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 The objective of this research work is to investigate the influence of cutting parameters 

on the average surface roughness (Ra) in an end milling process. Feed rate (f), Spindle 

speed (s) and Depth of cut (d) are the cutting parameters considered as significant 

factors. A case study on the progressive feed (PF) and conventional constant feed (CF) 

machining characteristics of Aluminum alloy BS L168-T6511 using end milling is 

considered. Taguchi's design of experiments (DoE) technique is applied for various 

combinations of cutting factors and average surface roughness was measured using 

Mitutoyo surftest SJ-301 surface roughness tester. The experimental results of Ra are 

analyzed by response surface methodology (RSM). The predicted values using the 

developed regression mathematical model are compared against experimental results and 

were found in close agreement. ANOVA technique was applied to further analyze the 

data for checking the model adequacy and to predict the influence of each parameter on 

output response Ra. Main effect plots, Interaction plots, 3D surface plots, and Contour 

plots are established. The investigation reveals that output response (Ra) is 

predominantly affected by feed rate and progressive feed machining (PFM) yields better 

surface finish than the conventional constant feed machining (CFM) for the end milling. 
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1. INTRODUCTION 

 

The challenge of contemporary machining industries is 

mainly interested in the achievement of high-quality products 

in terms of surface finish, dimensional exactness in a 

stipulated time. End milling is one of the most commonly 

used metal cutting process occupying cores of manufacturing 

industries like aerospace, defense, automotive, marine, and 

other fields. The mechanism behind the formation of surface 

finish in CNC end milling process is very dynamic, 

complicated and process dependent. The quality of surface of 

a machined component plays an important role in its 

performance. A good quality milled surface significantly 

improves fatigue life, corrosion resistance, and creep life. 

Surface finish is of great important, particularly in case of 

fighter aircraft structural components, as they will be 

subjected to high level of fatigue loads. Some of fighter 

aircraft detail parts are very intricate in shape and needs 

extensive end milling process to realize the final component. 

The ability to control the machining process by setting 

proper input factors, for a better surface finish and in turn a 

good quality product is of vital importance. Many researchers 

have concentrated on various optimization and predictive 

modeling techniques to determine the optimal input 

parameters, and to achieve the better surface finish. 

Hashimoto et al. [1] described the characteristics of surfaces 

created by various finishing methods, and discussed the 

influence of surface finish on its performance. According to 

Ghosh et al. [2] better surface finish can be obtained by a 

combination of high speed, low feed, and low depth of cut. 

They concluded that RSM-PSO is an efficient optimization 

technique for keyway milling. The advantage of dry 

machining over the wet machining has been clearly 

established by selecting proper cutting tools and tool 

geometry [3, 4]. The optimization, carried out in their work 

gives an opportunity for the user to select the best tool 

geometry and cutting conditions so as to get the required 

surface quality. Varghese et al. [5] presented a detailed 

investigation of effects of cutting parameters and different 

cooling environments on the machinability of austenitic 

stainless steel AISI 304. ANOVA and Regression analysis, 

through a DoE full factorial design (43), were conducted to 

relate the surface roughness of face milled high strength steel 

to the most common machining parameters [6]. The 

optimization resulted in spindle speed of 1250rpm, depth of 

cut of 1.0 mm, and table feed rate of 67mm/min with a 

composite desirability of 0.83, to give 𝑅𝑎and MRR values of 

0.15 and 2333mm3/min respectively. The objective of the 

study is to determine the optimum combination of parameters 

for minimum surface roughness during MQL assisted milling 

process on AISI-1045 alloy [7]. Surface roughness model is 

developed by both ANN and RSM. It is found that RSM 

coupled with PSO gives better result and it is validated by 

confirmation tests. It is perceived that the feed has significant 

effect on surface roughness followed by spindle speed and 

Depth of cut has small effect on roughness. Kumar and 

Rajamohan [8] developed a mathematical model using RSM, 

with the data obtained by end milling of Al 6063-T6. The 

surface roughness and flatness values predicted from the 

proposed model were found in good agreement with the 
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experimental results. Investigations shows output response 

increases rapidly with an increase of feed rate and decreases 

with an increase in cutting speed. A fuzzy model was 

developed for predicting the surface roughness for a set of 

input parameters: cutting speed, feed rate and depth of cut [9]. 

Therefore, the operator can predict the quality of the response 

in advance with that. Vakondios et al. [10] examined the 

influence of the milling strategy selection on the surface 

roughness of an aluminum alloy Al7075-T6. They performed 

96 experiments and the results are processed using regression 

analysis and ANOVA. The models were statistically 

validated and experimentally verified are in good fit. Surface 

topography of super alloy GH4169 work piece machined by 

milling and grinding was studied and their result shows that 

Ra and Rz values from milling are 2-5 times and 1-3 times as 

high as those of grinding [11]. Ramanujam et al. [12] 

conducted CNC end milling experiments on Inconel 718 

super alloy based on L9 orthogonal array and optimized the 

cutting parameters by Taguchi and desirability function. 

They developed a regression model for Ra and MRR. 

ANOVA shows that the cutting velocity is the most 

significant machining parameter. Pang et al. [13] carried out 

an experimental investigation on end milling of halloysite 

nanotubes (HNTs) based on Taguchi’s L27 orthogonal array. 

Results from their study shows that the application of the 

Taguchi method can determine the best combination of 

machining parameters that can provide the optimal 

machining responses: surface roughness and cutting force. 

CNC milling of brass was conducted by Ranganath et al. [14] 

have used RSM to accomplish the objective of the 

experimental study. The result shows that, tool diameter is 

the most significant factor followed by feed rate. Yahya et al. 

[15] optimized machining parameters based on surface 

roughness prediction for AA6061 using RSM. Cutter flutes 

have a more significant influence on surface roughness 

followed by feed rate and depth of cut. Julie et al. [16] were 

carried out ANOVA analysis to identify the significant 

factors affecting surface roughness and also found that 

optimal cutting combination by seeking the best surface 

roughness by SN ratio. Rashmi et al. [17, 18] were optimized 

the machining parameters for AA6061 using RSM& PSO, 

and calculated the cutting force by an indirect method. 

ANOVA results reveals that the effect of spindle speed is 

much more evident than the effect of feed rate and depth of 

cut on surface roughness. 

A lot of research has been observed through literature on 

conventional constant feed machining of end milling process 

and minimizing the surface roughness using different 

statistical techniques. But only few articles [19, 20] are 

available on progressive feed machining, wherein the feed is 

applied progressively rather than instantly to minimize 

cutting force and tool wear. However, to the best of author’s 

knowledge there is no literature observed on minimizing 

surface roughness through progressive feed method of 

machining in end milling process. Especially machined 

components assembled in fighter aircraft structures like: 

longerons, spars, central frames, side frames, shear walls, 

trouser ducts, integral fuel walls and various supporting ribs 

of the fuselage etc., will be subjected to high level of fatigue 

loads during maneuvering. In the case of these parts surface 

finish plays a crucial role in their fatigue life and in-turn 

durability of the aircraft. Hence it is very important to 

fabricate a component with good surface finish to enhance 

the life of each detail part of aircraft. The primary objective 

of the present study is to adopt progressive feed method of 

machining in end milling of BS L168-T6511alloy, in order to 

achieve better surface finish on the machined components. A 

comparative analysis has been made between constant feed 

machining and progressive feed machining besides finding 

the influence of cutting parameters on output response (Ra). 

The chosen material for this research work is a widely used 

for high technology applications like aerospace, defense, 

marine and automotive etc. due to its high level of technical 

merits. 

 

 

2. CONCEPT OF PROGRESSIVE FEED RATE 

 

Usually in CNC part programming a constant feed rate 

will be chosen for a given set of cut-segment. As the part 

program is executed by the controller one block at a time or 

block by block, there exists a time delay between executions 

of two successive blocks. This leads to a stop and go fashion 

of tool movement while machining. Due to this nature of tool 

movement, at the start of every cut-segment and where there 

exists a change in cut direction, the tool starts from stationary 

position i.e. at a feed rate of ZERO mm/min and accelerates 

to the intended feed rate (f) mm/min instantly. This will lead 

to sudden impact of tool with the work piece and hence an 

increase in the cutting force, spindle deflection, machine tool 

vibration, tool wear, surface roughness, chattering and finally 

leads to poor product quality. Instead of that, if the feed rate 

increases progressively to the intended feed at the start of 

each cut and where there is a change in the direction of the 

cut, these ill effects will be minimized to the safe level and/or 

eliminated completely. In PF method of machining, feed rate 

increases step by step until cutting tool travels through a 

distance equal to its diameter, after that it travels with an 

intended feed rate (f)mm/min. The concept of progressive 

feed with four steps was illustrated in Figure 1. 

 

 
 

Figure 1. Concept of progressive feed with four steps 

 

2.1 Calculation of ‘Step distance’ for progressive feed rate 

 

𝑙 =
𝐷

𝑛
 for end milling (1) 

 

where, l=Step distance, D=Cutter diameter, n=Number of 

steps chosen, through which the feed rate is to be increased to 

intended feed rate (f). 

Carbide end milling cutter of 20mm diameter with two 

flutes has been chosen for this study. Once the tool starts 

moving from its stationary position and after reaching a 

distance equal to its diameter (i.e. 20mm), it will be fully 

engaged with the work piece and there exists a firm support 

between tool and work piece. Hence, tool will be allowed to 

move with an intended feed rate (f)mm/min and this 20mm 

would be considered as progressive feed rate zone. That 
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means feed rate will increase step by step through this 

distance of 20mm in a pre-determined number of steps (e.g.: 

four or five or even more/less), thereafter it will travel with 

an intended feed rate (f) mm/min. 

 

2.2 Calculation of increase in feed rate per step 

 

𝑓𝑠 =
𝑓−𝑓0

𝑛
 mm/min (2) 

 

where, fs=Increase in feed rate per step, n=Number of steps 

chosen through which the feed rate is to be increased to 

intended feed rate (f), f=Intended feed, f0=Starting feed rate 

(feed rate for step-1), x=starting % of (f), (i.e. x=30, 25, and 

20 percentage of (f) at levels 200, 400 and 600 respectively 

has been considered as a case study. 

For example, when the intended feed rate is 200mm/min as 

in level-1 of Table 2, 30% of 200 is 60mm/min, which will 

be taken as starting feed rate (f0). The balance 140(200-

60)mm/min is divided into four steps, with an equal step 

increase of 35mm/min(140/4), which gives the values of 

95,130,165 and then tool reaches the indented feed rate (f) of 

200mm/min. Similarly step values are calculated for level-2 

and level-3. Here, the author has chosen a four step increase 

as a case study, but it is possible to take other combinations 

of steps like three/five or even more/less for future study. 

 

 

3. MATERIALS AND METHODS 

 

Cutting parameters and their levels are finalized based on 

the trial runs and literature review. The various machining 

parameters and their levels are shown in Table 1 and Table 2. 

 

3.1 Workpiece details 

 

BS L168-T6511 aluminum alloy work piece samples of 

size 100mm×80mm×20mm are considered for the 

experimental study. Test samples are prepared from a single 

billet to have identical properties throughout the specimen. 

The chemical composition of the work piece material is 

shown in Table 3, confirmed by spectroscopy. 

 

3.2 Cutting tool and machine tool details 

 

Precision measuring instruments Co. made X-PM16807-

2000 solid carbide end mill cutter of 20mm diameter, with 

two flutes, has been used for this purpose (Figure 2a). The 

machine tool shown in Figure 2b, used for conducting 

experiments is the AMS MCV-450 model, three axes CNC 

vertical machining center. The major specifications of the 

machine are: Axis travel: X-800mm, Y-450mm, Z-500mm. 

Maximum spindle speed-60000rpm; Maximum feed rate-

10m/min; Basic power supply–18kVA, Positional accuracy-

0.015mm, Repeatability ± 0.005mm. 

 

 
(a) Solid carbide end mill cutter with two flutes 

 

 
(b) AMS MCV–450 Vertical milling machine 

 

 
(c) Dry cutting condition 

 

Figure 2. Machine tool and cutting tool used for research 

 

Table 1. Machining parameters for CF and PF machining 

 
Cutting Parameters Unit Level-1 Level-2 Level-3 

Spindle speed (s) RPM 2000 3000 4000 

Depth of cut (d) mm 0.75 1.5 2.25 

Feed rate (f) mm/min 200 400 600 

Starting % of ‘f’’ in PF machining (x) mm/min  30% (60) 25% (100) 20% (120) 

 

Table 2. Feed rate steps for progressive feed machining 

 

Levels 
Feed rate (mm/min) 

Starting % of feed (x) Step 1 Step 2 Step 3 Step 4 Beyond Steps 

Level-1 30% of 200 60 95 130 165 200 

Level-2 25% of 400 100 175 250 325 400 

Level-3 20% of 600 120 240 360 480 600 

 

Table 3. Chemical composition of BS L168-T6511 Aluminum alloy 

 

Major Elements 
BS L168-T6511 Al alloy content weight percentage 

Cu Mn Si Mg Fe Zn Ti+Zr Ti Cr Ni Al Others 

Min 3.9 0.4 0.5 0.2 0 0 0 0 0 0 
Balance 

0 

Max 5 1.2 0.9 0.8 0.5 0.25 0.2 0.15 0.1 0.1 0.15 
(Courtesy:https://www.wilsonsmetals.com/datasheets) 
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Table 4. Experimental results from constant and progressive feed machining 

 

Speed rpm DOC mm Feed, mm/ min x Ra in µm CF Ra in µm PF Y S/N for Ra_CFM S/N for Ra_PFM 

2000 0.75 200 30 0.64 0.5 21.875 3.8764 6.0206 

2000 1.5 200 30 0.57 0.46 19.298 4.8825 6.7448 

2000 2.25 200 30 0.51 0.42 17.647 5.8486 7.5350 

2000 0.75 400 25 0.83 0.68 18.072 1.6184 3.3498 

2000 1.5 400 25 0.76 0.62 18.421 2.3837 4.1522 

2000 2.25 400 25 0.71 0.57 19.718 2.9748 4.8825 

2000 0.75 600 20 1.01 0.9 10.891 -0.0864 0.9151 

2000 1.5 600 20 0.95 0.78 17.895 0.4455 2.1581 

2000 2.25 600 20 0.9 0.71 21.111 0.9151 2.9748 

3000 0.75 200 30 0.51 0.4 21.569 5.8486 7.9588 

3000 1.5 200 30 0.52 0.42 19.231 5.6799 7.5350 

3000 2.25 200 30 0.43 0.36 16.279 7.3306 8.8739 

3000 0.75 400 25 0.75 0.59 21.333 2.4987 4.5830 

3000 1.5 400 25 0.67 0.52 22.388 3.4785 5.6799 

3000 2.25 400 25 0.6 0.47 21.667 4.4369 6.5580 

3000 0.75 600 20 0.92 0.78 15.217 0.7242 2.1581 

3000 1.5 600 20 0.86 0.72 16.279 1.3100 2.8534 

3000 2.25 600 20 0.82 0.64 21.951 1.7237 3.8764 

4000 0.75 200 30 0.41 0.33 19.512 7.7443 9.6297 

4000 1.5 200 30 0.42 0.34 19.048 7.5350 9.3704 

4000 2.25 200 30 0.34 0.28 17.647 9.3704 11.057 

4000 0.75 400 25 0.67 0.53 20.896 3.4785 5.5145 

4000 1.5 400 25 0.58 0.47 18.966 4.7314 6.5580 

4000 2.25 400 25 0.54 0.42 22.222 5.3521 7.5350 

4000 0.75 600 20 0.83 0.68 18.072 1.6184 3.3498 

4000 1.5 600 20 0.76 0.61 19.737 2.3837 4.2934 

4000 2.25 600 20 0.74 0.58 21.622 2.6153 4.7314 

Overall average percentage of improvement in surface finish PFM over CFM is: 19.206 

 

3.3 Experiment details 

 

Experiments were conducted as per Taguchi’s L27 

orthogonal array [21, 22] and detailed as in Table 4. Spindle 

speed (s), feed rate (f) and axial depth of cut (d) are the input 

process parameters and surface roughness (Ra) is the output 

response. Conventional climb milling with dry machining 

(Refer Figure 2c) condition was chosen to study the clear cut 

analysis of the constant feed and progressive feed machining. 

The measured surface roughness (Ra) values against each 

experimental run are depicted in Table 4. Column ‘x’ shows 

the starting percentage of feed rate (f) and column ‘Y’ 

displays the percentage of improvement in surface finish 

against each experimental run. S/N ratio of Ra from constant 

feed and progressive feed machining are presented in last two 

columns of the Table 4 respectively. 

 

 

4. RESULTS AND DISCUSSIONS 

 

The influence of cutting parameters such as spindle speed, 

feed rate and depth of cut on the surface roughness of 

machined work sample with progressive feed and constant 

feed types machining environments is analyzed with the help 

of two statistical approaches: (1) ANOVA and (2) 

Relationships among the factors by multiple linear 

regressions. Mean values of surface roughness (Ra) are 

measured using Mitutoyo surftest SJ-301 (Refer Figure 3) 

surface roughness tester by taking an average of three 

readings, taken at three different locations on machined 

surface of work piece against each experimental run. 

 

 
 

Figure 3. Mitutoyo surftest SJ-301 surface roughness tester 

 

4.1 Analysis of variance (ANOVA) outcomes 

 

ANOVA is a statistical technique to investigate the design 

parameters and it is used for establishing the significant 

factor which influences the design model [23]. It is useful for 

inferring the input data and test results in an organized way 

from the design of experiments [24, 25]. The experimental 

values of Ra from Table 4 from constant feed and progressive 

feed machining have been further analyzed using Minitab 18 

statistical analysis software to find the effect of individual 

input factors on the response (Ra). 

Table 5 and Table 6 shows the ANOVA result for surface 

roughness (Ra) of machined work piece surface in constant 

and progressive feed machining respectively. The last 

column of the Table 5 and Table 6 displays percentage 

contribution of each parameter on the total variation 

indicating the degree of influence on the response (Ra). The 

percentage of influence of input parameters on the response 

(Ra) in constant feed machining is as follows: feed rate: 76.60, 

spindle speed: 16.36 and depth of cut: 6.22 (Refer Table 5). 

The interaction terms {(s*f: 0.04%), (s*d: 0.09%) and (f*d: 

0.45%)} do not have much statistical significance on surface 
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roughness since P–values for these terms are more than the 

confidence level of 0.005. The percentage of influence of 

input parameters on output response in progressive feed 

machining is as follows: feed rate: 74.19, spindle speed: 

16.89 and depth of cut: 7.41 (Refer Table 6). The interaction 

terms {(s*f: 0.23%) and (s*d: 0.13%)} do not have much 

statistical significance on surface roughness. The interaction 

term (f*d: 0.94% and P: 0.005) shows statistical significance 

on average surface roughness since its P-value is less than or 

equal to the confidence level of 0.005. ANOVA reveals that 

feed rate is the most influencing parameter among the spindle 

speed, feed rate and depth of cut considered in constant and 

progressive feed machining. It is well accepted that for a 

given values of tool diameter, nose radius, rake angle, 

number of cutting edges and flutes of a cutting tool, the 

quality of the surface finish is primarily a function of the feed 

rate. The total variations are explained by the model is 

R2=99.75% in constant feed machining whereas R2=99.79% 

in progressive feed machining. R2 (Adj) is 99.31% with the 

significant factors {s, f, d, (f*d)} in progressive feed 

machining whereas 99.20% in constant feed machining with 

the significant factors {s, f, and d}. R2 (Pred) is 97.19%, 

expected to explain the new data in constant feed and it is 

97.57% in progressive feed machining (Table 5 and Table 6). 

Pie charts (Figure 4a & Figure 4b) were drawn to show the 

percentage contribution of cutting parameters on the output 

response (Ra) in both constant feed and progressive feed 

machining respectively. It is evident that, in both the 

machining environments feed rate having predominant effect 

on Ra followed by spindle speed and depth of cut is having 

least influence and interaction terms (s* f, s*d, and f*d) have 

negligible influence. 

 
(a) Constant feed machining 

 
(b) Progressive feed machining 

 

Figure 4. Percentage of contribution of machining 

parameters on Ra 

 

 

Table 5. ANOVA results for Ra from CF machining 

 
Source DF Seq SS Adj MS F-Value P-Value % of Cont. 

s 2 0.140452 0.070226 265.19 0 16.36 

f 2 0.657541 0.32877 1241.5 0 76.60 

d 2 0.053363 0.026681 100.76 0 6.22 

s*f 4 0.000326 0.000081 0.31 0.865 0.04 

s*d 4 0.00077 0.000193 0.73 0.598 0.09 

f*d 4 0.003881 0.00097 3.66 0.056 0.45 

RE 8 0.002119 0.000265     0.25 

Total 26 0.858452       100 

Model summary: R2=99.75%, R2 (adj)=99.20%, R2 (pred)=97.19% 

 

Table 6. ANOVA results for Ra from PF machining 

 
Source DF Seq SS Adj MS F-Value P-Value % of Cont. 

s 2 0.102785 0.051393 317.17 0 16.89 

f 2 0.451563 0.225781 1393.4 0 74.19 

d 2 0.045119 0.022559 139.22 0 7.41 

s*f 4 0.00137 0.000343 2.11 0.171 0.23 

s*d 4 0.000815 0.000204 1.26 0.362 0.13 

f*d 4 0.005704 0.001426 8.8 0.005 0.94 

RE 8 0.001296 0.000162     0.21 

Total 26 0.608652       100 

Model summary: R2=99.79%, R2 (adj)=99.31%, R2 (pred)=97.57% 

 

4.2 Correlations and confirmations 

 

In order to recognize the effect of spindle speed, feed rate, 

and depth of cut on the surface roughness and to verify the 

exactness of the developed regressive model, correlation and 

conformation tests were accomplished. 
 

4.2.1 Development of a mathematical model 

The response surface method (RSM) is used to develop a 

mathematical model for the prediction of surface roughness. 

RSM is a pool of mathematical and statistical techniques 

those are useful for modeling and analysis of problems in 

which response of attentiveness is influenced by several input 

parameters. A second-order polynomial response surface 
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mathematical equation was developed for average surface 

roughness (Ra) as a function of machining parameters 

considered. The developed regression mathematical models 

to predict the output response (Ra) in constant feed and 

proposed progressive feed type of machining are shown in Eq. 

(3) and Eq. (4) respectively. 

 

Ra=0.6920-0.000107*s+0.001036*f-

0.0856*d+0.000000*s*s-0.000000*f*f-0.0020*d*d 

+0.000000*s*f+0.000008*s*d-0.000011*f*d 

(3) 

  

Ra=0.5535-0.000109*s+0.000943*f-

0.0400*d+0.000000*s*s-0.000000*f*f-0.0040*d*d 

+0.000000*s*f+0.000013*s*d-0.000144*f*d 

(4) 

 

The correlation graphs between predicted and 

experimental values of response (Ra) are established (Figure 

5a and Figure 5b). The developed regression model shows a 

good correlation between the experimental and predicted 

values of Ra. Experimental values of surface roughness from 

the conducted experiments and predicted values of response 

(Ra) from the developed regression models are shown in 

Table 7. The mean relative error between experimental and 

predicted values of Ra is 2.56 in constant feed machining and 

it is 5.08 in progressive feed machining (Table 7). Hence the 

developed regression model is effective and it can be used to 

find the response (Ra) for a given set of input parameters. 

These errors may be due to machine tool vibration, spindle 

run-out, chip loads and work piece material property.  

 

                
(a) Constant feed machining                                                    (b) Progressive feed machining 

 

Figure 5. Experimental Vs predicted values of Ra 

 

Table 7. Experimental Vs Predicted values of surface roughness with their Abs % of errors 

 

Tr. no 
Ra in CF 

% of error 
Abs % of  

error 

Ra in PF 
% of error Abs % of error 

Exp Pred Exp Pred 

1 0.64 0.630 1.56 1.56 0.50 0.494 1.15 1.150 

2 0.57 0.573 -0.53 0.53 0.46 0.469 -1.94 1.935 

3 0.51 0.514 -0.78 0.78 0.42 0.448 -6.68 6.679 

4 0.83 0.836 -0.72 0.72 0.68 0.661 2.76 2.757 

5 0.76 0.777 -2.24 2.24 0.62 0.614 0.92 0.919 

6 0.71 0.716 -0.85 0.85 0.57 0.572 -0.33 0.325 

7 1.01 1.041 -3.07 3.07 0.90 0.828 7.97 7.972 

8 0.95 0.981 -3.26 3.26 0.78 0.760 2.60 2.603 

9 0.90 0.918 -2.00 2.00 0.71 0.696 2.02 2.021 

10 0.51 0.529 -3.73 3.73 0.40 0.395 1.25 1.250 

11 0.52 0.478 8.08 8.08 0.42 0.379 9.67 9.667 

12 0.43 0.425 1.16 1.16 0.36 0.368 -2.31 2.306 

13 0.75 0.735 2.00 2.00 0.59 0.562 4.75 4.746 

14 0.67 0.682 -1.79 1.79 0.52 0.525 -0.92 0.923 

15 0.60 0.627 -4.50 4.50 0.47 0.492 -4.70 4.702 

16 0.92 0.940 -2.17 2.17 0.78 0.729 6.54 6.538 

17 0.86 0.886 -3.02 3.02 0.72 0.670 6.92 6.917 

18 0.82 0.829 -1.10 1.10 0.64 0.616 3.77 3.766 

19 0.41 0.428 -4.39 4.39 0.33 0.296 10.40 10.38 

20 0.42 0.383 8.81 8.81 0.34 0.29 14.70 14.74 

21 0.34 0.336 1.18 1.18 0.28 0.289 -3.05 3.054 

22 0.67 0.634 5.37 5.37 0.53 0.463 12.70 12.69 

23 0.58 0.587 -1.21 1.21 0.47 0.435 7.38 7.383 

24 0.54 0.538 0.37 0.37 0.42 0.412 1.82 1.821 

25 0.83 0.839 -1.08 1.08 0.68 0.630 7.39 7.390 

26 0.76 0.791 -4.08 4.08 0.61 0.581 4.80 4.803 

27 0.74 0.740 0.00 0.00 0.58 0.536 7.56 7.560 

Mean value of absolute % of error 2.56 Mean value of absolute % of error 5.08 
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4.2.2 Model fitness check 

The residual plots were used to analyze and investigate the 

adequacy of the developed regression model. Residual is the 

difference between the experimentally measured value and 

predicted value. These are studied using the following plots: 

normal probability plots of the residual (Figure 6a), the plots 

of residuals versus predicted response (Figure 6b) and 

residual versus the order of predicted response (Figure 6c). 

Figure 6a. reveals that the residual is not in a particular 

trend. However, the errors are distributed normally. Figure 6b 

shows that there is no forecastable trend and random 

structure. Figure 6c. displays the distribution of residual 

against observation order. 

 

 
(a) 

 
(b) 

 
(c) 

 

Figure 6. (a) Normal probability plot of residual for Ra; (b) 

Plot of residual versus fitted Ra values; (c) Plot of residual 

versus order of Ra values 

 

 

4.3 Parametric influence on surface roughness 

 

4.3.1 Main effects plot for constant and progressive feed 

The main effects of machining parameters on mean value 

of Ra for constant feed and progressive feed machining are 

shown in Figure 7(a) and Figure 7(b) on the same scale to 

better understand the trend. It shows that progressive feed is 

giving better surface finish than the constant feed machining. 

This is mainly due to avoidance of sudden impact of the 

cutting tool with the work piece. This leads to, less chattering, 

reduction in cutting forces and in turn reduction of tool 

deflection as well as tool vibration. 

 

 
(a) Constant feed machining 

 

 
(b) Progressive feed machining 

 

Figure 7. Main effect plots for Ra on same scale 

 

In both, constant feed and progressive feed machining; 

increase in spindle speed decreases the average surface 

roughness (Ra). But an increase in feed rate, increases the 

response (Ra) drastically, whereas an increase in depth of cut 

decreases the Ra. Even though same trend has been observed 

in both the types of machining, main effects plots reveals that 

average surface roughness (Ra) in progressive feed machining 

is comparatively lesser than the constant feed machining. 

 

4.3.2 Interaction effect of feed rate on response (Ra) 

Interaction plots for mean value of Ra have been drawn 

against feed rate keeping other factors constant one at a time. 

Figure 8a and Figure 8b shows the interaction effect of feed 

rate for a given value of spindle speed. It reveals that at a 

constant spindle speed, average surface roughness (Ra) 

increases drastically with the increase of feed rate (f) in both 

constant and progressive feed machining. However, 

comparatively better surface finish was noticed in 

progressive feed machining than the conventional constant 

feed machining. Figure 8c and Figure 8d shows the 

interaction effect of feed rate for a constant value of depth of 

cut. It reveals that, mean value surface roughness (Ra) 

increases considerably with the increase of feed rate (f) in 

both the machining environments. Here also better surface 

finish observed in progressive feed rate machining. 

587



 

 
(a) Mean of Ra Vs f at three levels of spindle speed_CFM 

 

 
(b) Mean of Ra Vs f at three levels of spindle speed_PFM 

 

 
(c) Mean of Ra Vs f at three levels of depth of cut_CFM 

 

 
(d) Mean of Ra Vs f at three levels of depth of cut_PFM 

 

Figure 8. Interaction effect plots 

 

4.3.3 Surface plots 

The experimental data is further analyzed with help of 3D- 

surface plots. Figure 9a and Figure 9b represents the effect of 

feed rate and spindle speed on surface roughness in constant 

and progressive feed machining respectively. Whereas Figure 

9c and Figure 9d represents the effect of feed rate and depth 

of cut on average surface roughness in constant feed and 

progressive feed machining respectively. It is clear from 

these plots, that progressive feed machining yields relatively 

better surface finish in comparison with constant feed 

machining. 
 

 
(a) Variation of Ra against feed rate and spindle speed_CFM 

 

 
(b) Variation of Ra against feed rate and Spindle speed_PFM 

 

 
(c) Variation of Ra against Feed rate and Depth of cut_CFM 

 

 
(d) Variation of Ra against Feed rate and Depth of cut_PFM 

 

Figure 9. 3D surface plots 

 

4.3.4 Contour plots 

Figure 10a to Figure 10d illustrates the variation of 

average surface roughness (Ra) against various combinations 

of input machining parameters: feed rate Vs spindle speed, 

feed rate Vs depth of cut. It is well understood from main 

effects plots, interaction plots, 3D surface plots and contour 

plots that progressive feed machining is a good solution, for 

machining the aerospace components, which requires fine 

surface finish and also it avoids additional finishing 

operations like bench work etc. and save the machining time. 
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(a) Variation of Ra: Feed rate Vs Depth of cut_CFM 

 

 
(b) Variation of Ra: Feed rate Vs Depth of cut_PFM 

 

 
(c) Variation of Ra: Feed rate Vs Spindle speed_CFM 

 

 
(d) Variation of Ra: Feed rate Vs Spindle speed_PFM 

 

Figure 10. Contour plots 

 

 

5. CONCLUSIONS 

 

The effect of spindle speed, feed rate, and depth of cut on 

the aforesaid response while machining of BS L168-T6511 

alloy in end milling process has been investigated. 

Experiments were conducted as per the Taguchi’s L27 

factorial method in order to estimate the effect of input 

factors on average surface roughness (Ra) in both constant 

feed and progressive feed machining environments. From 

attained results, subsequent conclusions were derived: 

(1) Progressive feed method of machining offered 

considerable reduction in average surface roughness (Ra) 

around 19.206% over conventional constant feed machining 

(Table 4). It is due to reduction in sudden impact of cutting 

tool with work piece, reduction in cutting tool deflection, 

minimal tool vibration and less chattering in progressive feed 

machining contributed to substantial drop in the response 

(Ra). 

(2) The predicted values of Ra from the developed 

regression mathematical models are in good agreement with 

the experimental results. Errors, in constant feed and 

progressive feed machining are only 2.56% and 5.08% 

respectively. These errors are mainly due to uncontrollable 

variables like: chip loads, chip formation, tool wear and 

unexpected variations in power supply., etc.  

(3) From the ANOVA analysis, feed rate has a foremost 

contribution on the considered response (Ra) both in constant 

feed machining as well as in progressive feed machining. 

(4) The plot of residual errors (Figure 6a) was normally 

distributed, since the model residuals are following the path 

of straight line. Main effect plots, Interaction plots, and 3D 

surface plots reveal that considered response (Ra) increases 

drastically with the increase of feed rate in both the methods 

of machining. 

(5) Better surface finish can be attained by incorporating 

lower feed rate, with higher spindle speed and higher depth 

of cut for the aforesaid material. This work also emphasizes 

that proper selection of cutting parameters along with 

progressive feed machining eliminates the use of secondary 

finishing operations and hence saves the manufacturing time 

and cost. 
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NOMENCLATURE 

Ra Average surface roughness 

𝑓 Feed rate, m.sec-1 

s Spindle speed / Cutting speed, rpm 

d Depth of cut, mm 

F Fitness value 

P Probability value 

PF Progressive feed, m.s-1 

CF Constant feed, m.s-1 

DF Degree of Freedom 

DoE Design of Experiment 
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RE Residual Error 

RSM Response Surface Methodology 

P P-value 

x % of starting feed rate with PF 

Y % of improvement in surface finishing 

CFM Constant feed machining 

PFM Progressive feed machining 

 

Subscripts 

 

a Average 

z Force acting along Z-direction 

x Force acting along X-direction 
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