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Artificial intelligence advancements, particularly deep learning algorithms, are helpful for 

identifying, classifying, and rating designs in clinical images. Clinical diagnosis and 

scientific research both rely heavily on medical image analysis. The diagnosis of medical 

conditions frequently involves medical image acquisition techniques like pathology, 

computed tomography, magnetic resonance imaging, ultrasound, and x-ray. Transfer 

learning stands out from other deep learning techniques thanks to its simplicity, 

effectiveness, affordable training costs, and capacity to escape the dataset curse. The 

diagnosis of anomalies including Alzheimer's disease, diabetic retinopathy, colon cancer, 

breast cancer, and pulmonary nodule can be made using the medical imaging techniques 

combined with datasets and computer vision. These approaches are helpful in non-invasive 

qualitative and quantitative analysis on patients. However, labelling in medical images are 

still scarce. This paper mainly reviews the application of transfer learning in medical image 

analysis. Beginners can benefit from this review paper's guidance as they gain a thorough 

and organized understanding of transfer learning applications for the analysis of medical 

images. By establishing laws that will aid future advancements in medical image processing, 

policymakers in adjacent sectors will also profit from the trend of transfer learning in 

medical imaging. 
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1. INTRODUCTION

Around 2006, a division of machine learning known as deep 

learning first emerged. It is an approach to handle information 

that makes use of numerous levels of confusing designs or 

various handling layers made out of distinct nonlinear 

alterations [1]. Deep learning has recently made substantial 

strides in the fields of bioinformatics, computer vision, speech 

recognition, natural language processing, and audio 

recognition. Thanks to its application potential in information 

evaluation, deep learning was recognized as one of the top ten 

technological discoveries of 2013 [2]. As an artificial neural 

network, deep learning mimics the human neural network. 

Layer by layer, the data is preoccupied with numerous 

nonlinear dealing layers and various levels of unique features 

extracted from the data for target detection, order, and division 

[3]. By using unsupervised or semi-supervised feature learning 

and effective hierarchical feature extraction methods, deep 

learning reduces the necessity for manual element security. 

The goal of medicinal science is to improve people's health 

and quality of life. As a result, medicine has always been 

regarded as one of the highest-regarded specialties in the world 

[4]. Medical research relies heavily on clinical image analysis. 

Modern clinical investigation in research centers and clinical 

discoveries need a lot of evidence supported by medical image 

analysis in order to make a guess or a determination [5]. These 

safe imaging procedures take into account both an emotional 

and a quantitative evaluation of incidental effects at the 

sensitive spot and are generally safe for the patient's body. 

They have been applied to the brain, heart, colon, eyes, chest, 

lung, kidney, and liver, among other basic organs [6]. For 

medical image analysis using artificial intelligence, a skilled 

physician is more than necessary. The problem is that finding 

experts who can perform medical image analysis is 

exceedingly difficult [7]. 

Recently, a growing number of researchers have confirmed 

that, in their testing, convolutional neural network-based 

clinical image evaluation systems outperformed humans in 

some clinical imaging illuminating records in terms of 

correctness. Medical images are notoriously expensive, 

difficult to get, and in short supply [8]. Additionally, the rarity 

of tagged data is increased by the fact that only licensed 

physicians can label medical images. These factors have 

caused convolutional neural networks to make poor progress 

in the analysis of medical images. 

In this research, deep learning algorithms for medical image 

analysis are introduced first, followed by deep learning 

techniques for classification and segmentation, and finally, 

more traditional and up-to-date mainstream network models 

[9]. It will be useful for image segmentation and classification 

in digital pathology, CT/MRI tomography, ultrasound, and 

fundus imaging. The work also considers potential problems 

and makes predictions about the direction of deep learning in 

medical imaging analysis. 

2. ADVANCEMENT OF CONVOLUTIONAL NEURAL

NETWORK

In recent years, deep learning has shown undeniable 

proficiency in the area of medical image processing. 

Convolution neural network (CNN) is one of the most 
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established and widely used deep learning techniques in the 

processing of medical images [10]. Higher accuracy is 

achieved by CNN compared to earlier image classification 

techniques, laying the basis for transfer learning-based image 

processing [11-13]. There is minimal likelihood of transfer 

learning in the realm of medical image processing unless and 

until CNN is created and enhanced [14]. In fact, many transfer 

learning techniques are built around CNN. In recent years, one 

of the most common transfer learning techniques is to use pre-

trained CNN models, freeze some layers, and then retrain 

some layers using data from the target area [15]. Most pre-

trained transfer learning models, including AlexNet, VGGNet, 

and ResNet, among others, adopt CNNs. Without carefully 

examining CNNs, it is challenging to comprehend all aspects 

of current transfer learning strategies [16]. Understanding 

CNN architecture, optimization techniques, and representative 

CNN models is essential for comprehending transfer learning 

in medical imaging [17]. 

The convolutional parameters are usually defined as follows: 

K is the bit size, T is the original image size, P is the zero-

cushioning, S is the step, and U is the size of the output feature 

map. Each portion can be described as an element extractor of 

the size of a K×K grid. For simplicity, the original image and 

output feature map are assumed to have T×T pixels and U×U 

pixels, respectively. Cushioning is every now and again used 

to enhance additional pixels of significant worth zero around 

the original image, such that CNN arrives at the expected 

distance. In this case, the size U of the output feature map can 

be expressed as: 

 

U = T-K +1 (1) 

 

The convolution has no padding, with a stride of one. To 

accommodate more complex scenarios, a zero-padding circle 

should be added around the input image. Then, the above 

formula can be revised as: 

 

U=T-K+2p + 1 (2) 

 

2.1 Pooling 

 

From the input image, the convolutional layer extracts a 

sufficient number of features. Multi-features, however, may 

not always be a good thing. Only essential feature information 

is kept when the pooling layer down samples extracted feature 

maps and reduces feature map resolution [18]. The neural 

networks can have fewer parameters because this layer 

conducts convolution operations on its set parameters. 

Translation invariance aids in this layer's performance. There 

are two distinct pooling methods: max pooling and average 

pooling. Max pooling chooses the highest value possible from 

an image's local domain to better preserve the image properties. 

Average pooling takes the average value from a local domain 

inside an image for the same purpose. Max pooling and 

average pooling are convolutions that stride the same number 

of pixels as their kernels [19]. 

 

2.2 Fully connected layer 

 

The convolution process creates a fully connected layer 

using the feature maps after the convolution, pooling, and 

activation. This layer employs convolution kernels to perform 

convolution on feature maps in order to obtain a one-layered 

vector. The objective is to reduce the spatial dimension of the 

neural network while weighting all of its attributes. Using 

softmax simplifies the output of classification probability 

output. A fully connected network in a conventional CNN is 

often constructed using multiple neural networks [20]. A 

sizeable chunk of the entire CNN is made up of its parameters. 

When the fully connected layer has too many parameters, 

overfitting takes place. The average pooling can be directly 

applied to the entire feature space. By producing a single-

layered vector, this operation effectively reduces the number 

of boundaries in the model. Global normal pooling does not, 

however, always outperform the fully connected layer in 

machine learning. There is more customization because the 

majority of boundaries are remembered for a fully connected 

layer. 

 

2.3 Batch normalization 

 

Deep learning network tuning is difficult and frequently 

leads to internal covariate shift. When network parameters 

change, internal nodes' data distribution shifts. There are two 

main effects of the shift. One is that the upper network's 

learning rate is decreased because it must constantly adapt to 

changes in the distribution of input data. Second, network 

convergence is slowed down for the activation function enters 

the gradient saturation zone [21]. Batch normalization 

provides an efficient way to transform an output signal into an 

optimum range. Given a set of input from a single neural 

network layer, we have: 

 

X = [x1, x2, x3, xn] (3) 

 

where, xi is the number of samples; n is the batch size. Firstly, 

compute the mean of the mini-batch elements: 

 

𝜑𝒷 =
1

𝓃
∑𝓍𝑖

𝓃

𝒾=1

 (4) 

 

Secondly, compute the variance of the mini-batch elements: 

 

𝓌2
ℬ =

1

𝓃
∑(𝓍𝑖 − 𝜑ℬ)

2

𝓃

𝑖=1

 (5) 

 

Then, normalize each element from the mini-batch: 

 

𝓍1𝒾 =
𝓍𝑖 − 𝜑𝐵

√𝓌2
𝐵 + 𝜖

 (6) 

 

The original output must be scaled and shifted to account 

for the nonlinear expression of the network. 

Batch normalization has the advantage of making sure the 

data entered into each network layer is within a range. Layer 

decoupling, which enables accelerating learning of the entire 

brain organization, results from the following layer network 

not having to constantly obey changes in the basic layer of the 

organization. The model's aversion to organizational 

boundaries is reduced by batch normalization, which also 

increases the network's adaptability to boundary ranges and 

the stability of organizational learning. The vanishing gradient 

problem can be solved by reducing the impact of changes in 

the hidden organization collecting with the top organization 

and preventing the enactment capability from accessing the 

angle immersion zone during training [22]. Finally, irregular 
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commotion is introduced into the organizational learning 

process, resulting in some degree of regularization. 

 

2.4 Dropout 

 

Deep learning is powerless to overfitting. Even with 

minimal training data, the network and its boundaries can 

grow large and complex, which would bring overfitting. 

Dropout hence takes up the majority of the time during deep 

neural network preparation. Overfitting is less of a problem 

thanks to setting the hidden layer's portion of the hubs to 0, 

which is equivalent to ignoring a portion of the component 

identifiers by random [23]. 

 

2.5 Regularization 

 

Regularization, in addition to dropout, is a typical approach 

to handle overfitting. It happens when some hidden layer node 

parameters are overtrained, which has a negative effect on the 

overall model prediction outcomes. When an organization 

prepares information very closely to the truth, it makes crucial 

errors when testing that information. This can be avoided by 

using strategies like early stopping, sampling, and increasing 

the learning rate [24]. 

 

 

3. TRANSFER LEARNING 

 

In the realm of clinical imaging, a single circumstance is 

typical. The availability of sample data is typically limited 

because creating a data set is laborious and expensive. 

Moreover, after learning some new useful information from a 

previous problem, we must immediately move on to the next 

task. Transfer learning is extremely important because of this. 

The target area is new information, while the source area is 

information that already exists. Before providing a standard 

definition of transfer learning, two fundamental concepts 

should first be characterized [25]: Include space X and 

minimal conveyance P make up the two sections of an area, 

which is denoted by the letter D. (X). In this case, the area can 

be defined as: 

 

𝐷 = {X,P(X)} (7) 

 

Each task T can be defined using the definition of domain. 

 

T = {𝛾, P(𝑌|𝑋)} (8) 

 

P(Y|X) is a function that predicts the corresponding label 

based on feature space. We now have a task specification as a 

result. 

 

𝑇 = {𝛾, 𝜂} (9) 

 

The basic architecture of transfer learning is shown in 

Figure 1. There is a source area D and its matching task T, as 

well as a target area DT and its critical task TT. Either Ds ≠ 

DT or Ts ≠ TT. In each cycle, it is necessary to obtain the 

objective probability for a task 𝜂𝑇 in DT using the data 

acquired from Ds and Ts. 

 

3.1 Instance-based transfer learning 

 

The instance-based transfer learning process is 

straightforward and unambiguous. The data that resembles 

those in the source space and target region should be marked 

and given even more weight, after looking at the source and 

target regions. This process is equivalent to selecting the 

information from the source space that is closest to the 

information in the target area, then matching the objective 

domain at that point [26]. This method's drawbacks include 

being more erratic, observational, and lacking a consistent 

subset of data in the source space that is extraordinarily close 

to the target area. 

 

3.2 Feature-based transfer learning 

 

The target area and source area are thought to share some 

covering features, which is the underlying assumption for 

feature-based transfer learning. Through highlight 

transformation, the source and target areas can then be 

combined into a single space [27]. When the source area and 

the target area are in close proximity, their information will 

circulate similarly. As a result, we can use AI to complete the 

remaining tasks. Feature -based move learning has the 

advantage that, despite occasionally being difficult to 

determine, it performs relatively well. 

 

3.3 Relationship-based transfer learning 

 

Relationship-based transfer learning raises questions about 

whether the source and target areas are sufficiently similar to 

provide a real relationship or something resembling one. The 

task of moving knowledgeable relationships from the source 

area to the target area is at the heart of connection-based move 

gaining [28-32]. Table 1 summarizes the four transfer learning 

mechanisms. 

 

 
 

Figure 1. Basic architecture of transfer learning 
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Table 1. Different transfer learning approaches 

 
Type Process Features 

Instance-based 

transfer 

learning 

Utilize target data in a 

source area instance. 

Suitable for direct 

reusing data from 

the source area 

Feature-based 

transfer 

learning 

Utilize feature 

representation from the 

source area, and 

represent features in 

the target area. 

Reducing the gap 

between the source 

and target areas, 

but mostly rely on 

labelled data 

Parameter-

based transfer 

learning 

Compensate for loss in 

the target area during 

re-training, and use 

parameters from the 

source area for 

initialization and 

weighting. 

Using a pre-trained 

model rather than 

starting from 

scratch, making 

training new neural 

networks much 

faster 

Relationship-

based transfer 

learning 

Discover the 

relationship between 

data points in the 

source area. 

Compatible with 

the data that are 

dependent on each 

other and have the 

same distribution 

 

3.4 MobileNetV2 

 

The CNN architecture called MobileNetV2 (Figure 2) has 

been enhanced for mobile devices. It depends on the remaining 

connections between the bottleneck levels in the revised 

residual structure. The average development layer adds 

nonlinearity by combining lightweight profundity wise 

convolutions with highlights [33]. In terms of engineering, 

MobileNetV2 normally uses a 32-channel fully convolution 

layer at the beginning, followed by 19 residual bottleneck 

layers. 

 

 
 

Figure 2. Architecture of MobileNetV2 
 

3.5 Inception-ResNet-v2 

 

A convolutional brain network called Inception-ResNet-v2 

(Figure 3) was constructed utilizing more than 1,000,000 

images from the ImageNet dataset. The 164-layer structure can 

be broken down into 1,000 different item classes, including 

those for the console, mouse, pencil, and many different 

animals. The organization consequently learned specific 

component depictions for a wide range of images [34]. The 

organization receives a 299 × 299 image and provides a list of 

estimated class probabilities. Both the Inception structure and 

the Residual connection influence the performance of this 

network. The Inception-ResNet block joins numerous 

calculated convolutional channels and residual relationships. 

Utilizing existing connections not only avoids the debasement 

problem that extensive designs bring about, but also shortens 

the preparation period. 

 

 
 

Figure 3. Architecture of InceptionResNetV2 

 

3.6 DenseNet 

 

In a traditional feedforward CNN, each convolutional layer-

aside from the first, which receives input—receives the output 

of the layer before it and produces a feature map, which is then 

passed on to the next convolutional layer. There are then "L" 

direct relationships between every layer and the layer 

following the "L" layers. However, as the CNN's layer count 

grows, the vanishing gradients problem manifests itself. This 

actually means that some data may "disappear" or be lost when 

the data path to the result layers lengthens, making it harder 

for the organization to plan effectively [35]. DenseNet (Figure 

4) takes care of this issue by adjusting the standard CNN 

design and working on the layer network design. In the 

DenseNet, each layer is straightforwardly associated with each 

and every other layer. For L layers, there exist L(L+1)/2 direct 

connections. 

 

 
 

Figure 4. Basic architecture of DenseNet 

 

3.7 ResNet 

 

Image processing and identification have advanced 

significantly in recent years. Deep neural networks are 

developing into increasingly sophisticated and complex 

systems. It has been shown that a neural network's robustness 

for image-related tasks is improved by layering the network. 

But it is probable they will lose precision in the process. This 

is where residual network (Figure 5) can help. Deep learning 

experts frequently build numerous layers to extract important 

information from complex images [20, 36]. As a result, the 

first layers may differentiate edges, and the last layers may do 

the same for obvious forms like car tires. However, adding 

more than 30 levels to the organization degrades its precision 

and display. 
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Table 2. Deep learning models for medical image analysis 

 
Authors Focus Remarks 

Ker et al. [37] 
Medical images are analyzed based on classification 

and segmentation. 

Describing the utilization of different managed and solo deep 

learning models on clinical images 

Litjens et al. [38] 

Most articles focus on the classification, 

segmentation and analysis of medical images using 

deep learning. 

Reporting a series of deep learning methods and their 

applications to clinical imaging undertakings 

Mazurowski et al. 

[39] 

This is a review of the use of profound learning in 

radiology, focusing on grouping and division. 

Image classification tasks using transfer learning strategies 

and deep features 

Pehrson et al. [40]  
Deep learning techniques were used to detect 

pulmonary nodules in lung images. 
No mention of transfer learning strategies 

Sengupta et al. [41] 
This is a review of medical image processing using 

deep learning architectures and application. 

Theoretical and mathematical explanation of CNN 

application in power systems 

Shorten and 
Khoshgoftaar [42] 

This work introduces different data augmentation 

approaches. 
Building taxonomy for image data augmentation 

Yi et al. [43] 
This a review of medical image analysis and a 

comprehensive overview of GAN. 

Reviewing GAN application with medical images but not 

transfer learning strategies 

Zhuang et al. [44] 
Current transfer learning approaches are reviewed 

and summarized, with a focus on data and models. 
Providing examples of natural language processing (NLP) 

Wang et al. [45] 
This is an introduction to the articles distributed 

between 2000 and 2020. 

Explaining how to use medical images for scientific research 

and clinical diagnosis. 

Shinde et al. [46] 
This work details all transfer learning designs and 

methodologies. 

Examining various award-winning transfer learning 

architectures, as well as their application to various medical 

imaging resources 

Xie et al. [47] 
This work provides a concise outline of the 

benchmark clinical image datasets. 
Shedding light on the ongoing circumstance and difficulties 

Wang et al. [48] 
This is a review of Transfer learning techniques for 

health monitoring. 

Inspiring ground-breaking thoughts for working with medical 

care 

 

 
 

Figure 5. Basic architecture of ResNet 

 

y = F(x) + x (10) 

 

The ResNet152 model with 152 layers won the ILSVRC 

ImageNet 2015 test, despite having fewer boundaries than 

the established VGG19 network at that time. A lingering 

network is composed of residual units or blocks that are 

linked by personality connections, also known as skip 

connections. Table 2 summarizes the various deep learning 

models applied to medical images. 

 

 

4. MEDICAL IMAGE APPLICATIONS 

 

As common deep learning technique, transfer learning 

allows a model created for one task to be utilized as the starting 

point for another related model. This technique guarantees 

time and resource optimization, while improving the 

effectiveness and performance of the pretrained deep learning 

models. For an effective analysis of medical images, the 

transfer learning techniques have been adopted for the 

abnormalities of Alzheimer's disease, diabetic retinopathy, 

colon cancer, breast cancer, and pulmonary nodule, as shown 

in Table 3. 

 

Table 3. Transfer learning approaches for disease detection with medical image analysis 

 
References TL_Approaches Disease Remarks 

Wang and Zhang [49] VGG_inspired network 
Alzheimer’s 

disease 
Classification of Alzheimer’s desease 

Acharya et al. [50] InceptionV3 
Alzheimer’s 

disease 
MRI scan of Alzheimer’s desease 

Wang et al. [51] DenseNet 
Alzheimer’s 

disease 
Detecting various sclerosis diseases 

Swati et al. [52]  VGG19 Brain Tumor 
Classification of brain tumors in MR images 

via transfer learning 

Lao et al. [53] CNNS 
Alzheimer’s 

disease 

GBM detection and classification of MRI 

images 

Puranik et al. [54]  Inception-V2 and Finetuning 
Alzheimer’s 

disease 
Detection of Alzheimer’s desease 

Cheng et al. [55]  Feature extractor 
Alzheimer’s 

disease 
Classifcation of Alzheimer’s desease 

Lu et al. [56]  Fine-tuning on AlexNet 
Alzheimer’s 

disease 
Pathological brain detection 
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Sathananthavathi and 

Indumathi [57] 
U-Net 

Diabetic 

retinopathy 
Segmentation of diabetic retinopathy images 

Raju and Rao [58] Inception V3 
Diabetic 

retinopathy 

Diabetic retinopathy detection using fundus 

images 

Chen et al. [59] GoogleNet 
Diabetic 

retinopathy 
Diabetic macular edema identification 

Suan et al. [60] VGG,Googlenet,AlexNet 
Diabetic 

retinopathy 

Classification of diabetic  

retinal images 

Motozawa et al. [61] Custom_CNN 
Diabetic 

retinopathy 

Detection of age-related macular 

degeneration 

Valerio et al. [62] 
Inception V3, InceptionResNet-v2 and 

NASNetLarge 
Breast cancer Mammography for breast lesion detection 

Moroianu and Rusu [63] VGG19 Breast cancer MRI-based diagnosis of breast cancer 

Mendel et al. [64]  AlexNet,CNN Breast cancer Mammogram for breast lesion detection 

Aljuaid et al. [65] 
ResNet 18, 

ShuffleNet, and Inception-V3Net 
Breast cancer 

Breast cancer detection with multitask 

transfer learning 

Islam et al. [66]  ResNet50 Breast cancer 
Breast lesion detection using ultrasound 

images 

Byra et al. [67] 
Inception-V3, VGG19 and 

InceptionResNetV2 
Breast cancer 

Breast lesion classification using transfer 

learning 

Li et al. [68] DenseNet with SENet (IDSNet) Breast cancer 
Breast cancer detection using histopathology 

images 

Gessert et al. [69] Inception-V3 and Densenet121 Colon cancer 
Classification of colon cancer using 

microscopic images 

Dulf et al. [70] Googlenet and AlexNet Colon cancer Detection of colon polyp 

Raju et al. [71] Modified ResNet150  Colon cancer Classification of colon cancer 

Kang and Gwak [72]  ResNet50 and ResNet101 Colon cancer 
Polyp instance segmentation using Mask-

RCNN 

Zhang et al. [73] ResNet18 and ResNet50 Colon cancer Detection of colon cancer 

Xiong et al. [74] LeNet-5 and AlexNet 
Pulmonary 

nodule 

Classifying pulmonary nodules from CT 

images via transfer learning 

Hussein et al. [75] ResNet101 
Pulmonary 

nodule 
Identification of lung adenocarcinom 

Zhang et al. [76]  DeepNN 
Pulmonary 

nodule 

Discovering lung nodules and pancreatic 

cysts 

da Nóbrega et al. [77]  Custom CNN 
Pulmonary 

nodule 
Screening of tuberculosis disease 

Bassi and Attux [78] ResNet50 
Pulmonary 

nodule 
Lung nodule classification using CT images 

4.1 Detection of Alzheimer’s disease 

 

A basal ganglia problem that causes a steady deterioration 

in motor accuracy and sensor motor integration is the hallmark 

of the neurological condition known as Alzheimer's disease. 

Scale and shift invariant characteristics, including data shape, 

mean, and standard deviation, are employed by Wu et al. [79] 

to conduct classification on functional MRI using a CNN 

model. The suggested fMRI system was trained on 27000 

images before being validated and evaluated on 9000 images. 

The authors' accuracy in identifying brains affected by 

Alzheimer's disease was 92.86 percent. In 3D patches of MRI 

and PET scans, ecomist et al. [80] employed the deep 

Boltzmann machine (DBM) to extract features and find 

anomalies. With accuracies of up to 92.38 percent, 92.20 

percent, and 94.35 percent, the results were validated using 

PET, MRI, and a combination of the two on the ADNI dataset 

for Alzheimer's disease.  

Hassaballah and Awad [81] investigated the use of 3D-CNN 

for the diagnosis of Alzheimer's disease and retrieved 

standardized features from the CAD Dementia MRI dataset. 

After that, the authors improved three fully connected layers 

of CNN for the categorization of Alzheimer's disease using the 

ADNI dataset. Ciaparrone et al. [82] used MRI and fMRI 

scans to identify adult cases of Alzheimer's disease (over the 

age of 75). The researchers conducted both research and 

clinical application investigations. The CNN model 

demonstrated 96.9% accuracy for functional MRI data and 

95.84% accuracy for MRI data in the detection of normal or 

Alzheimer's brain. They subsequently created a decision-

making system employing classification at the subject level.  

With the use of a sparse auto encoder (a neural network), 

Elharrouss et al. [83] retrieved features from an ADNI dataset 

of neuron images, and adopted 3D-CNN subsequently as a 

classifier. The accuracy ranged from 95.39 percent for 

Alzheimer's disease to 95.39 percent, after the dataset was split 

into three sections: training (1,731 samples), validation (306 

samples), and test (228 samples). Prior to dividing Alzheimer's 

brains into prodromal and mild cases, Liu et al. used a sparse 

auto encoder to extract generic features. Using binary MRI and 

PET images, they detected early-stage Alzheimer's disease 

with an accuracy of 87.76%. 

 

4.2 Diabetic retinopathy 

 

High glucose levels are caused by diabetes mellitus, a 

metabolic disorder in which the body's cells do not respond to 

insulin 2 or the pancreas does not produce enough of it. A 

diabetic eye condition that can impair vision is diabetic 

retinopathy. According to estimates, diabetes affects over 415 

million people worldwide, with 15% being at high risk for 

vision impairment, blindness, or other misfortune. If detected 

early via a retinal screening test, it is successfully curable and 

manageable. Physically identifying diabetic retinopathy is a 

difficult and time-consuming process due to a lack of 

equipment and expertise. Since there are not many early-stage 
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side effects of this illness, treatment is put off, 

misunderstandings arise, and follow-ups are missed. Instead, a 

doctor should examine the darkened fundus image of the retina. 

Deep learning models have been discovered to be more 

accurate and improved at detecting diabetic retinopathy. This 

section summarizes the profound learning techniques applied 

to the treatment of diabetic retinopathy. 

To organize and distinguish between moderate and bad 

referable on datasets from the Eye Image Archive 

Communication System (EyePACS-1) and Messidor-2, 

Shankar et al. [84] utilized deep convolutional neural network 

(DCNN). Around 10,000 retinal images may be found in the 

EyePACS-1 informational index, whereas 1,700 retinal 

images from 874 individuals can be found in the Messidor-2 

informational index. According to the developers, EyePACS-

1 is 97.5 percent sensitive and 93.4 percent explicit, whereas 

Messidor-1 is 96.1 percent aware and 93.9 percent particular. 

Using dropout layer techniques, Li et al. [85] prepared a 

DCNN for fundus arrangement and tested on openly available 

datasets including kaggle fundus, DRIVE, and STARE. The 

accuracy was found to range between 94 and 96 percent. Over 

80,000 digital fundus images from the Kaggle dataset were 

utilized, along with the NVIDIA CUDA DCNN library. They 

used 5,000 images to test the network as well. The images 

were cropped to 512x512 pixels and sharpened. The Cu-

DCNN was then given the feature vector. By classifying the 

images into five groups based on exudates, hemorrhages, and 

microaneurysms, the proposed method was able to obtain up 

to 95 percent specificity, 30 percent sensitivity, and 75 percent 

accuracy. 

 

4.3 Detection of colon disease 

 

All organs associated with food processing, supplement 

retention and waste discharge are remembered for the 

gastrointestinal (GI) plot. It starts with the mouth and advances 

to the butt. Among the organs are the throat, stomach, internal 

organ (colon or enormous inside) and small digestive system 

(little entrail). Upper and lower GI parcels can be recognized 

too. The upper GI parcel comprises of the throat, stomach and 

duodenum (part of the little inside), while the lower GI lot 

comprises of most of the small digestive tract and internal 

organ. Food assimilation and retention are hampered by 

aggravation, dying, diseases and cancer. Ulcers cause upper 

gastrointestinal dying. Polyps, disease and diverticulitis are 

likely reasons for colon dying. The small intestine is affected 

by diseases such celiac disease, Crohn's disease, both 

malignant and benign tumors, gastrointestinal obstructions, 

duodenal ulcers, irritable bowel syndrome, and drainage 

caused by arteriovenous mutations. 

Image handling and AI are fundamental to identifying and 

analyzing these diseases, enabling medical professionals to 

seek appropriate and accurate therapeutic options. Different 

imaging tests are now used to diagnose and place stomach-

related framework illnesses as computer aided design (CAD) 

frameworks advance. Among the imaging procedures 

available are remote case endoscopy, endoscopy and 

enteroscopy, colonoscopy or sigmoidoscopy, radiopaque 

colors and X-ray review, profound little gut endoscopy, 

intraoperative enteroscopy, computed tomography, and MRI.  

In GI 10,000 WCE images, draining was identified using 

DCNN. The WCE is a painless video image assessment 

technique for internal infections that are not severe. Focusing 

on width examples and gut length using global data, Cheng et 

al. [55] created fully convolutional networks (FCN) and 

layered them with LSTM using small and large datasets. The 

FCN framework was applied to a large dataset of fifty 

unmarked, unprocessed crude cine MRI groupings, while the 

FCN-LSTM was developed on a small dataset of five 

unprocessed crude cine MRI successions. Gaining details from 

the ImageNet dataset was handled into CNN SoftMax for 

ordering and identifying celiac disease using duodenum 

endoscopic images. CNN is a well-known method for 

extracting programmed highlights from endoscopic images 

[38]. The elements vector is then utilized to describe and 

identify gastrointestinal injuries using the SVM. On 180 

images, the suggested framework for sore discovery was tested, 

and a precision of 80% was achieved. Merjulah and Chandra 

[5] likewise utilized a mixture system. 

Dulf et al. [70] used CNN design to quickly extract 

components. The extracted highlights were then sent to SVM 

for detection of provocative gastrointestinal disease in WCE 

recordings. The tests were conducted on 599 non-fiery images 

and 337 explained incendiary images from KID's GI plot. 

There was a general exactness of up to 90% between the test 

set's 27 typical and 27 strange samples and the preparation set's 

200 ordinary and 200 extraordinary examples. Colonoscopy 

recordings of polyps were discovered using three alternative 

image representations. To improve the accuracy of polyp 

limitation, various CNN models were created on disconnected 

aspects such as surface, form, variety, and global data at 

various scales. The results were then combined to make a final 

decision. In comparison to cutting-edge methods, the 

researchers claimed that their polyp dataset reduces polyp 

detection idleness and is the largest commented-on dataset. 

Additionally, Phillips et al. [32] conducted three tests using 

various CNN coupled with standardization. The amount of the 

dataset increased as a result of information expansion by 

producing various image types. They carried out another 

investigation using CNN and pixels to organize polyp growth 

with colonic mucosa as a target feature. 

 

4.4 Ultrasound detection of breast nodules 

 

Research breakthroughs in areas including cardiovascular 

disease, carotid supply routes, and bosom malignant growth 

have been made thanks to deep learning innovation. In contrast 

to traditional AI, deep learning may make use of multifaceted 

models to organically channel features to improve recognition 

performance. Due to its great accuracy and precision, which 

may primarily be used for indicative precision, deep learning 

has evolved into an important tool for ultrasonic image 

recognition. When surface elements and morphology 

identification techniques were combined in the field of 

ultrasound imaging of breast knobs, using the AlexNet model 

to locate the knobs in the image and predict the benign and 

dangerous, the AUC esteem was solidified and reached 0.9325. 

Mendel et al. [64] resorted to deep learning to improve the 

division impact of the left ventricular ultrasound image of the 

heart. On the preset sequence of fetal face ultrasound images, 

96.98% accuracy was achieved using CNN and an irregular 

two-coordinate drop streamlining calculation (28). Deep 

conglomeration highlights are used in conjunction with the 

ResNet model to detect melanoma in thermoscopic images. 

The AUC, which is more than 80%. suggests the grouping of 

bosom knobs information preprocessing upgrade can be 

realized using the versatile differentiation improvement (ACE) 

technique. The results are frequently subpar when the first 
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input is transmitted directly to the brain network. The 

ultrasound image is then further developed using the ACE 

calculation [65, 66]. By calculating the general pixel value of 

the objective point and encompassing pixels by distinction, the 

ACE computation may be applied to the images. 

  

4.5 Screening of pulmonary nodule 

 

The most well-known type of lung infection is 

pneumoconiosis. Figure 6 shows a complete CT image of a 

pneumonic knob. Even people with typical chest films can be 

identified to have sarcoidosis due to the low symptomatic 

accuracy of normal X-beam chest films in the identification of 

pneumonic knobs. Cellular breakdown in the lung screening 

and identification is being remembered for an increasing 

number of physical tests as CT becomes the primary method 

for pneumonic knob diagnosis. According to information 

measurements, the pneumonic knob's recognition rate has 

recently increased fivefold.  

As deep learning technology advances, various profound 

learning techniques for differentiating pneumonic knobs are 

emerging. They evaluated a few different lung knob 

recognition methods and discovered that, in terms of knob 

discovery rate, the deep learning calculation outperformed the 

conventional AI calculation. However, the deep learning 

algorithm is limited in its ability to distinguish aspiratory 

knobs. To begin with, the accuracy of the comment data and 

the numerous informational collections are both impacted by 

the rapid pace of lung knob recognition [72]. Second, the 

precision rate decreases as the number of organizational levels 

increases, indicating that the calculation for profound learning 

has a limit. A couple of clinical images are shown in Figure 6. 

 

 
 

Figure 6. Sample medical images a. Alzheimer’s b. Diabetic 

Retinopathy c. Colon d. Ultrasound detection breast  

e. Pulmonary 

 

 

5. DISCUSSION 

 

As we all know, collecting medical images is always more 

expensive and challenging than other kinds of vision activities. 

Furthermore, some medical image capturing techniques are 

detrimental to patient bodies, which prevents us from 

gathering a lot of data naturally. We often have very little data 

in the target area while conducting transfer learning in medical 

image analysis. There are two main solutions to this problem. 

First, even though a clinical picture dataset is typically small 

in size, we may be able to enhance it, which leads us to 

information expansion technology. Second, while avoiding the 

image pool quality requirement, we should use restricted 

information. Another tactic, smart imaging, aims to change the 

character of needed images, which is precisely what we need. 

We will now briefly discuss information expansion and savvy 

imaging in this section. 

 

5.1 Data augmentation 

 

Fortunately, information increase is a simple yet effective 

strategy. Information expansion is the process of applying 

mathematical and photometric adjustments to special images, 

such as scaling, pivoting, and reflection. In this way, 

information expansion increases the number of distinct image 

datasets and promotes their dispersion, bringing it closer to the 

real world. Data augmentation was a widely used technique 

that could be seen in a growing number of pertinent studies 

prior to the acceptance of transfer learning. It is commonly 

regarded as one of the most efficient and useful strategies for 

overcoming data shortage. 

 

5.2 Smart imaging  

 

Further, we should emphasize intelligent imaging. Smart 

imaging is used to obtain image data of higher quality. It might 

support noise and artifact reduction, shadow detection, and 

image resolution. Due to all of these factors, deep learning 

algorithms can deliver results more quickly and accurately. 

 

5.3 Models 

 

In transfer learning, more than simply data and labels are 

utilized. Models are just as crucial to transfer learning as data 

and labels. It has a track record of working with and 

collaborating with other cutting-edge deep learning ideas. In 

light of this, we shall look at this pattern from three different 

perspectives. The impact of few shot learning and meta 

learning theories on transfer learning is the subject of the first 

query. Next, we will examine the integration of transfer 

learning with other well-known deep learning models. Third, 

model interpretability in transfer learning, which may have 

been disregarded in the past, needs to be addressed. 

 

5.4 Few shot learning and meta learning  

 

As was previously said, performing medical image analysis 

always results in a lack of samples and labels. In other words, 

the great majority of medical image processing jobs can be 

accomplished via few shot learning. The greatest and most 

effective method for resolving specific learning challenges has 

been identified as meta learning. Meta learning and motion 

learning share certain determined and procedural 

commonalities. In transfer learning, researchers frequently 

modified an established convolutional mind connection or saw 

it as a component extractor, then used a variety of classifiers. 

The three types of meta learning include metric learning, RNN 

memory-based learning, and intelligent adjustment. 

Sorting out a way to align is the first and most common type 

of meta learning, and it parallels transfer learning in a variety 

of ways. The learned instatement limit could eventually 

complete optimal execution when given new tasks after a 

number of tendency drop stages and two or three shot models. 

Another approach is to hire a specialist in LSTM-based 

smoothing out to help with fine-tuning [70]. Many people 

agree that meta learning uses altering, which is appropriate. 
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Although there are not many studies on clinical image 

evaluation that specifically address shoot learning or meta 

learning at the moment, we realize that this is an example and 

that moving forward, the concepts of move gaining and meta 

gaining will converge. 
 

5.5 Combination with other deep learning models  

 

Since experts first employed a pre-built CNN as an element 

extractor, transfer learning has been associated with other deep 

learning techniques. As previously stated, antagonistic based 

solo space variation used a bad network and a training cycle 

obtained from a generative adversarial network (GAN). It uses 

deep learning models that are being developed in close 

proximity to one another. In reality, a few scientists have tried 

to use the transfer learning system as a learning assist. Despite 

the lack of clinical imaging in this discipline, we anticipate that 

more relevant papers will be published sooner rather than later. 

 

5.6 Model interpretability 

 

The final issue is transfer learning's ambiguous translation 

and variable organization of prepared models. Although a few 

studies in this area have been published, very few researchers 

have focused on medical image analysis. We acknowledge that 

more work needs to be done even though transfer learning has 

become a platitude. We hope to see more research and writing 

on the subject in the future. 

 

 

6. CONCLUSION 

 

In this research piece, we first go over the fundamental 

examination concerns in the area of medical image analysis as 

well as the background of transfer learning in this area 

historically. The essential premise, development, and 

application of transfer learning are then discussed in relation 

to convolutional neural networks. Next, we detail the papers 

on five typical medical imaging analysis fields: the brain, heart, 

breast, lung, and kidney. Finally, we discuss a few potential 

mixtures and the ultimate outcome of transfer learning in 

medical imaging.  

We anticipate that in the field of medical image research, 

innovations like information expansion, self-administered 

learning, and space transformation will lead to a constant 

advancement of transfer learning into meta learning. As an 

alternative, transfer learning combined with support learning, 

different models, and viable and powerful archetypes produce 

continuing neural network execution. Some important works 

might not be included in this article due to the writer's limited 

knowledge. Anyhow, we are confident that this research 

article offers a helpful and enlightening perspective on the 

evolution and trends in transfer learning in the field of medical 

imaging. 
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