
Video Violence Detection Using LSTM and Transformer Networks Through Grid Search-

Based Hyperparameters Optimization 

Moch Arief Soeleman*, Catur Supriyanto, Dwi Puji Prabowo, Pulung Nurtantio Andono  

Faculty of Computer Science, Universitas Dian Nuswantoro, Semarang 50131, Indonesia 

Corresponding Author Email: arief22208@gmail.com

https://doi.org/10.18280/ijsse.120510 ABSTRACT 

Received: 5 September 2022 

Accepted: 19 October 2022 

The security system in public places can be improved by automatically detecting violence. 

Deep learning has recently gained popularity as a solution to classification problems, 

which improves the effectiveness of violent video detection. The authors extracted the 

features using a pretrained network, such as InceptionV3. To maximize the performance 

for violent video detection, the Grid Search approach was adopted to search for the 

optimal hyperparameter. The main goal is to evaluate how well LSTM and Transformer 

networks classify videos. The results show competitive performances in identifying 

violent videos, with the state-of-the-art methods. On the Hockey, Crowd, and AIRTLab 

datasets, LSTM outperformed Transformer with AUC scores of up to 0.976, 0.934, and 

0.86, respectively. 
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1. INTRODUCTION

There may be crime or violence in public areas. Relying on 

human monitoring is difficult. Surveillance cameras can be 

used to keep an eye on what happens in public areas, especially 

if we want to detect violent activities automatically. The 

ability to automatically detect violence makes it simpler for 

the security forces to respond right away with help, and the 

recording can also be used as evidence in court. 

Over the past ten years, research on the identification of 

violent video has increased. Their suggested techniques are 

based on learned and handcrafted features [1, 2]. The 

handcrafted features are carefully engineered by scientists. 

Examples of hand-crafted features include edge features and 

histogram features. Convolutional neural networks (CNNs) 

provide the foundation for learned features. The convolution 

layer of CNN is automatically used to extract the learned 

features.  

By hand-crafting a feature, Lohithashva et al. [3] have 

created a method for detecting violence in videos. To identify 

violent incidents in a movie, the system combined Local 

Binary Pattern (LBP) and GLCM (Gray Level Co-occurrence 

Matrix) as feature extraction techniques. In their study, the 

system was evaluated using a variety of classifiers, including 

Decision Tree (DT), Support Vector Machine (SVM), K-

Nearest Neighbor (KNN), Discriminant Analysis (DA), and 

Logistic Regression (LR). 

Violent Flows (ViF) [4], Oriented ViF (OViF) [5], Motion 

Weber Local Descriptor (MoWLD) [6], and Histogram of 

Optical flow Magnitude and Orientation (HOMO) [7] are only 

a few of the methods for video violence detection that are 

based on optical flow orientation and magnitude. Hassner et al. 

[4] proposed ViF by exploiting the magnitude of pixel flow

and classified the video clip using a linear Support Vector

Machine (SVM). To overcome the limitation of ViF, Zhou et

al. [8] put forward OViF, and implemented it on non-crowded

violence video clips. The technique relies on motion

magnitude and motion orientation of a pixel in two 

consecutive frames. On violent videos with plenty of people, 

however, OViF was not successful [8]. 

Zhang et al. [6] expanded Weber Local Descriptor into 

MoWLD (WLD). To create the MoWLD descriptor, MoWLD 

combined the optical flow and WLD histograms. Kernel 

Density Estimation is then used to remove the extracted 

MoWLD features (KDE). SVM evaluations of the proposed 

MoWLD were conducted using the Hockey, Crowd, and 

BEHAVE datasets. Additionally, Mahmoodi and Salajeghe [7] 

presented the HOMO optical flow-based feature descriptor. 

The optical flow between each frame was calculated and each 

frame was transformed into a grayscale image. To extract the 

feature's histogram and send it to the SVM classifier, HOMO 

evaluated the change's magnitude and direction. The 

performance of optical flow-based algorithms in terms of 

violence detection is still inferior to deep learning-based 

systems. 

CNNs, a deep learning-based technique, have emerged as 

an additional option for video violence identification. Ullah et 

al. [1] suggested utilizing 3D CNN to extract spatiotemporal 

features. For the Hockey dataset and the Crowd dataset, they 

obtained 3D CNN accuracy of 96% and 98%, respectively. 

Asad et al. [9] proposed to combine the spatial information of 

each frame and send them to long short-term memory (LSTM). 

The features are extracted using a pretrained network called 

VGG16. Their study had an accuracy rate of 98.8% for the 

Hockey dataset and 97.1% for the Crowd dataset. LSTM 

networks for classification were also proposed by Shoaib and 

Sayed [10]. ResNet 101 was adopted to extract the features of 

each frame. Region of Interest (ROI) was used to localized the 

human body and detects the key points. On the Weizman, 

KTH, and Custom datasets, respectively, the results on three 

datasets demonstrate that their proposed method obtained 

77.4%, 95.7%, and 88.2% accuracies. In another video 

surveillance system, LSTM also works for anomaly detection 

in crowd situations [11]. Compared to optical flow-based 
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method, CNN evolved to have better accuracy for violence 

video detection. However, the network requires a complex 

structure to mine the learned deep features. 

Transformer has recently emerged as a leading network for 

video violence identification. Vaswani et al. [12] proposed the 

Transformer network, which tries to eliminate the 

convolutional and recurrent parts of CNN's sequence model. 

Transformer network for Violence Detection has been applied 

by Abdali [13]. On the Real-life Violence dataset (RLVS), the 

proposed transformer received a score of 96.25% accuracy. It 

is crucial to understand how well these CNN architectures 

perform in detecting violence in videos because LSTM and 

Transformer are the two newest trends in CNN-based violence 

detection. However, no research has been done comparing the 

effectiveness of the Transformer and LSTM structures for 

video violence identification. 

This study seeks to assess and compare LSTM and 

Transformer networks for violence video recognition through 

in-depth analysis. Each video clip's features are extracted 

using the InceptionV3 network and supplied into the proposed 

LSTM and Transformer networks as input. This study uses 

Grid Search to find the optimum hyperparameter for LSTM 

and Transformer networks in order to deliver the greatest 

performance. 

The remainder of the paper is structured as follows: Some 

related works are included in Section 2. The experimental 

design is presented in depth in Section 3 while the results are 

discussed in Section 4. The last Section wraps up the project 

and offers ideas for additional development. 

 

 

2. LITERATURE REVIEW 

 

2.1 Convolution neural networks 

 

CNNs have long been utilized to detect violent acts in 

videos. Multiple layers are present in CNNs for feature 

extraction and classification. Despite having a sophisticated 

architecture, CNNs are more accurate than conventional 

machine learning algorithms. CNNs use a variety of 

combination processes, including pretrained networks, data 

augmentation, and call-back on training phase, to achieve high 

accuracy. Pretrained networks are used in this study to retrieve 

each frame's features. Pretrained network is an architecture of 

CNNs which have been trained on ImageNet database, which 

contains a million images on 1,000 object classes. 

Pretrained CNNs include ResNet50, InceptionV3, Xception, 

VGG16, and VGG19, among others. InceptionV3 

outperformed ResNet50 and Xception in a comparison study 

by Xiao et al. [14] on the accuracy of breast cancer 

identification. When compared to VGG16, VGG19, Xception, 

and ResNet50, InceptionV3 produced the greatest results, 

according to our earlier research [15] on violence detection. 

Table 1 lists some related studies on the identification of 

violence in videos using deep learning. The earlier 

publications validated their suggested methodologies using 

several well-known publicly available datasets. Even though 

LSTM is the most often used deep learning architecture for 

violence detection, other architectures, such as the 

Transformer architecture, should be compared. 

 

2.2 Transformer 

 

Three modules make up a transformer network: patch 

embedding, encoder, and multi-layer perceptron (MLP) [16]. 

In patch embedding, there are reshape and 2D convolution. 

Normalization and fully connected layers constitute MLP. 

Transformer is capable of generalizing the model and has 

produced positive results on the ImageNet dataset. 

 

2.3 Grid search 

 

Grid Search is a methodical or systematic approach to 

obtain the best hyperparameter [17]. The initialized 

hyperparameter is searched for in every conceivable 

combination through grid search. Other hyperparameter 

optimization techniques include evolutionary algorithms and 

Bayesian optimization. The evaluation of these 

hyperparameter optimization methods on neural networks 

revealed that the genetic algorithm outperformed Grid Search, 

Bayesian optimization, and other techniques [17]. Grid Search 

is the most straightforward method to construct, despite the 

fact that it is ineffective for big parameters [18]. Grid Search 

has been successful in locating the appropriate 

hyperparameters for machine learning algorithms in addition 

to deep learning [19]. 

 

Table 1. Related works 

 
Reference  Proposed method Year of publication Dataset name Results 

Zhou et al. [2] FightNet 2017 Hockey, Movie, 

Violent 

Intercation 

Dataset (VID)  

Fusing RGB, optical flow, and acceleration improve 

the performance of violence detection. 

Sernani et al. 

[20] 

C3D-SVM, LSTM 2021 Hockey, Crowd 

Violence, 

AIRTLab 

3D CNNs perform better than 2D CNNs. 

 

Jain et al. [21] Inception-Resnet-

V2 

2020 Hockey, Movie, 

Real-life 

violence 

Applying Dynamic Image on violence detection leads 

to better results. 

Samuel R. et 

al. [22] 

Bidirectional 

LSTM 

2019 Violent 

Intercation 

Dataset (VID), 

football stadium 

 

Each frame extracts the features from violence model, 

human part model, and negative model, with a 

violence detection rate of 94.5%.  

Sudhakaran 

and Lanz [23] 

LSTM, 

ConvLSTM 

2017 Hockey, Movie, 

Crowd Violence 

ConvLSTM is better than LSTM with fewer 

parameters, and does exceptionally well in preventing 

overfitting. 
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3. EXPERIMENTAL DESIGN 

 

3.1 Datasets 

 

This study uses the following three benchmark violence 

video datasets: 

 

• The hockey [24] dataset includes 500 violent videos 

and 500 nonviolent ones. Each video clip consists of 

50 frames with a 360 x 288 pixel resolution. 

• 123 violent and 123 non-violent video clips are 

included in the violent crowd [4] dataset. Each clip 

comprises between 50 and 150 frames, each with a 

resolution of 320 x 240 pixels. The sample frame for 

the datasets is displayed in Figure 1. 

• The two main directories in AIRTLab [25] are violent 

and non-violent. Each main directory contains the 

subdirectories cam1 and cam2. The video clips in 

cam2 were recorded with a different camera and 

point of view than those in cam1, which is the 

difference between the two cameras. 115 

violent/cam1 video clips and 60 non-violent/cam1 

video clips are used in this investigation. 

 

3.2 Environment and setup 

 

The proposed method for detecting video violence is 

depicted in Figure 2. First, we divide the video clip’s frames 

and use InceptionV3 to extract the deep features. This study 

used Grid Search to find the optimal LSTM or Transformer 

network hyperparameters using all of the video clips. Batch 

size, epoch, optimizer, dropout, and learning rate are a few 

examples of hyperparameters. The setting for the 

hyperparameter is displayed in Table 2. Since the number of 

initialized hyperparameter values expands along with the 

computing of Grid Search, we tracked the value of a few 

hyperparameters based on prior research. In certain 

investigations, the dropout probability was chosen at between 

0.2 and 0.5 [20, 26-29]. The learning rates are referred to 

Ullah’s work [1], which is set at 0.0001 and 0.00001. The 

batch size is also determined in reference to Ullah’s work [1]. 

We chose Adam as the optimization function in the fully 

linked layer, and we set the number of epochs to 100 [9]. We 

retrained the LSTM or Transformer using the retrieved 

hyperparameter. This study uses 5-fold cross-validation (CV) 

on Grid Search and Retrained steps. 

The layers of the Transformer and LSTM are displayed in 

Tables 3 and 4. Table 3 begins with the LSTM layer, which 

was used as a feature extractor by InceptionV3. Then, using 

the rectified linear unit (ReLU) activation function, we 

constructed a fully linked layer with 1024 neurons. 

Implementation of dropout occurred at a rate of 0.20. The 

dropout layer and a further fully linked layer with sigmoid 

activation function were then added. As a final classification 

step, a fully connected sigmoid activation function was used. 

The first layer in the transformer model depicted in Table 4 

is frame position embedding. The input shape consists of 

frame, color channel, height, and width. The second layer is a 

transformer encoder that has a Gelu activation function and 

multi-head attention. We also included a layer for 

normalization. 

These investigations were carried out with the Python 

programming language. The computer runs Ubuntu 18.04 and 

makes use of a GeForce RTX 3070 8GB GPU. TensorFlow 

2.6.2 and Keras 2.6.0 were employed by our CNN. We set the 

seed for the Numpy and TensorFlow libraries in order to 

obtain consistent results across all executions. 

 

 
(a) Hockey dataset 

 
(b) Crowd dataset 

 
(c) AIRTLab dataset 

 

Figure 1. Samples video clips of each dataset. First row and 

second row show the violence and non-violence, respectively 

 

 
 

Figure 2. Flow of video violence classification 
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3.3 Experimental evaluation 

 

In this study, measures including accuracy, standard 

deviation (SD), and area under the curve (AUC) were utilized 

to assess the suggested method against state-of-the-art 

references. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (1) 

 

where, 𝑇𝑃  is true positive, 𝑇𝑁  is true negative, 𝐹𝑃  is false 

positive, and 𝐹𝑁 is false negative. 

 

Table 2. Hyperparameter settings 

 
Hyperparameter Value 

Batch size 20, 100, 200 

Dropout rate 0.2, 0.5 

Learning rate 0.0001, 0.00001 

 

Table 3. Layer structures of LSTM 

 
Layer Architecture Output shape Param # 

LSTM - (None, 512)  

Dense Relu (None, 1024)  

Dropout - (None, 1024)  

Dense Sigmoid (None, 50)  

Dropout - (None, 50)  

Dense Softmax (None, 2)  

 

Table 4. Layer structures of transformer 

 
Layer Architecture Output shape Param # 

Frame position 

embedding 
- 

(None, None, 

2048) 
40960 

Transformer 

encoder 
- 

(None, None, 

2048) 
16812036 

Global max 

pooling1D 
- (None, 2048) 0 

Dropout - (None, 2048) 0 

Dense Softmax (None, 2) 4098 

 

 

4. RESULTS AND ANALYSIS 

 

The effectiveness of LSTM and Transformer on three video 

violence datasets is covered in this section. Accuracy and 

AUC are used to compare performance. Using Grid Search 

hyperparameter tuning, we assess the performance in the first 

comparison. Table 5 displays the best hyperparameter values 

obtained through Grid Search. On the Hocket dataset, the 

batch size value for both LSTM and Transformer is 200. The 

batch sizes for LSTM and Transformer on the Crowd and 

AIRTLab datasets are 20 and 100, respectively. Grid Search 

discovered that the optimal dropout rate is 0.5 and the best 

learning rate is 0.0001 mostly across the three datasets. The 

best accuracy was attained by LSTM and Transformer during 

hyperparameter tuning using Grid Search, as shown in Table 

6. On the three datasets, LSTM surpasses Transformer in terms 

of accuracy, scoring 95%, 90.26%, and 80.57% for Hockey, 

Crowd, and AIRTLab, respectively. The two model’s LSTM 

and Transformer are then retrained with the best 

hyperparameters for each dataset. With the aid of cross 

validation, the models are assessed. For AUC and accuracy, 

the findings are shown in Tables 7 and 8, respectively, along 

with the results for each fold. The mean AUC and accuracy for 

5-fold cross validation are also displayed in the tables. The 

model based on LSTM outperformed Transformer in terms of 

AUC, with mean AUC values on the three datasets of 0.976, 

0.934, and 0.86, respectively. On the Hockey, Crowd, and 

AIRTLab datasets, the mean accuracies of LSTM achieve 

classification results (94.6%, 89.86%, and 80.57%) better than 

Transformer. 

The accuracy curves during the training procedure are 

shown in Figure 3. As seen in Table 7, the curves are derived 

from the optimal fold. The graphs show that the LSTM testing 

results outperform Transformer network, particularly for the 

Hockey and Crowd datasets. Transformer's testing results 

appear erratic over a period of 100 epochs. 

We plot the receiver operating characteristic (ROC) curve, 

as seen in Figure 4, to assess the proposed model's 

performance graphically. The ROC curves for LSTM and 

Transformer on the three datasets are derived from the best 

AUC in Table 6. ROC curves for Hockey (top row), Crowd 

(second row), and AIRTLab (third row) are extracted from 

Fold 5, Fold 3, and Fold 2, respectively. 

 

Table 5. Best hyperparameters from grid search 

 

  

Batch 

size 

Dropout 

rate 

Learning 

rate 

Hockey 
LSTM 200 0.2 0.0001 

Transformer 200 0.5 0.0001 

Crowd 
LSTM 20 0.5 0.0001 

Transformer 100 0.5 0.0001 

AIRTLab 
LSTM 20 0.2 0.0001 

Transformer 100 0.5 0.00001 

 

Table 6. Best score (accuracy in %) of Grid Search. The best 

accuracies are highlighted in bold on each dataset 

 
  LSTM Transformer 

Hockey 95.00 83.80 

Crowd 90.26 82.11 

AIRTLab 80.57 61.71 

 

Table 7. AUC of each model on each dataset, for each fold of cross validation. The best accuracies are highlighted in bold on 

each model (row) 

 
    Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean 

Hockey  
LSTM 0.98 0.95 0.98 0.98 0.99 0.976 

Transformer 0.92 0.94 0.96 0.97 0.98 0.954 

Crowd  
LSTM 0.95 0.92 0.9 0.93 0.97 0.934 

Transformer 0.94 0.89 0.88 0.89 0.98 0.916 

AIRTLab 
LSTM 0.85 0.87 0.88 0.85 0.85 0.86 

Transformer 0.85 0.77 0.95 0.88 0.5 0.79 
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Table 8. Accuracy (in %) of each model on each dataset, for each fold of cross validation. The best accuracies are highlighted in 

bold on each model (row) 
 

    Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean 

Hockey  
LSTM 94.5 91 95.5 97 95 94.6 

Transformer 88.5 87.5 89 91 94 90 

Crowd  
LSTM 86 87.76 89.8 87.76 97.96 89.86 

Transformer 88 61.22 73.47 85.71 83.67 78.41 

AIRTLab 
LSTM 82.86 80 77.14 82.86 80 80.57 

Transformer 28.57 57.14 65.71 68.57 25.71 49.14 

 

 

 

 
 

Figure 3. Accuracy curves between training and testing during 100-epochs on Hockey (first row), Crowd (second row), and 

AIRTLab (third row) datasets. The left and right sides are for the LSTM and Transformer models 
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Figure 4. AUC and ROC Curve on Hockey (first row), Crowd (second row), and AIRTLab (third row) datasets. The left and 

right sides are for the LSTM and Transformer models 

 

Table 9. State of the art comparison on three datasets 

 
Dataset Related Works AUC 

Hockey ViF [4] 0.8801 

OViF [5]  0.9193 

DiMOLIF [29] 0.9323 

LBP+GLCM [3] 0.9360 

HOMO [7] 0.9518 

3D CNN [1] 0.970 

MoWLD [6]  0.9758 

LHOG+LHOF [8]  0.9798 

C3D+SVM [20] 0.9962 

C3D+FC [20] 0.9927 

ConvLSTM [20] 0.9931 

Ours (Transformer) 0.954 

Ours (LSTM) 0.976 

Crowd HOMO [7]  0.8284 

ViF [4]  0.8804 

DiMOLIF [29] 0.8925 

OViF [5] 0.9182 

LBP+GLCM [3] 0.93 

MoWLD [6]  0.9408 

ConvLSTM [20] 0.9443 

LHOG+LHOF [8] 0.9703 

3D CNN [1] 0.98 

C3D+FC [20] 0.9994 

C3D+SVM [20] 1 

Ours (Transformer) 0.916 

Ours (LSTM) 0.934 

AIRTLab C3D+SVM [20] 0.993 

C3D+FC [20] 0.9894 

ConvLSTM [20] 0.9967 

Ours (Transformer) 0.79 

Ours (LSTM) 0.86 

 

To exemplify the effectiveness of the suggested models, 

Table 9 provides examples of numerous cutting-edge video 

violence detection techniques. With regard to the hockey and 

crowd datasets, our LSTM model outperforms earlier methods 

like ViF [4], OViF [5], DiMOLIF [29], and HOMO [7] by a 

wide margin in terms of AUC. Meanwhile, our LSTM model 

only outperforms on the Hockey dataset when compared to 

MoWLD [6] and 3D CNN [1]. MoWLD outperforms our 

LSTM, but only marginally. The top models in Hockey, 

Crowd, and AIRTLab are still C3D [20] and ConvLSTM [20] 

according to the table. 

 

 

5. CONCLUSIONS 

 

This paper compares the LSTM and Transformer models for 

video violence detection. Each video clip's features are 

extracted using the InceptionV3 pretrained network. The 

LSTM and Transformer are then provided the features to 

handle the spatiotemporal features. Next, Grid Search was 

utilized to discover the ideal LSTM and Transformer 

hyperparameters, including Batch size, dropout rate, and 

learning rate. Based on the optimal hyperparameter values, the 

LSTM and Transformer were retrained and evaluated in this 

work. The results of the experiments showed that LSTM 

remains superior to Transformer. Our suggested models 

perform comparably on three publicly available video violence 

datasets, Hockey, Crowd, and AIRTLab. One of the potential 

future possibilities for violence detection in videos can be seen 

as a result of this paper's evaluation of two deep learning 

architectures. The best design enables developers to create 

applications that monitor human activity in public spaces and 

guarantee the comfort and safety of the general public. The 

poor performance of violence detection in the AIRTLab 

dataset is one of the study's limitations. We intend to assess 

channel-separated networks (CSNs) on violence detection for 

further research. Different convolutional blocks in the network 
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can be used to extract spatial and spatiotemporal 

characteristics. We want to test the suggested approach on 

other datasets of violent videos. 
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