
A New Encryption Algorithm Based on Fibonacci Polynomials and Matrices

Orhan Dişkaya1, Erdinç Avaroğlu2*, Hamza Menken1, Ahmet Emsal2

1 Department of Mathematics, Faculty of Science, Mersin University, Mersin 33110, Turkey
2 Computer Engineering Department, Faculty of Engineering, Mersin University, Mersin 33110, Turkey

Corresponding Author Email: eavaroglu@mersin.edu.tr

https://doi.org/10.18280/ts.390501 ABSTRACT

Received: 29 June 2022

Accepted: 2 October 2022

Confusion and diffusion features are two fundamental needs of encoded text or images.

These features have been used in various encryption algorithms such as Advanced

Encryption Standard (AES) and Data Encryption Standard (DES). The AES adopts the S-

box table formed with irreducible polynomials, while the DES employs the Feistel and S-

box structures. This study proposes a new encryption algorithm based on Fibonacci

polynomials and matrices, which meets the fundamental needs of image encryption and

provides an alternative to other encryption algorithms. The success of the proposed method

was tested on three different images, as evidenced by the histogram analysis results of the

sample images, together with the number of changing pixel rate (NPCR) and the unified

averaged changed intensity (UACI). In addition, the root mean squared error (RMSE)

suggests that the decoded images are consistent with the original images. It can therefore be

summarized that the proposed encryption algorithm is suitable for image encryption.

Keywords:

cryptography, Fibonacci polynomial

matrix, image encryption, histogram

analysis, differential attack

1. INTRODUCTION

Since ancient times, all of humanity has shared the

commitment to protecting their right to privacy. For

governments, organizations, and people in general, privacy

protection is crucial. For all these parties, the common issue is

to protect their privacy, and keep their conversations and data

confidential, so that no attacker can obtain or read this

information. Cryptography was used to encrypt the sent

messages with an algorithm using a key that was only known

to the sender and receiver and to guarantee their confidentiality.

Many encryption methods have been put forth through the

years to safeguard privacy. The classical encryption

techniques include Caesar, Hill, Vigenere, etc. But these

techniques cannot meet the security needs in the fast-evolving

modern society. This gives birth to modern encryption

algorithms, such as Data Encryption Standard (DES),

Advanced Encryption Standard (AES), Rivest–Shamir–

Adleman (RSA) algorithm, and digital signature algorithm

(DSA). Capable of applying to various areas and meeting

security needs, modern encryption algorithms can be divided

into symmetric encryption and asymmetric encryption.

DES, a secret-key symmetric (single-key) encryption

algorithm, relies on block encryption to encrypt huge amounts

of data. Despite being the most widely used encryption

algorithm ever, it has been defeated by contemporary

computers. The DES approach is intricate and incorporates

both confusion and diffusion processes. It utilizes S-box and

Fiestel architecture.

Another approach for data encryption is AES, which was

developed after DES was cracked. The keys used for both

encryption and decryption in this symmetric-key encryption

process are connected to one another. Four steps make up AES,

including substituting bits, shifting rows, mixing columns, and

adding keys. AES often employs the same confusion and

diffusion processes as DES. The difference is that AES

operates on irreducible polynomials. Polynomials play a

significant role in mathematics and are widely employed,

particularly in the field of cryptology. One of these is the

Fibonacci polynomial, which has been employed in a number

of research that have been published in the field of cryptology

[1-8]. In this paper, the literature review summarizes these

investigations.

Fibonacci polynomials and matrices are used in several of

the above studies. However, in the encryption phase, con and

diff operations are not applied. This paper develops a new

encryption technique, providing an alternative to the

encryption algorithms that offer con and diff operations in the

literature. Fibonacci polynomials and matrices are adopted in

the suggested strategy. The next term in a series of numbers

known as the Fibonacci numbers is determined by the sum of

the two initial conditions. Three separate images were

encrypted and decrypted using the suggested technique. The

success of the proposed technique was demonstrated by the

histogram analysis of the operations conducted. The value

obtained from the mean squared error (MSE) was zero,

indicating the consistency between the original and decoded

images. The number of pixel change rate (NPCR) and the

unified averaged changed intensity (UACI) were also provided

to demonstrate the effectiveness of our approach.

This study makes the following contributions:

- Uniform distribution is achieved through encryption.

- Confusion and diffusion processes are provided by

Fibonacci polynomial matrices.

- The Fibonacci polynomial matrices in confusion and

diffusion are calculated differently in each cycle, while the

matrix of the column shuffling step in the AES encryption

algorithm is the same in every cycle.

- The proposed approach can be applied easily to both

images and texts.

Traitement du Signal
Vol. 39, No. 5, October, 2022, pp. 1453-1462

Journal homepage: http://iieta.org/journals/ts

1453

https://crossmark.crossref.org/dialog/?doi=10.18280/ts.390501&domain=pdf

- The statistical analysis proves the good performance of our

approach.

The remaining parts are organized as follows: Section 2

reviews the literature on Fibonacci polynomials and matrices;

Section 3 explains the proposed method; Section 4 applies our

approach on 3 different images, and presents the results;

Section 4 discusses the results, and summarizes the strengths

and defects of our approach.

2. LITERATURE REVIEW

According to a novel method put forth by Mukherjee and

Samanta [1], a message can be both encoded and hidden in an

image by using the Fibonacci series to encrypt it.

In their study, Uçar et al. [2] developed two new

encoding/decoding methods that make use of Fibonacci Q-

matrices and R-matrices. The models rely on blocked message

matrices and key-based encryption for each message matrices.

These new algorithms have great accuracy capabilities in

addition to increasing information security.

Zou et al. [3] introduced a brand-new technique for digital

image mixing based on the Fibonacci numbers. There have

been concerns raised about the mixing transform's

homogeneity and periodicity. The benefits of mixing

transform are as follows: Encoding and decoding are both very

easy to use in real - time scenarios. The mixing effect is

excellent, as the image data is randomly redistributed across

the image. The technique is resistant to common image attacks

like noise, compression, and data packet loss.

Khadri et al. [4] dealt with text encoding in such a way that

the receiver can only find out the original message without any

data loss or shift or data leakage. Some possible approaches

were presented to solve their identified problem, using

Fibonacci series. The data was encrypted by combining the

original data with Fibonacci numbers to get a cipher text,

which is incomprehensible to any intruder. Only the receiver

knows the logic of the way doing this.

Diskaya et al. [5] developed a classical Aes-like cryptology

based on the Fibonacci polynomial matrix, using a certain

irreducible polynomial. Asci and Aydinyuz [6] generalized the

AES-like cryptology on 2×2 matrices with the elements of k-

order Fibonacci polynomial series using a certain irreducible

polynomial in the cryptology algorithm, which is called AES-

like cryptology on the k-order Fibonacci polynomial matrix.

Anderson [7] proposed a number of keystream generators

based on Fibonacci series. Karacam et al. [8] examined the

transmission of time and position variable cryptology in the

Fibonacci and Lucas number series with music.

3. MATERIALS AND METHODS

In mathematics, Fibonacci polynomials are considered a

generalization of Fibonacci numbers. In 1883, Fibonacci

polynomials fn(x) were examined, for the first time, by Belgian

Mathematician Eugene C. Catalan. This work was followed by

German mathematician Ernst Jacobsthal (1882-1965). In 1973,

Hoggatt and Bicknell [9] defined Fibonacci polynomials and

matrices.
The Fibonacci polynomials sequence can be defined by the

recurrence relationship:

() () ()
2 1

, 0
n n n

f x xf x f x n
+ +

= + 

with the initial conditions being f0(x)=0 and f1(x)=1.

The matrix of the Fibonacci polynomials Q(x) can be

defined as:

()
1

,
1 0

x
Q x =

 
 
 

and the general Fibonacci polynomials matrix Qn(x) can be

expressed as:

()
() ()

() ()
1

1

n nn

n n

f x f x
Q x

f x f x

+

−

=
 
 
 

 (1)

Much information about Fibonacci numbers can be found

in the book Fibonacci and Lucas Numbers with Applications

authored by Koshy [10]. According to this book, the Cassini's

identity, an important identity of the Fibonacci numbers, can

be explained as follows:

() () () ()2

1 1
1

n

n n n
f x f x f x

+ −
− = − (2)

Since the determinant of the Fibonacci polynomial matrix

equals the Cassini’s identity (2) and is non-zero, the Fibonacci

polynomial matrix Qn(x) is invertible for all n values. This is

an important feature for cryptology. The inverse of the

Fibonacci polynomial matrix Qn(x) can be given as:

()
() ()

() ()

1 1

1

n nn

n n

f x f x
Q x

f x f x

− −

+

=
 
 
 

 (3)

4. RESULT AND DISCUSSION

4.1 Our approach

The encryption algorithm involves three rounds, the initial

round, the main round, and the final round. In the initial round,

XOR operation is performed between the state matrix (clear

text) and the key matrix (private key).

In the main round, the mixing process is applied in general.

The confusion and diffusion in this round are created in the

following steps:

• Traverse conversion

• Fibonacci s-box conversion

• Change row and column matrix

• Multiply matrix (multiplication by Fibonacci

polynomial matrix)

The results obtained through con and diff operations and the

key generated from the round key are subjected to XOR

operation. The above operations in the main round are

repeated twelve times.

In the final round, the matrix from the main part is once

again processed through Fibonacci sbox conversion and the

last key, before terminating the encryption process.

The process of our approach is detailed as follows:

Firstly, cross transform is applied on the add matrix, and the

matrix is mixed using Fibonacci AES s-box [11].

Step 1 (Initial round): The 128-bit image (state matrix) and

the polynomials in each cell of the key matrices are added as

follows:

Suppose Xij, Yij, and Zij are order 7 polynomials, where 1≤i,

j≤4,

1454

()

 

() () 7 () ()

7 7 0 0

() ()

,

, 0,1 , 0 7.

ij ij ij ij

ij ij ij

ij ij

k k

Z X Y a b x a b

a b k

= + = + + + +

  

L

is obtained.

Step 2 (Main Round): According to mod 2, the order 7

polynomials are divided into two order 3 blocks, forming the

4th degree A and B polynomial elements. That is:

 () 7 () 6 () ()

7 6 0
, 0,1 , 0 7.

ij ij ij ij

ij k
Z c x c x c c k= + + +   L

In the case that Aij, Bij are order 3 polynomials;

 

 

() 3 () 2 () () ()

7 6 5 4

() 3 () 2 () () ()

3 2 1 0

, 0,1 , 4 7,

, 0,1 , 0 3.

ij ij ij ij ij

ij k

ij ij ij ij ij

ij k

A c x c x c x c c k

B c x c x c x c c k

= + + +   

= + + +   

is obtained.

Then, the values marked in the traverse conversion matrix

are multiplied by the first eight Fibonacci elements obtained

using mod 2 and the irreducible polynomial x4+x+1.

The first eight Fibonacci elements are:

2 3 2

1 2 3 4 5

2 3 2 3

6 7 8

() 1, () , () 1, () , () ,

 () , () , () .

f x f x x f x x f x x f x x x

f x x f x x x x f x x

= = = + = = +

= = + + =

The multiplication goes as follows:

(mod 2)
ij ij i j

C A f
+

=  or (mod 2)
ij ij i j

C B f
+

= 

If polynomials Aij, Bij, and Cij of the obtained matrix are

converted using the hexadecimal base against the Fibonacci s-

box table, it is possible to obtain the Fibonacci s-box

conversion matrix. The rows of this matrix are shifted by the

first four terms of the Fibonacci numbers (i.e., 1, 1, 2 and 3),

respectively. Then similar operations are applied to the

columns, respectively:

• The first row of the matrix is shifted 1 bit left based on the

value of the first term of the Fibonacci s-box table.

• The second row of the matrix is shifted 1 bit to the left

based on the value of the second term of the Fibonacci s-

box table.

• The third row of the matrix is shifted 2 bits to the left based

on the value of the third term of the Fibonacci s-box table.

• The fourth row of the matrix is shifted 3 bits to the left

based on the value of the fourth term of the Fibonacci s-

box table.

The row changes result in a change row matrix. Then, the

column change is applied to the change row matrix:

• The first column of the matrix is shifted up by 1 bit based

on the value of the first term of the Fibonacci s-box table.

• The second column of the matrix is shifted up by 1 bit

based on the value of the second term of the Fibonacci s-

box table.

• The third column of the matrix is shifted up by 2 bits based

on the value of the third term of the Fibonacci s-box table.

• The fourth column of the matrix is shifted up by 3 bits

based on the value of the fourth term of the Fibonacci s-

box table.

Thereby, a change column matrix is obtained, and then

divided into blocks to be multiplied by the 2×2 Fibonacci

polynomial matrix (1). The generated new 2×2 type matrices

adopt mode 2 and irreducible polynomials x4+x+1,

respectively. On this basis, the multiply matrix can be obtained

by:

22 22 1 11 11

33 33 1 21 21

23 23 1 12 12

34 34 1 22 22

21 21 1 34 34

32 32 1 44 44

() ()
,

() ()

() ()
, ,

() ()

() ()

() ()

n n

n n

n n

n n

n n

n n

K L f x f x D E

K L f x f x D E

K L f x f x D E

K L f x f x D E

K L f x f x D E

K L f x f x D E

+

−

+

−

+

−

=

=

=

     
     

    

     
     

    

    
   
   

.


 
 

and {n=2+t:t.round=t} where for 1≤i,j≤4, Kij, Lij, Dij, and Eij

are order 4 polynomials.

The n value is updated for these operations each round. The

add matrix is created in the final phase of the main round by

adding the multiply matrix and round key 0. The round key is

added to the key created using the prior key in each loop.

Step 3 (Final Round): The final round takes place after the

image has been encrypted in the main round. The image that

needs to be encrypted will undergo multiply matrix operations

in the final round, be added with round key 13, putting an end

to the encryption process.

Figure 1 depicts the flow of the encryption process. Figure

2 presents the flow of the encryption algorithm.

Figure 1. The encryption process

1455

Figure 2. Flow of the encryption algorithm

Tables 1-5 display the nominal codes of cross

transformation, s-box function, mix column and row, product

of matrix and sum of matrix stages in the flowchart,

respectively.

4.2 Practical applications of the proposed method and

analysis results

This section discusses the practical application and test

results of the proposed encryption algorithm. Specifically, our

approach was applied to Lena, baboon and baby images, which

1456

are widely used in the literature. All tests were carried out on

a computer with Intel Core i5 (7300HQ) quad-core CPU, 8 GB

DDR4 RAM, 1 TB HDD and Windows 10. All images were

processed by MATLAB R2019b. The application effect was

measured by histogram analysis, root mean square error

(RMSE) and differential attack analysis.

Table 1. The croos transformation

Function CrosTransformation (Inputs: blockMtx, Fibonacci

polynomials)

{

 byte dec, a, b, c;

 Polynomial poly, polyF, polyRes;

 bool direction;

 for (byte i = 0, j; i < Faes.rowSize; i++)

 {

 for (j = 0; j < Faes.columnSize; j++)

 {

 dec = blockMtx[i, j];

 a = (byte)(dec >> 4);

 b = (byte)(dec & 15);

 direction = ((i + j) & 1) == 0;

 if (direction) //Left

 {

 poly = Polynomial.WithDec(a);

 polyF = fibonacciPolynomials[

 Convert.ToByte(((i + 1) * (j + 1)) &

15)];

 }

 else

 {

 poly = Polynomial.WithDec(b);

 polyF = fibonacciPolynomials[

 Convert.ToByte(((i + 1) * (j + 1)) & 15)

];

 }

 polyRes = (poly * polyF).reduction().mod2();

 c = Convert.ToByte(polyRes.evaluate());

 blockMtx[i, j] = direction

 Convert.ToByte((c << 4) + b) :

 Convert.ToByte((a << 4) + c);

 } } }

Table 2. SBOX function

Function sbox (Inputs: blockMtx, sboxTables)

{

 for (byte i = 0, j, dec; i < Faes.rowSize; i++)

 {

 for (j = 0; j < Faes.columnSize; j++)

 {

 dec = blockMtx[i, j];

 blockMtx[i, j] = sBoxTables[dec >> 4, dec &

15];

 } } }

Table 3. Mix column and row

Function mixColumnsAndRows (Inputs: blockMtx,

method)

{

 List<byte> row = new List<byte>(new

byte[Faes.columnSize]);

 List<byte> column = new List<byte>(new

byte[Faes.rowSize]);

 byte r, i, b, l;

 if (method == Method.decrypt)

 {

 for (r = 0, l =

Convert.ToByte(Faes.horizontalShift.Length); r < l; r++)

 {

 for (i = 0; i < Faes.columnSize; i++) row[i] =

blockMtx[r, i];

 for (i = 0; i < Faes.horizontalShift[r]; i++)

 {

 b = row[0];

 row.RemoveAt(0);

 row.Add(b);

 }

 for (i = 0; i < Faes.columnSize; i++)

blockMtx[r, i] = row[i];

 }

 for (r = 0, l =

Convert.ToByte(Faes.verticalShift.Length); r < l; r++)

 {

 for (i = 0; i < Faes.rowSize; i++) column[i] =

blockMtx[i, r];

 for (i = 0; i < Faes.verticalShift[r]; i++)

 {

 b = column[0];

 column.RemoveAt(0);

 column.Add(b);

 }

 for (i = 0; i < Faes.rowSize; i++) blockMtx[i,

r] = column[i];

 }

 }

 else

 {

 for (r = 0, l =

Convert.ToByte(Faes.verticalShift.Length); r < l; r++)

 {

 for (i = 0; i < Faes.rowSize; i++) column[i] =

blockMtx[i, r];

 for (i = 0; i < Faes.verticalShift[r]; i++)

 {

 b = column[Faes.rowSize - 1];

 column.RemoveAt(Faes.rowSize - 1);

 column.Insert(0, b);

 }

 for (i = 0; i < Faes.rowSize; i++) blockMtx[i,

r] = column[i];

 }

 for (r = 0, l =

Convert.ToByte(Faes.horizontalShift.Length); r < l; r++)

 {

 for (i = 0; i < Faes.columnSize; i++) row[i] =

blockMtx[r, i];

 for (i = 0; i < Faes.horizontalShift[r]; i++)

 {

 b = row[Faes.columnSize - 1];

 row.RemoveAt(Faes.columnSize - 1);

 row.Insert(0, b);

 }

 for (i = 0; i < Faes.columnSize; i++)

blockMtx[r, i] = row[i];

 } } }

1457

Table 4. Product of matrix

Function productOfMatrices (Inputs: blockMtx, roundIdx,

method)

{

 Polynomial[,] group = new Polynomial[2, 2];

 Polynomial[,] fibonacciMatrix;

 {

 int round = roundIndex + 1,

 multipier = method == Method.decrypt ? 1 : -

1;

 fibonacciMatrix = new Polynomial[2, 2]{

 {this.fibonacciPolynomials[round + 1 *

multipier] , this.fibonacciPolynomials[round] },

 {this.fibonacciPolynomials[round] ,

this.fibonacciPolynomials[round - 1 * multipier] }, };

 }

 Polynomial res;

 uint d;

 for (

 byte k = 0, l, i, j, m, dec;

 k < 2;

 k++

)

 {

 for (l = 0; l < 4; l++)

 {

 for (i = 0; i < 2; i++)

 {

 group[i, 0] = Polynomial.WithDec(

 Convert.ToByte(blockMtx[(k << 1) + i,

l] >> 4)

);

 group[i, 1] = Polynomial.WithDec(

 Convert.ToByte(blockMtx[(k << 1) + i, l]

& 15)

);

 }

 for (i = 0; i < 2; i++)

 {

 dec = 0;

 for (j = 0; j < 2; j++)

 {

 res = new Polynomial();

 for (m = 0; m < 2; m++)

 res.summation(group[i, m] *

fibonacciMatrix[m, j]);

 d = res.reduction()

 .mod2()

 .evaluate();

 dec += (byte)(j == 0 ? d << 4 : d);

 }

 blockMtx[(k << 1) + i, l] = dec;

 } } } }

Table 5. Sum of matrix

Function sumOfMatrices (Inputs: blockMtx, key)

 {

 for (byte i = 0, j; i < Faes.rowSize; i++)

 for (j = 0; j < Faes.columnSize; j++)

 blockMtx[i, j] ^= key[i * Faes.columnSize + j];

 }

 private void sumOfMatrices(ref byte[,] blockMtx, ref

byte[,,] roundKeys, byte roundIndex)

 {

 for (byte i = 0, j; i < Faes.rowSize; i++)

 for (j = 0; j < Faes.columnSize; j++)

 blockMtx[i, j] ^= roundKeys[roundIndex, i,

j]; }

4.2.1 Histogram analysis

For an image with brightness of [0, L − 1], the histogram

can be described by a discrete function:

H(rk)= nk,

where, rk is the brightness intensity; nk is the number of image

pixels with brightness intensity of rk [12]. For the target image

of histogram analysis, the number of pixels with brightness of

0, 1, 2 … L-1 is calculated. The results are placed on the

vertical axis. The histogram provides useful statistics about the

image, which facilitates image compression, and segmentation.

The histogram of encrypted images must be uniform [13, 14].

Figures 3-5 present the original, encrypted and decrypted

states of the sample images, respectively. The R, G, B values

are given on the right of these states. A uniform distribution

has been obtained for all values, as shown by the coded

histograms in the images. The histogram of the original images

and the encrypted images are very different from one another.

A uniform distribution makes it challenging to draw statistical

inferences and makes statistical attacks on the suggested

encryption technique more difficult.

4.2.2 Root Mean Square Error (RMSE)

This section investigates whether there is a difference

between the original image and the decoded image, using the

RMSE defined in formula (4). This metric measures the

magnitude of error in quadric terms. As the standard deviation

of the estimation errors, it is often used to find the distance

between the predicted and true values. The value range of

RMSE is 0 to ∞. The smaller the RMSE, the better the

prediction. If RMSE equals zero, the model must have made

no error [15].

2

1

n

jj
e

RMSE
n

=
=


 (4)

where, Aj and Pj are the actual and predicted values,

respectively; ej=Aj-Pj is the error; n is the size of the dataset.

The magnitude of the error, absolute error, and squared

error can be respectively expressed as D1=Aj-Pj=ej, 𝐷2 =

|𝐴𝑗 − 𝑃𝑗| = |𝑒𝑗|, and 𝐷3 = (𝐴𝑗 − 𝑃𝑗)
2 = (𝑒𝑗)

2, respectively.

The results in Table 6 demonstrate that no loss arises from

encryption in the original images, for the decoded image that

was acquired from the encrypted image has no difference. The

histogram density graphs of the encrypted and decoded images

are identical, as can be seen in Figures 3, 4, and 5.

1458

Figure 3. Histogram of the Lena image

Figure 4. Histogram of the baby image

Figure 5. Histogram of the baboon image

1459

Table 6. RMSE values of images

Sample pictures RMSE

Lena 0

Baboon 0

Baby 0

4.2.3 Differential attack analysis

By using an encryption algorithm with a fixed key,

differential attacks attempt to alter the original text pair in

some way. The impact on the original text can be assessed by

analyzing how much the encrypted output differ from the

original input [16, 17]. The avalanche effect is being

strengthened in cryptographic systems in an attempt to

improve their defenses against differential attacks. This is a

useful feature in cryptographic algorithms, for it causes minor

changes in input to result in significant changes in output [18].

NPCR is one of the criteria for the effect of differential

attacks on image encryption. NPCR evaluates an algorithm's

sensitivity to minute alterations in the original image. First, the

original image is subjected to the C1 cryptographic technique

in order to determine the NPCR. Then, a randomly chosen

pixel from the original image is altered. After that, the

encryption algorithm is applied to the image of which a pixel

has been modified again, yielding a second encrypted image,

denoted C2. The following formulae are used to calculate the

NPCR value [19, 20].

Table 7. UACI and NPCR test results

Sample pictures NPCR (UACI)

Lena 0.99619 0.335

Baboon 0.99602 0.334

Baby 0.99603 0.333

Table 8. Comparison of the proposed method with the studies in the literature

Reference Method Image Parameter

Artuğer and Özkaynak [21] Random (chaotic) Sbox Baboon NPCR= 0.9960 UACI:0.3343

Zhu et al. [22] 1D chaotic map Lena NPCR= 0.9963 UACI:0.3347

Benlashram et al. [23] 3D chaotic map and Pixel shuffiling Lena

Baboon

NPCR= 0.9965 UACI:0.3360

NPCR= 0.9965 UACI:0.3367

Shariatzadeh et al. [24] Dynamic AES Lena

Baboon

NPCR= 0.9999 UACI:0.3364

NPCR= 0.9999 UACI:0.3361

El-Latif et al. [25] Arnold cat map Lena

Baboon

NPCR= 0.9921 UACI:0.3343

NPCR= 0.9915 UACI:0.3338

Norouzi et al. [26] hyper-chaotic system Lena

Baboon

NPCR= 0.9957 UACI:0.3347

NPCR= 0.9961 UACI:0.3357

Ge and Ye [27] 3D cat map Lena NPCR= 0.9961 UACI:0.3349

Sayed et al. [28] 2D Affine Transformation Lena

Baboon

NPCR= 0.9960 UACI:0.3348

NPCR= 0.9961 UACI:0.3345

Zhang et al. [29] 3D Chaotic map and DNA coding Lena

Baboon

NPCR= 0.9960 UACI:0.3346

NPCR= 0.9960 UACI:0.3345

Nematzadeh et al. [30] Deoxyribonucleic Acid (DNA) sequence and Binary Search Tree

(BST)

Lena

Baboon

NPCR= 0.9962 UACI:0.3354

NPCR= 0.9936 UACI:0.3350

Zhang and Wang [31] Deoxyribonucleic acid (DNA) encoding and chaotic system Lena

Baboon

NPCR= 0.9961 UACI:0.3345

NPCR= 0.9962 UACI:0.3343

Suseela et al. [32] Torus Automorphism and

Rubik’s cube

Lena

Baboon

NPCR= 0.9984 UACI:0.3687

NPCR= 0.9982 UACI:0.3612

Proposed method Fibonacci polynomial matrix Lena

Baboon

baby

NPCR= 0.9961 UACI:0.335

NPCR= 0.99602 UACI:0.334

NPCR= 0.99603 UACI:0.333

D(i, j) = { 1 if C1(i, j) ≠C2(i, j) 0 if C1(i, j) = C2(i, j)

1 1

1
(,) %100

M N

i j
NPCR D i j

M N
= =

= 


 
(5)

As shown in formula (5), the ideal value for the NPCR value

is 100%. According to the results in Table 1 about the

proposed approach, the NPCR value is very close to 100%,

indicating that the approach is extremely precise to the

smallest changes in the input. Hence, changing a pixel value

in the original image causes all pixels in the encrypted image

to change.

UACL is another metric of image encryption efficiency.

This metric is a yardstick of the avalanche effect:

1 2

1 1

(,) (,)
%100

255

M N

i j

C i j C i j
UACI

M N
= =

−
= 

 

 
 
 
  (6)

Eq. (6) is used to calculate the UACI.

The UACI value for successful image encryption is close to

33%. As shown in Table 7, our encryption algorithm achieved

an UACI very close to 33%.

Table 8 compares the proposed approach with the methods

in literature, using Lena and baboon images and chaotic

systems. It is clear that our approach achieved the desired

results in NPCR and UACI, surpassing the performance of the

contrastive methods. This is attributable to the use of

Fibonacci polynomials matrix, which has an important place

in the field of mathematics.

There are different-based image encryption studies in the

literature [33, 34].

5. CONCLUSION

Confusion and diffusion features are two basic requirements

for encrypted text or images, and have been studied

extensively in history. The most well-known solution is AES,

which adopts irreducible polynomials. In the AES encryption

1460

algorithm, the same matrix is used for column shuffling in

every cycle. By contrast, the proposed approach solves the

Fibonacci polynomial matrices used in confusion and

diffusion differently in each cycle. This helps to deal with

more complex scenarios.

This study mainly presents a new encryption algorithm

based on Fibonacci polynomials and matrices, providing an

alternative to other encryption algorithms designed to meet the

needs of confusion and diffusion features. The success of our

algorithm was evaluated through encryption and decryption of

3 different images. The results of histogram analysis show that

the encryption results in a uniform distribution. Besides, the

RMSE (which is 0 for the 3 images) suggests no difference

between the original and decoded images. Further, NPCR

(approximate 100%) and UACI (approximate 33%) test results

prove that our algorithm works successfully.

The proposed system was demonstrated to be practicable.

By making the system more complex, the system security is

greatly increased. The future research will propose novel

encryption techniques using polynomials and matrices of

number series like Lucas, Pell, Jacobsthal, Padovan, and

Perrin. New S-box tables can also be created as an alternative

to the s-box tables of AES.

REFERENCES

[1] Mukherjee, M., Samanta, D. (2014). Fibonacci based text

hiding using image cryptography. Acharya Institute of

Technology. Department of MCA, Bangalore, India, 2(2):

172-176. https://doi.org/10.12720/lnit.2.2.172-176

[2] Ucar, S., Tas, N., Yılmaz, N.Ö. (2019). A new

application to coding theory via Fibonacci and Lucas

numbers. Mathematical Sciences and Applications E-

Notes, pp. 62-70.

https://doi.org/10.36753/mathenot.559251

[3] Zou, J., Ward, R.K., Qi, D. (2004). A new digital image

scrambling method based on Fibonacci numbers. In 2004

IEEE International Symposium on Circuits and Systems

(ISCAS), 3: III-965.

https://doi.org/10.1109/ISCAS.2004.1328909

[4] Khadri, S.K.A., Samanta, D., Paul, M. (2014). Approach

of message communication using Fibonacci series: In

cryptology. Lecture Notes on Information Theory, pp.

168-171. https://doi.org/10.12720/lnit.2.2.168-171

[5] Diskaya, O., Avaroglu, E., Menken, H. (2020). The

classical AES-like cryptology via the Fibonacci

polynomial matrix. Turkish Journal of Engineering, 4(3):

123-128. https://doi.org/ 10.31127/tuje.646926

[6] Asci, M., Aydinyuz, S. (2022). k-Order Fibonacci

polynomials on AES-like cryptology. CMES-Computer

Modeling in Engineering & Sciences, 131(1): 277-293.

https://doi.org/10.32604/cmes.2022.017898

[7] Anderson, R. (1994). On Fibonacci keystream generators.

In International Workshop on Fast Software Encryption,

pp. 346-352. https://doi.org/10.1007/3-540-60590-8_26

[8] Karaçam, C., Algül, F.N., Tavit, D. (2021). Transmission

of time and position variable cryptology in Fibonacci and

Lucas number series with music. Journal of

Mathematical Sciences and Modelling, 4(1): 38-50.

https://doi.org/10.33187/jmsm.885876

[9] Hoggatt, V.E., Bicknell, M. (1973). Generalized

Fibonacci polynomials. Fibonacci Qartelly, 11: 457-465.

https://www.fq.math.ca/Scanned/11-5/hoggatt.pdf.

[10] Koshy, T. (2019). Fibonacci and Lucas Numbers with

Applications, John Wiley & Sons.

[11] Mohamed, K., Ali, F.H.H.M., Ariffin, S., Zakaria, N.H.,

Pauzi, M.N.M. (2018). An improved AES S-box based

on Fibonacci numbers and prime factor. International

Journal of Network Security, 20(6): 1206-1214.

https://doi.org/10.6633/IJNS.201811 20(6).21

[12] Neri, E., Caramella, D., Bartolozzi, C. (2008). Image

processing in radiology. Medical Radiology. Diagnostic

Imaging, Springer, Berlin. https://doi.org/10.1007/978-

3-540-49830-8

[13] Amin, M., Faragallah, O. S., Abd El-Latif, A.A. (2010).

A chaotic block cipher algorithm for image

cryptosystems. Communications in Nonlinear Science

and Numerical Simulation, 15(11): 3484-3497.

https://doi.org/10.1016/j.cnsns.2009.12.025

[14] Chen, H.C., Guo, J.I., Huang, L.C., Yen, J.C. (2003).

Design and realization of a new signal security system

for multimedia data transmission. EURASIP Journal on

Advances in Signal Processing, 2003(13): 1-15.

https://doi.org/ 10.1155/S1110865703309011

[15] https://veribilimcisi.com/2017/07/14/mse-rmse-mae-

mape-metrikleri-nedir, accessed on May 15, 2022.

[16] Biham, E., Shamir, A. (1991). Differential cryptanalysis

of DES-like cryptosystems. Journal of Cryptology, 4(1):

3-72. https://doi.org/10.1007/BF00630563

[17] Chen, L., Ma, B., Zhao, X., Wang, S. (2017). Differential

cryptanalysis of a novel image encryption algorithm

based on chaos and Line map. Nonlinear Dynamics,

87(3): 1797-1807. https://doi.org/10.1007/s11071-016-

3153-y

[18] Hussain, I., Shah, T. (2013). Literature survey on

nonlinear components and chaotic nonlinear components

of block ciphers. Nonlinear Dynamics, 74(4): 869-904.

https://doi.org/10.1007/s11071-013-1011-8

[19] Zhu, S., Zhu, C., Wang, W. (2018). A new image

encryption algorithm based on chaos and secure hash

SHA-256. Entropy, 20(9): 716.

https://doi.org/10.3390/e20090716

[20] Alawida, M., Samsudin, A., Teh, J.S., Alkhawaldeh, R.S.

(2019). A new hybrid digital chaotic system with

applications in image encryption. Signal Processing, 160:

45-58. https://doi.org/10.1016/j.sigpro.2019.02.016

[21] Artuğer, F., Özkaynak, F. (2021). An effective method to

improve nonlinearity value of substitution boxes based

on random selection. Information Sciences, 576: 577-588.

https://doi.org/10.1016/j.ins.2021.07.036

[22] Zhu, C., Wang, G., Sun, K. (2018). Improved

cryptanalysis and enhancements of an image encryption

scheme using combined 1D chaotic maps. Entropy,

20(11): 843-843. https://doi.org/10.3390/e20110843

[23] Benlashram, A., Al-Ghamdi, M., AlTalhi, R., Laabidi,

P.K. (2020). A novel approach of image encryption using

pixel shuffling and 3D chaotic map. In Journal of Physics:

Conference Series, 1447(1): 012009-012009.

https://doi.org/10.1088/1742-6596/1447/1/012009

[24] Shariatzadeh, M., Rostami, M.J., Eftekhari, M. (2021).

Proposing a novel dynamic AES for image encryption

using a chaotic map key management approach. Optik,

246: 167779.

https://doi.org/10.1016/j.ijleo.2021.167779

[25] El-Latif, A., Ahmed, A., Li, L., Zhang, T., Wang, N.,

Song, X., Niu, X. (2012). Digital image encryption

scheme based on multiple chaotic systems. Sensing and

1461

https://doi.org/10.36753/mathenot.559251
https://doi.org/%2010.1155/S1110865703309011
https://doi.org/%2010.1155/S1110865703309011
https://veribilimcisi.com/2017/07/14/mse-rmse-mae-mape-metrikleri-nedir/
https://veribilimcisi.com/2017/07/14/mse-rmse-mae-mape-metrikleri-nedir/
https://doi.org/10.1016/j.sigpro.2019.02.016
https://doi.org/10.1016/j.ins.2021.07.036
https://doi.org/10.3390/e20110843

Imaging: An International Journal, 13(2): 67-88.

https://doi.org/10.1007/s11071-012-0409-z

[26] Norouzi, B., Mirzakuchaki, S., Seyedzadeh, S.M.,

Mosavi, M.R. (2014). A simple, sensitive and secure

image encryption algorithm based on hyper-chaotic

system with only one round diffusion process.

Multimedia Tools and Applications, 71(3): 1469-1497.

https://doi.org/10.1007/s11042-012-1292-9

[27] Ge, M., Ye, R. (2019). A novel image encryption scheme

based on 3D bit matrix and chaotic map with Markov

properties. Egyptian Informatics Journal, 20(1): 45-54.

https://doi.org/10.1016/j.eij.2018.10.001

[28] Sayed, W.S., Radwan, A.G., Fahmy, H.A., Elsedeek, A.

(2021). Trajectory control and image encryption using

affine transformation of Lorenz system. Egyptian

Informatics Journal, 22(2): 155-166.

https://doi.org/10.1016/j.eij.2020.07.002

[29] Zhang, Q., Han, J., Ye, Y. (2021). Multi‐image

encryption algorithm based on image hash, bit‐plane

decomposition and dynamic DNA coding. IET Image

Processing, 15(4): 885-896.

https://doi.org/10.1049/ipr2.12069

[30] Nematzadeh, H., Enayatifar, R., Yadollahi, M., Lee, M.,

Jeong, G. (2020). Binary search tree image encryption

with DNA. Optik, 202: 163505.

https://doi.org/10.1016/j.ijleo.2019.163505

[31] Zhang, X., Wang, X. (2019). Multiple-image encryption

algorithm based on DNA encoding and chaotic system.

Multimedia Tools and Applications, 78(6): 7841-7869.

https://doi.org/10.1007/s11042-018-6496-1

[32] Suseela, G., Kumari, N., Phamila, Y.A.V. (2016).

Secured Image Compression using Wavelet Transform.

Indian Journal of Science and Technology, 9(33): 1-6.

https://doi.org/10.17485/ijst/2016/v9i33/92311

[33] Guler, H. (2021). Development of real-time fuzzy

synchronization of chaos based system for image

encryption. Traitement du Signal, 38(5): 1461-1467.

https://doi.org/10.18280/ts.380521

[34] Cai Q.R. (2019). A secure image encryption algorithm

based on composite chaos theory, Traitement du Signal,

36(1): 31-36. https://doi.org/10.18280/ts.360104

1462

https://doi.org/%2010.1007/s11042-012-1292-9

