 

time for three cases. Due to greater value of temperature 

difference between fin surface and surrounding fluid, initially 

both the convection curves are very close to each other and 

radiation effect is very high. Higher value of radiation heat 

transfer results in a big gap between the convection and 

radiation curves. This gap reduces with time as shown in 

corresponding plots as temperature difference reduces with 

time.  

Figure 5 shows temperature-time history of four different 

points on the fin. Temperature of all the points decrease at a 

faster rate initially, slows down thereafter and finally tending 

to reach a constant value showing to be near to steady state. 

Effect of radiation can be seen in all the plots as points are 

cooling down at faster rate. As we move away from the hot 

base (from a to d), minimum temperature which is going to 

be prevailed on that under steady state reduces as expected. 
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Figure 4. Variation of temperature at different times along 

the fin length in three cases  

At x = 0.010 m
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At x = 0.025 m
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At x = 0.050 m
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At x = 0.075 m
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Figure 5. Temperature-time history at different positions 

along the fin length in three cases 

 

3.4 Performance analysis of the fin 

 

Heat Transfer through fin in steady state is given by, 

 

0

( )

L

fin aQ h T T Pdx 
           

(17) 

 

or it can also be evaluated by the expression 
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

         

(18) 

Eq. (17) is based on the calculation of total convective heat 

transfer from the fin surface while Eq. (18) calculates the rate 

of conduction on the fin base. For the condition of convection 

with radiation the value of convective heat transfer 

coefficient is modified to represent combined effects. 

Efficiency of the fin is given by, 

 

max,/fin fin finQ Q 
 
and max,

0

( )

L

fin b aQ h T T Pdx 
        

(19) 

 

max, finQ
 
corresponds to the condition when the entire fin is 

maintained at its base temperature. 

Effectiveness of the fin is given by, 

 

 /fin fin without finQ Q  and , ( )without fin b aQ h T T A          (20) 

 

,without finQ
 
is the amount of heat transfer from that area on 

the base plate where the fin is applied. Heat transfer 

coefficient is placed for corresponding conditions. 

Table 3 shows performance of the fin under different 

conditions. Heat transfer in case of constant ‘h’ is more than 

that of the case of variable ‘h’ as constant value is wrong 

assumption of higher value of ‘h’ throughout the fin surface. 

When radiation is introduced higher heat transfer is observed 

depending on the value of surface emissivity. A maximum 

difference of 20% in heat transfer rate is observed once 

radiation is taken into account. As emissivity reduces heat 

transfer rate also reduces while other performances increase. 

Corresponding values of effective heat transfer coefficient 

plays its role in denominator to decide these parameters. 

 

Table 3. Performance of fin  

 
Only convection 

Condition Qfin(W) Efficiency(%) Effectiveness 

h= constant 11.97 50.72 10.14 

h =variable 11.44 58.90 11.32 

Convection and Radiation 

Emissivity=1.0 14.52 54.62 10.92 

Emissivity=0.8 13.96 55.39 11.07 

Emissivity=0.6 13.38 56.20 11.24 

Emissivity=0.4 12.77 57.05 11.41 

Emissivity=0.2 12.12 57.95 11.99 

 

 

4. CONCLUSIONS 
 

Numerical simulation of convective-radiative fin is 

performed using MLPG method. The MLPG method is a 

truly meshfree method as it does not need mesh either at the 

stage of interpolation or at the integration. Fins are very 

commonly used to increase the rate of heat transfer but it is 

very essential to predict results with high accuracy. MLPG 

method can solve nonlinear fin problems and predict accurate 

solution. Although, MLPG method consumes more 

computational time than the established methods like FEM, 

FVM and FDM, in solving complex 1-D heat transfer 

problems, still with the advent of new generation computers 

(higher processing rate) this limitation can be eliminated upto 

a greater extent.  
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NOMENCLATURE 

 

d Fin diameter [m] 

L Fin length [m] 

Pr Fin perimeter [m] 

c Specific heat [kJ/kg.0C] 

K Thermal conductivity [W/m.0C] 

Ac Cross- sectional area [m2] 

h  Heat transfer coefficient [W/m2.0C] 

Ta Ambient temperature [0C] 

Ts Surface temperature [0C] 

Tb Base temperature [0C] 

Tinit Initial temperature [0C] 

∆t Time step [sec.] 

t Time [sec.] 

hr Radiative heat transfer coefficient [W/m2.0C] 

T  Specified temperature on essential boundary [0C] 

q  Heat flux at natural boundary [W/m2] 

n Outward unit normal to the boundary 

 

 
 

Greek symbol 

 

α Extent of domains 

ρ Density of the material [kg/m3] 

ε Emissivity 

σ  Stephen- Boltzmann constant (5.67 x 10-8 W/m2-K) 

Ω Global domain 

Γ Boundary of global domain 

Γ1 Essential boundary 

Γ2 Normal boundary 

Γ3 Convective boundary 
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