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Any alternating electric power supply is always characterized by three reference quantities, 

which are voltage, electric power and frequency. The generators of power stations are 

synchronous machines. The present work is based on the modelling of the synchronous 

machine for a study of the stability of the electricity transmission network. The example 

considered is a thermal power station of the national network. i.e., Algiers port power 

station. We have developed a computer program based on MATLAB to simulate the 

calculations of our multi-variable system. The study presented in this article examines the 

static stability of a thermal power plant. To make this study a reality, it is necessary to 

model the synchronous machine. We present the three models of the synchronous machine 

by emphasizing the role of the shock absorbers and the smoothness of the model with three 

windings. This work is supported by a spectral analysis based on the eigenvalues of the 

system. 
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1. INTRODUCTION

Electric energy is a key element of daily life in our 

civilization. All over the world, electricity has found many 

applications, in various fields of life, in industry, agriculture, 

transport and household uses. Synchronous machines occupy 

an important place in industrial equipment. They now 

represent an important part of the market for 

electromechanical energy converters and cover a very wide 

power range. They are widely used as a reciprocating or high 

power electric motor [1]. Most of the energy available in 

power grids comes from thermal and hydroelectric power 

stations. They use synchronous generators to convert 

mechanical energy from a turbine into electrical energy. 

Thermal power plants use turbo-generators driven by steam 

turbines, while hydro-generators in hydraulic plants are driven 

by the force of water. 

The modeling of synchronous generators has been the 

subject of several research studies for several decades. With 

the development of computer science, work on their modeling 

has increased with a view to their simulation in dynamic 

operation. This requires precise knowledge, for each operating 

point, of the electrical, magnetic and mechanical parameters 

[2]. The calculation of the dynamic behavior of synchronous 

machines is currently done almost exclusively on the basis of 

Park's two axis theory [3]. The model of the synchronous 

machine is based on the laws of electrical circuits, known as 

Kirchhoff's laws. This type of model is often used for the 

description of the behavior of the machine during transient 

operation and in machine control. In spite of the simplification 

carried out by the transformation of Park, the study and the 

analysis of the synchronous machine remain rather difficult. 

To this end, the representation of the electromagnetic coupling 

of the two axes d and q by equivalent diagrams of inductors 

and resistances is of great interest for the analysis of the 

operation of the machine [4-6] and for the identification 

parameters [7, 8].  Important studies have been done recently 

in the scope of improving stability in different modalities [9-

20] as shown in Table 1.

In our work, we are interested in mathematical modeling

and techniques for offline identification of parameters of 

wound rotor synchronous machines with and without dampers 

and the simulation of their operation. The phenomenon of 

synchronous machine stability has received great attention in 

the past and will receive increasing attention in the future. 

This phenomenon is aimed at the operation and planning of 

the electricity network. There are two types of stability, 

stability with respect to small disturbances and transient in the 

opposite case [21]. The example treated is that of the "Algiers-

port" power plant of the national network. 

2. DESCRIPTION AND OPERATING PRINCIPLE

The synchronous machine consists of a moving part: the 

rotor and a fixed part: the stator. The two parts are made up of 

two main elements. One is called ferromagnetic and it is used 

to conduct the magnetic flux and withstand the forces, while 

the other is called a winding and is made of copper or 

aluminum conductors. These conductors form a coil. All of the 
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coils are magnetically coupled. 

In motor operation, the stator windings are supplied by a 

three-phase pulsating voltage system w=p.Ω. They then create 

a rotating field at the Ω pulsation. The field created by the 

inductor, fixed with respect to the rotor (driven by a rotational 

speed Ω) rotates in synchronism with the field created by the 

armature. These two fields interact. The torque thus created 

drives the machine at speed w. 

 

Table 1. The synchronous machine's modeling 

 
Author (s) Contribution   

Weiss et al. [9] For networks with synchronous generators, a stability theorem has been developed. 

Sekizaki et al. [10] 
A single-phase synchronous inverter was developed and integrated into a single-phase microgrid to improve 

frequency stability. 

Eltamaly et al. [11] 
For optimal voltage regulation, use adaptive static synchronous compensation techniques with the 

transmission system. 

Dahiya [12] 
Stability increase of the doubly fed induction generator integrated system using a superconducting magnetic 

energy storage connected static compensator. 

Shivratri et al. [13] Machines with a fast current loop that are virtual synchronous. 

Masood et al. [14] Strengthening of the system in the presence of strong winds. 

Grdenić et al. [15] 
Assessment of the impact of AC network modeling on AC systems with VSC HVDC converters' small-signal 

stability. 

Dashti et al. [16] In electrical energy distribution networks, a study of fault prediction and localisation methods is presented. 

Shahriar et al. [17] Low-frequency oscillations in electric networks can be dampened in real time using a neurogenetic technique. 

Ghasemi-Marzbali [18] A coordinated technique for the stability of multi-machine power systems. 

Villa-Acevedo et al. [19] 
The use of a kernel extreme learning machine approach to monitor long-term voltage stability in power 

system areas. 

Øyvang et al. [20] For transient power system research, models of synchronous generators with excitation systems. 

 

 

3. MATHEMATICAL MODELLING 

 

3.1 Synchronous machine modeling 

 

The synchronous machine is an alternating current machine 

in which the frequency of the induced voltage generated and 

the speed are in a constant ratio [22]. 

The model that we distinguish is based on the following 

simplifying assumptions [2]: 

·Spatial distribution of sinusoidal magnetomotive forces. 

·Magnetic circuit is unsaturated.  

·Notch effects are neglected. 

·Negligible ferromagnetic losses. 

·The influence of temperature on the characteristics is not 

taken into account. 

Modeling is an important step in the analysis and design of 

systems. With these assumptions, the different electrical 

circuits satisfy the following fundamental electrical equation: 

According to the generalized Ohm law, the voltage of a circuit 

with resistance R crossed by a flow  is written: 
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d
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In a machine the voltage equation for winding J is written 

[22]: 
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The system of voltage equations of the synchronous 

machine obtained by applying relation (1) to the different 

circuits is given by (3) [23]: 

Stator equations in phase quantities: 
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Equations of rotor voltages in phase quantities: 
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(4) 

 

with, Uabc is the instantaneous voltages of stator phases a, b 

and c, Uf the DC rotor excitation voltage, Iabc the instantaneous 

currents of stator phases a, b and c, If the rotor excitation 

current, abc the total fluxes through the stator phases a, b, and 

c, f the flux through the rotor circuit, RS the is the resistance 

per stator phase and, Rf is the rotor resistance (inductor). 

 

3.2 Schematical representation of the machine 

 

It is given as shown in Figure 1, with: 

A, B, C: stator windings. 

F: inductor winding. 

D: damper winding along the direct axis. 

Q: damper winding along the quadratic axis. 

d: stator winding along the direct axis. 

q: stator winding along the quadratic axis. 
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Figure 1. Synchronous machine: PARK model [24] 

 

3.3 Park transformation 

 

To simplify the calculations, a change of variable called 

transformation of PARK is carried out. This transformation 

consists in replacing the fixed stator windings (a, b, c) by two 

fictitious windings (d, q) integral with the rotor. For all three 

vectors of currents, voltages and stator flux, we obtain [25]: 
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with the matrix [P (θ)] which is given by the following 

expression [25]: 
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[P(θ)]: Standardized matrix which preserves the power. By 

substituting Eq. (4) in Eq. (3), we obtain for the stator the 

following equations: 
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where, d: the total flux through the coil equivalent to the stator 

placed on the direct axis d. q: the total flux through the coil 

equivalent to stator placed in quadratic q. 0: the total flux 

relating to the homopolar component. 

Assuming that the assembly is in star coupling, the zero 

sequence component V0(I0, 0) confused with the neutral, the 

system of equation becomes: 
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Such that Ud, Uq are voltages along the direct axis and in 

quadrature. These two equations must be completed by the 

following equations: 

a) The excitation voltage 
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b) The tensions of the dampers following the direct axis and 

in quadrature are given by the following expressions: 
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3.4 Mechanical equation 

 

The movement of the rotor is given by the equation of the 

rotating masses: 

 

dt

dwJ
gwRC == /2

 

(11) 

 

where, C is the acceleration torque acting on the rotor, J=wR2 

the moment of inertia of the rotating masses, g the acceleration 

of gravity, and α is the angular acceleration. 

The equation of the difference between the rotor and the 

synchronous reference is given by: 

 

ms wtw +=
 

(12) 

 

The equation of rotating masses becomes: 

 

em CCdtdwJ −=/
 

(13) 

 

Cm and Ce are respectively the mechanical torque of the 

machine and the resistive electrical torque transmitted to the 

armature of the machine. The latter is given by: 

 

( )
qqdde iiC  −=

2

3
 (14) 

 

 

4. INFINITE NETWORK MACHINE SIMULATION 

 

4.1 Non-linear system of the three models of the machine 

 

Electrical and mechanical equations:
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4.1.1 Single winding model 
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4.1.2 Two winding model 
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4.1.3 Three winding model 
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4.2 Linear system of infinite machine-network models 

 

The linearization of the infinite machine-network model 

around an operating point X0=[Pe, Qe, ω, Vr] leads us to a linear 

system given by the formula [26-28]: 
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with, x is the groups the state variables, u the regroup the 

command variables, Y the groups the output variables, a and b 

represent the linearization coefficients. 

 

4.2.1 Model with one winding 

Represents the model of the machine without damper 

winding [23]: 
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4.2.2 Model with two windings 

Represents the model of the machine with a damping 

winding [23]: 
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4.2.3 Three winding model 

It shows the machine model with 2 damping windings [23]: 

 

( )

( )











=

−=

−+−=















++














−+














++














+−=







+++−=

•

•

•

•

••

0

''

76

''

''

''

''

10

'

5''

'''

3

''

9

'

4'

''

8

'

2

'

1''

5

''

4

''

3

'

21'

'

1

1

1

1

0

000000000

0

em

a

qd

q

d

dd

q

dddd

q

ddd

d

dqq

d

q

PP
T

ESSE
T

E

T

S

T

S
E

TT

S

T

S

T

S
E

T

S

T

S
efd

T

S
E

SESESESefdS
T

E

 

(21) 

 

 

5. FINDINGS AND ANALYSIS 

 

For the simulation of the linear model of the synchronous 

machine connected to an infinite network, we consider the 

constant inputs equal to their nominal values, and we based 

ourselves on the use of the MATLAB which facilitates the 

simulation calculations of our multivariate system. 

From the initial conditions [y, x]=Lsim (A, B, C, u, x, T) 

provides the outputs and states of the system in the form of a 

matrix. We simulated the three models of the synchronous 

machine connected to an infinite network. For a nominal speed, 

the results are given by the Figures 2-4. The curves shown in 

Figures 2-7 represent the simulation results of the synchronous 

machine connected to the infinite network. 

For two types of tests, i.e. nominal speed; sudden increase 

in load (Xe=0.7P.u). Note that for a given speed and electric 

power, the three-winding model is thinner compared to the 

other two models for the two tests. However, the dynamic 

responses of the system evolve as follows: 

·For the three-winding model, the electrical quantities 

stabilize after a period of 5 seconds at nominal speed and after 

8 seconds for the sudden increase in load. 

· For the two-winding model, the electrical quantities 

stabilize after a period of 10 seconds at nominal speed and 

after 12 seconds for the sudden increase in load. 

·The electrical quantities of the single winding model 

oscillate with low damping for both types of tests. 

A physical process must have certain performances with 

respect to a disturbance, one can quote the stability of the 

system making it possible to avoid the influence of these 

disturbances on its operation. Our study is based on the static 

stability of the electrical network which is necessary for low 
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disturbances (imbalance between production and 

consumption). 

 

 
(a) Velocity 

 
(b) Electric power 

 

Figure 2. Simulation of the first type [Single winding model] 

for nominal operation 

 
(a) Velocity 

 
(b) Electric power 

 

Figure 3. Simulation of the second type [Two-winding 

model] for nominal operation 

 

 
(a) Velocity 

 
(b) Electric power 

 

Figure 4. Simulation of the third type [three winding model] 

for nominal operation 

 

 
(a) Velocity 

 
(b) Electric power 

 

Figure 5. Simulation of the first type [Single winding model] 

for a disturbance Xe=0.7 Pu 

 

 
(a) Velocity 

 
(b) Electric power 

 

Figure 6. Simulation of the second type [two-winding 

model] for a disturbance Xe=0.7 Pu 
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(a) Velocity 

 
(b) Electric power 

 

Figure 7. Simulation of the third type [three-winding model] 

for a disturbance Xe=0.7 Pu 

 

There are two types of stabilities: 

·External stability: the necessary and sufficient condition 

for this type of stability is given by the following expression 

[21]: 
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The system is in external stability if all the poles of the 

transfer function are located in the left half plane. 

·Internal stability (exponential stability): 

The realization of the linear or exponential system is stable 

if the solution x (t) is of the following form [21, 22]: 
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So the realization is stable if and only if Re (λi (A)) < 0 such 

that λi (A) are eigenvalues of the matrix A. 

This part includes the study of static stability by a spectral 

analysis based on the real part of the eigenvalues. The 

computation of the eigenvalues of the matrix A provides a 

direct criterion of static stability. 

The real part of an eigenvalue measures the damping of the 

corresponding model. If the imaginary part exists, it represents 

the image of the oscillation frequency of the associated eigen 

model. 

To analyze the static stability, a perturbation is carried out 

on the parameters Xe, Pe, Qe for the three models. 

After execution of the program, the results obtained are 

grouped together in the following Table 2. 

Table 2. Analysis of the eigenvalues of the matrix A for the 

three models 

 
Own values Xe Pe Qe Results Models 

0.56 

-0.47 +2.10 j 

-0.47 -2.10 j 

1.5 

1.5 -0.75 

Unstable 

System 
One 

Winding -0.0049 

-0.62 +10j 

-0.62 -10j 

0.01 
Stable 

System 

-11.74 

2.14 

-24577 

-15.90 

1.2 

1.2 -1.5 

Unstable 

System 

Two 

Windings -16.54 

-0.20 +3.11j 

-0.20 -3.11j 

-23.55 

0.55 

 

Stable 

System 

0.32 +54.74j 

0.32 -54.74j 

-16.41 

-1.23 

-5.38 

1.5 

1.5 -1.75 

Unstable 

System 

Three 

Windings -0.66 +24.23j 

-0.66 -24.23j 

-15.07 

-1.13 

-5.43 

0.55 
Stable 

System 

 

The decrease in line reactance after disturbance is of 

considerable help in maintaining the static stability of the 

network. 

For the simulated disturbance, the modes of the spectrum 

show that the system is unstable, this case corresponds to limit 

operating regimes where the real part of the roots passes 

through zero. 

To this end, the line impedance has been reduced, which is 

a factor influencing the stability of the system. 

This reduction makes it possible to: 

Make the real part of the eigenvalues negative, Xe=0.01 for 

the one winding model, Xe=0.55 for the two winding model, 

Xe=0.55 for the three winding model. 

Stabilizes the quantities (speed, electric power) at their 

nominal values. 

 

 

6. CONCLUSIONS 

 

We have shown the validity of damping windings on the 

behavior of a synchronous machine connected to a powerful 

network through a power transmission line. 

To this end, our study requires the modeling of the three 

models of the synchronous machine. The approach adopted 

consists in linearizing all the equations around an operating 

point. 

The study of static stability is developed by a spectral 

analysis based on the eigenvalues of the system, concluding 

that the network voltage and the line reactance play a primary 

role in the stability of the operating regime. 

The results obtained by the three models made it possible to 

show the smoothness of the model with three windings. 
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