
A New Encryption Algorithm Based on Fibonacci Polynomials and Matrices 

Orhan Dişkaya1, Erdinç Avaroğlu2*, Hamza Menken1, Ahmet Emsal2 

1 Department of Mathematics, Faculty of Science, Mersin University, Mersin 33110, Turkey 
2 Computer Engineering Department, Faculty of Engineering, Mersin University, Mersin 33110, Turkey 

Corresponding Author Email: eavaroglu@mersin.edu.tr

https://doi.org/10.18280/ts.390501 ABSTRACT 

Received: 29 June 2022 

Accepted: 2 October 2022 

Confusion and diffusion features are two fundamental needs of encoded text or images. 

These features have been used in various encryption algorithms such as Advanced 

Encryption Standard (AES) and Data Encryption Standard (DES). The AES adopts the S-

box table formed with irreducible polynomials, while the DES employs the Feistel and S-

box structures. This study proposes a new encryption algorithm based on Fibonacci 

polynomials and matrices, which meets the fundamental needs of image encryption and 

provides an alternative to other encryption algorithms. The success of the proposed method 

was tested on three different images, as evidenced by the histogram analysis results of the 

sample images, together with the number of changing pixel rate (NPCR) and the unified 

averaged changed intensity (UACI). In addition, the root mean squared error (RMSE) 

suggests that the decoded images are consistent with the original images. It can therefore be 

summarized that the proposed encryption algorithm is suitable for image encryption. 
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1. INTRODUCTION

Since ancient times, all of humanity has shared the 

commitment to protecting their right to privacy. For 

governments, organizations, and people in general, privacy 

protection is crucial. For all these parties, the common issue is 

to protect their privacy, and keep their conversations and data 

confidential, so that no attacker can obtain or read this 

information. Cryptography was used to encrypt the sent 

messages with an algorithm using a key that was only known 

to the sender and receiver and to guarantee their confidentiality. 

Many encryption methods have been put forth through the 

years to safeguard privacy. The classical encryption 

techniques include Caesar, Hill, Vigenere, etc. But these 

techniques cannot meet the security needs in the fast-evolving 

modern society. This gives birth to modern encryption 

algorithms, such as Data Encryption Standard (DES), 

Advanced Encryption Standard (AES), Rivest–Shamir–

Adleman (RSA) algorithm, and digital signature algorithm 

(DSA). Capable of applying to various areas and meeting 

security needs, modern encryption algorithms can be divided 

into symmetric encryption and asymmetric encryption.  

DES, a secret-key symmetric (single-key) encryption 

algorithm, relies on block encryption to encrypt huge amounts 

of data. Despite being the most widely used encryption 

algorithm ever, it has been defeated by contemporary 

computers. The DES approach is intricate and incorporates 

both confusion and diffusion processes. It utilizes S-box and 

Fiestel architecture. 

Another approach for data encryption is AES, which was 

developed after DES was cracked. The keys used for both 

encryption and decryption in this symmetric-key encryption 

process are connected to one another. Four steps make up AES, 

including substituting bits, shifting rows, mixing columns, and 

adding keys. AES often employs the same confusion and 

diffusion processes as DES. The difference is that AES 

operates on irreducible polynomials. Polynomials play a 

significant role in mathematics and are widely employed, 

particularly in the field of cryptology. One of these is the 

Fibonacci polynomial, which has been employed in a number 

of research that have been published in the field of cryptology 

[1-8]. In this paper, the literature review summarizes these 

investigations. 

Fibonacci polynomials and matrices are used in several of 

the above studies. However, in the encryption phase, con and 

diff operations are not applied. This paper develops a new 

encryption technique, providing an alternative to the 

encryption algorithms that offer con and diff operations in the 

literature. Fibonacci polynomials and matrices are adopted in 

the suggested strategy. The next term in a series of numbers 

known as the Fibonacci numbers is determined by the sum of 

the two initial conditions. Three separate images were 

encrypted and decrypted using the suggested technique. The 

success of the proposed technique was demonstrated by the 

histogram analysis of the operations conducted. The value 

obtained from the mean squared error (MSE) was zero, 

indicating the consistency between the original and decoded 

images. The number of pixel change rate (NPCR) and the 

unified averaged changed intensity (UACI) were also provided 

to demonstrate the effectiveness of our approach. 

This study makes the following contributions: 

- Uniform distribution is achieved through encryption.

- Confusion and diffusion processes are provided by

Fibonacci polynomial matrices. 

- The Fibonacci polynomial matrices in confusion and

diffusion are calculated differently in each cycle, while the 

matrix of the column shuffling step in the AES encryption 

algorithm is the same in every cycle. 

- The proposed approach can be applied easily to both

images and texts. 
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- The statistical analysis proves the good performance of our 

approach. 

The remaining parts are organized as follows: Section 2 

reviews the literature on Fibonacci polynomials and matrices; 

Section 3 explains the proposed method; Section 4 applies our 

approach on 3 different images, and presents the results; 

Section 4 discusses the results, and summarizes the strengths 

and defects of our approach. 

 

 

2. LITERATURE REVIEW 

 

According to a novel method put forth by Mukherjee and 

Samanta [1], a message can be both encoded and hidden in an 

image by using the Fibonacci series to encrypt it. 

In their study, Uçar et al. [2] developed two new 

encoding/decoding methods that make use of Fibonacci Q-

matrices and R-matrices. The models rely on blocked message 

matrices and key-based encryption for each message matrices. 

These new algorithms have great accuracy capabilities in 

addition to increasing information security. 

Zou et al. [3] introduced a brand-new technique for digital 

image mixing based on the Fibonacci numbers. There have 

been concerns raised about the mixing transform's 

homogeneity and periodicity. The benefits of mixing 

transform are as follows: Encoding and decoding are both very 

easy to use in real - time scenarios. The mixing effect is 

excellent, as the image data is randomly redistributed across 

the image. The technique is resistant to common image attacks 

like noise, compression, and data packet loss. 

Khadri et al. [4] dealt with text encoding in such a way that 

the receiver can only find out the original message without any 

data loss or shift or data leakage. Some possible approaches 

were presented to solve their identified problem, using 

Fibonacci series. The data was encrypted by combining the 

original data with Fibonacci numbers to get a cipher text, 

which is incomprehensible to any intruder. Only the receiver 

knows the logic of the way doing this. 

Diskaya et al. [5] developed a classical Aes-like cryptology 

based on the Fibonacci polynomial matrix, using a certain 

irreducible polynomial. Asci and Aydinyuz [6] generalized the 

AES-like cryptology on 2×2 matrices with the elements of k-

order Fibonacci polynomial series using a certain irreducible 

polynomial in the cryptology algorithm, which is called AES-

like cryptology on the k-order Fibonacci polynomial matrix. 

Anderson [7] proposed a number of keystream generators 

based on Fibonacci series. Karacam et al. [8] examined the 

transmission of time and position variable cryptology in the 

Fibonacci and Lucas number series with music. 

 

 

3. MATERIALS AND METHODS 

 

In mathematics, Fibonacci polynomials are considered a 

generalization of Fibonacci numbers. In 1883, Fibonacci 

polynomials fn(x) were examined, for the first time, by Belgian 

Mathematician Eugene C. Catalan. This work was followed by 

German mathematician Ernst Jacobsthal (1882-1965). In 1973, 

Hoggatt and Bicknell [9] defined Fibonacci polynomials and 

matrices. 
The Fibonacci polynomials sequence can be defined by the 

recurrence relationship: 
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and the general Fibonacci polynomials matrix Qn(x) can be 

expressed as: 
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Much information about Fibonacci numbers can be found 

in the book Fibonacci and Lucas Numbers with Applications 

authored by Koshy [10]. According to this book, the Cassini's 

identity, an important identity of the Fibonacci numbers, can 

be explained as follows: 
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Since the determinant of the Fibonacci polynomial matrix 

equals the Cassini’s identity (2) and is non-zero, the Fibonacci 

polynomial matrix Qn(x) is invertible for all n values. This is 

an important feature for cryptology. The inverse of the 

Fibonacci polynomial matrix Qn(x) can be given as: 
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4. RESULT AND DISCUSSION 
 

4.1 Our approach 
 

The encryption algorithm involves three rounds, the initial 

round, the main round, and the final round. In the initial round, 

XOR operation is performed between the state matrix (clear 

text) and the key matrix (private key). 

In the main round, the mixing process is applied in general. 

The confusion and diffusion in this round are created in the 

following steps: 

• Traverse conversion 

• Fibonacci s-box conversion 

• Change row and column matrix 

• Multiply matrix (multiplication by Fibonacci 

polynomial matrix) 

The results obtained through con and diff operations and the 

key generated from the round key are subjected to XOR 

operation. The above operations in the main round are 

repeated twelve times. 

In the final round, the matrix from the main part is once 

again processed through Fibonacci sbox conversion and the 

last key, before terminating the encryption process. 

The process of our approach is detailed as follows: 

Firstly, cross transform is applied on the add matrix, and the 

matrix is mixed using Fibonacci AES s-box [11]. 

Step 1 (Initial round): The 128-bit image (state matrix) and 

the polynomials in each cell of the key matrices are added as 

follows: 

Suppose Xij, Yij, and Zij are order 7 polynomials, where 1≤i, 

j≤4, 
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is obtained. 

Step 2 (Main Round): According to mod 2, the order 7 

polynomials are divided into two order 3 blocks, forming the 

4th degree A and B polynomial elements. That is: 
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In the case that Aij, Bij are order 3 polynomials; 
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is obtained. 

Then, the values marked in the traverse conversion matrix 

are multiplied by the first eight Fibonacci elements obtained 

using mod 2 and the irreducible polynomial x4+x+1.  

 

The first eight Fibonacci elements are: 
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The multiplication goes as follows: 
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If polynomials Aij, Bij, and Cij of the obtained matrix are 

converted using the hexadecimal base against the Fibonacci s-

box table, it is possible to obtain the Fibonacci s-box 

conversion matrix. The rows of this matrix are shifted by the 

first four terms of the Fibonacci numbers (i.e., 1, 1, 2 and 3), 

respectively. Then similar operations are applied to the 

columns, respectively: 

• The first row of the matrix is shifted 1 bit left based on the 

value of the first term of the Fibonacci s-box table. 

• The second row of the matrix is shifted 1 bit to the left 

based on the value of the second term of the Fibonacci s-

box table. 

• The third row of the matrix is shifted 2 bits to the left based 

on the value of the third term of the Fibonacci s-box table. 

• The fourth row of the matrix is shifted 3 bits to the left 

based on the value of the fourth term of the Fibonacci s-

box table. 

The row changes result in a change row matrix. Then, the 

column change is applied to the change row matrix: 

• The first column of the matrix is shifted up by 1 bit based 

on the value of the first term of the Fibonacci s-box table. 

• The second column of the matrix is shifted up by 1 bit 

based on the value of the second term of the Fibonacci s-

box table. 

• The third column of the matrix is shifted up by 2 bits based 

on the value of the third term of the Fibonacci s-box table. 

• The fourth column of the matrix is shifted up by 3 bits 

based on the value of the fourth term of the Fibonacci s-

box table. 

Thereby, a change column matrix is obtained, and then 

divided into blocks to be multiplied by the 2×2 Fibonacci 

polynomial matrix (1). The generated new 2×2 type matrices 

adopt mode 2 and irreducible polynomials x4+x+1, 

respectively. On this basis, the multiply matrix can be obtained 

by: 
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and {n=2+t:t.round=t} where for 1≤i,j≤4, Kij, Lij, Dij, and Eij 

are order 4 polynomials. 

The n value is updated for these operations each round. The 

add matrix is created in the final phase of the main round by 

adding the multiply matrix and round key 0. The round key is 

added to the key created using the prior key in each loop. 

Step 3 (Final Round): The final round takes place after the 

image has been encrypted in the main round.  The image that 

needs to be encrypted will undergo multiply matrix operations 

in the final round, be added with round key 13, putting an end 

to the encryption process. 

Figure 1 depicts the flow of the encryption process. Figure 

2 presents the flow of the encryption algorithm. 

 

 
 

Figure 1. The encryption process 
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Figure 2. Flow of the encryption algorithm 

 

Tables 1-5 display the nominal codes of cross 

transformation, s-box function, mix column and row, product 

of matrix and sum of matrix stages in the flowchart, 

respectively. 

 

4.2 Practical applications of the proposed method and 

analysis results 

 

This section discusses the practical application and test 

results of the proposed encryption algorithm. Specifically, our 

approach was applied to Lena, baboon and baby images, which 
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are widely used in the literature. All tests were carried out on 

a computer with Intel Core i5 (7300HQ) quad-core CPU, 8 GB 

DDR4 RAM, 1 TB HDD and Windows 10. All images were 

processed by MATLAB R2019b. The application effect was 

measured by histogram analysis, root mean square error 

(RMSE) and differential attack analysis. 

 

Table 1. The croos transformation 

 

Function CrosTransformation (Inputs: blockMtx, Fibonacci 

polynomials) 

{ 

            byte dec, a, b, c; 

            Polynomial poly, polyF, polyRes; 

            bool direction; 

            for (byte i = 0, j; i < Faes.rowSize; i++) 

            { 

                for (j = 0; j < Faes.columnSize; j++) 

                { 

                    dec = blockMtx[i, j]; 

                    a = (byte)(dec >> 4); 

                    b = (byte)(dec & 15);  

                    direction = ((i + j) & 1) == 0;  

                    if (direction) //Left 

                    { 

                        poly = Polynomial.WithDec(a); 

                          polyF = fibonacciPolynomials[ 

                            Convert.ToByte(((i + 1) * (j + 1)) & 

15)   ]; 

                    } 

                    else  

                    { 

                        poly = Polynomial.WithDec(b); 

                        polyF = fibonacciPolynomials[ 

                            Convert.ToByte(((i + 1) * (j + 1)) & 15) 

                        ]; 

                    } 

                     polyRes = (poly * polyF).reduction().mod2(); 

                    c = Convert.ToByte(polyRes.evaluate()); 

                    blockMtx[i, j] = direction  

                        Convert.ToByte((c << 4) + b) : 

                        Convert.ToByte((a << 4) + c); 

                }  }  } 

 

Table 2. SBOX function 

 

Function sbox (Inputs: blockMtx, sboxTables) 

{ 

            for (byte i = 0, j, dec; i < Faes.rowSize; i++) 

            { 

                for (j = 0; j < Faes.columnSize; j++) 

                { 

                    dec = blockMtx[i, j]; 

                    blockMtx[i, j] = sBoxTables[dec >> 4, dec & 

15]; 

                } } } 

 

Table 3. Mix column and row 

 

Function mixColumnsAndRows (Inputs: blockMtx, 

method) 

{ 

            List<byte> row = new List<byte>(new 

byte[Faes.columnSize]); 

            List<byte> column = new List<byte>(new 

byte[Faes.rowSize]); 

            byte r, i, b, l; 

            if (method == Method.decrypt) 

            { 

                for (r = 0, l = 

Convert.ToByte(Faes.horizontalShift.Length); r < l; r++) 

                { 

                    for (i = 0; i < Faes.columnSize; i++) row[i] = 

blockMtx[r, i]; 

                    for (i = 0; i < Faes.horizontalShift[r]; i++) 

                    { 

                        b = row[0]; 

                        row.RemoveAt(0); 

                        row.Add(b); 

                    } 

                    for (i = 0; i < Faes.columnSize; i++) 

blockMtx[r, i] = row[i]; 

                } 

                for (r = 0, l = 

Convert.ToByte(Faes.verticalShift.Length); r < l; r++) 

                { 

                    for (i = 0; i < Faes.rowSize; i++) column[i] = 

blockMtx[i, r]; 

                    for (i = 0; i < Faes.verticalShift[r]; i++) 

                    { 

                        b = column[0]; 

                        column.RemoveAt(0); 

                        column.Add(b); 

                    } 

                    for (i = 0; i < Faes.rowSize; i++) blockMtx[i, 

r] = column[i]; 

                } 

            } 

            else 

            { 

                for (r = 0, l = 

Convert.ToByte(Faes.verticalShift.Length); r < l; r++) 

                { 

                    for (i = 0; i < Faes.rowSize; i++) column[i] = 

blockMtx[i, r]; 

                    for (i = 0; i < Faes.verticalShift[r]; i++) 

                    { 

                        b = column[Faes.rowSize - 1]; 

                        column.RemoveAt(Faes.rowSize - 1); 

                        column.Insert(0, b); 

                    } 

                    for (i = 0; i < Faes.rowSize; i++) blockMtx[i, 

r] = column[i]; 

                } 

                for (r = 0, l = 

Convert.ToByte(Faes.horizontalShift.Length); r < l; r++) 

                { 

                    for (i = 0; i < Faes.columnSize; i++) row[i] = 

blockMtx[r, i]; 

                    for (i = 0; i < Faes.horizontalShift[r]; i++) 

                    { 

                        b = row[Faes.columnSize - 1]; 

                        row.RemoveAt(Faes.columnSize - 1); 

                        row.Insert(0, b); 

                    } 

                    for (i = 0; i < Faes.columnSize; i++) 

blockMtx[r, i] = row[i]; 

                }  }  } 
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Table 4. Product of matrix 

 

Function productOfMatrices (Inputs: blockMtx, roundIdx, 

method) 

{ 

            Polynomial[,] group = new Polynomial[2, 2]; 

            Polynomial[,] fibonacciMatrix; 

            { 

                int round = roundIndex + 1, 

                    multipier = method == Method.decrypt ? 1 : -

1; 

                fibonacciMatrix = new Polynomial[2, 2]{ 

                        {this.fibonacciPolynomials[round + 1 * 

multipier] , this.fibonacciPolynomials[round] }, 

                        {this.fibonacciPolynomials[round] , 

this.fibonacciPolynomials[round - 1 * multipier] },  };   

         } 

            Polynomial res; 

            uint d; 

            for ( 

                byte k = 0, l, i, j, m, dec; 

                k < 2; 

                k++ 

            ) 

            { 

                for (l = 0; l < 4; l++) 

                { 

                    for (i = 0; i < 2; i++) 

                    { 

                        group[i, 0] = Polynomial.WithDec( 

                            Convert.ToByte(blockMtx[(k << 1) + i, 

l] >> 4) 

                        ); 

                        group[i, 1] = Polynomial.WithDec( 

                            Convert.ToByte(blockMtx[(k << 1) + i, l] 

& 15) 

                        ); 

                    } 

                    for (i = 0; i < 2; i++) 

                    { 

                        dec = 0; 

                        for (j = 0; j < 2; j++) 

                        { 

                            res = new Polynomial(); 

                    

        for (m = 0; m < 2; m++) 

                                res.summation(group[i, m] * 

fibonacciMatrix[m, j]); 

                            d = res.reduction() 

                                .mod2() 

                                .evaluate(); 

                            dec += (byte)(j == 0 ? d << 4 : d); 

                        } 

                        blockMtx[(k << 1) + i, l] = dec; 

                    }                }            }        } 

 

Table 5. Sum of matrix 

 

Function sumOfMatrices (Inputs: blockMtx, key) 

  { 

            for (byte i = 0, j; i < Faes.rowSize; i++) 

                for (j = 0; j < Faes.columnSize; j++) 

                    blockMtx[i, j] ^= key[i * Faes.columnSize + j];  

        } 

        private void sumOfMatrices(ref byte[,] blockMtx, ref 

byte[,,] roundKeys, byte roundIndex) 

        { 

            for (byte i = 0, j; i < Faes.rowSize; i++) 

                for (j = 0; j < Faes.columnSize; j++) 

                    blockMtx[i, j] ^= roundKeys[roundIndex, i, 

j];        } 

 

4.2.1 Histogram analysis  

For an image with brightness of [0, L − 1], the histogram 

can be described by a discrete function: 

 

H(rk)= nk, 

 

where, rk is the brightness intensity; nk is the number of image 

pixels with brightness intensity of rk [12]. For the target image 

of histogram analysis, the number of pixels with brightness of 

0, 1, 2 … L-1 is calculated. The results are placed on the 

vertical axis. The histogram provides useful statistics about the 

image, which facilitates image compression, and segmentation. 

The histogram of encrypted images must be uniform [13, 14]. 

Figures 3-5 present the original, encrypted and decrypted 

states of the sample images, respectively. The R, G, B values 

are given on the right of these states. A uniform distribution 

has been obtained for all values, as shown by the coded 

histograms in the images. The histogram of the original images 

and the encrypted images are very different from one another. 

A uniform distribution makes it challenging to draw statistical 

inferences and makes statistical attacks on the suggested 

encryption technique more difficult. 

 

4.2.2 Root Mean Square Error (RMSE) 

This section investigates whether there is a difference 

between the original image and the decoded image, using the 

RMSE defined in formula (4). This metric measures the 

magnitude of error in quadric terms. As the standard deviation 

of the estimation errors, it is often used to find the distance 

between the predicted and true values. The value range of 

RMSE is 0 to ∞. The smaller the RMSE, the better the 

prediction. If RMSE equals zero, the model must have made 

no error [15]. 

 

2

1

n

jj
e

RMSE
n

=
=


 (4) 

 

where, Aj and Pj are the actual and predicted values, 

respectively; ej=Aj-Pj is the error; n is the size of the dataset. 

The magnitude of the error, absolute error, and squared 

error can be respectively expressed as D1=Aj-Pj=ej, 𝐷2 =

|𝐴𝑗 − 𝑃𝑗| = |𝑒𝑗|, and 𝐷3 = (𝐴𝑗 − 𝑃𝑗)
2 = (𝑒𝑗)

2, respectively. 

The results in Table 6 demonstrate that no loss arises from 

encryption in the original images, for the decoded image that 

was acquired from the encrypted image has no difference. The 

histogram density graphs of the encrypted and decoded images 

are identical, as can be seen in Figures 3, 4, and 5. 
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Figure 3. Histogram of the Lena image 

 

 
 

Figure 4. Histogram of the baby image 

 

 
 

Figure 5. Histogram of the baboon image 
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Table 6. RMSE values of images 
 

Sample pictures RMSE 

Lena 0 

Baboon 0 

Baby 0 

 

4.2.3 Differential attack analysis 

By using an encryption algorithm with a fixed key, 

differential attacks attempt to alter the original text pair in 

some way. The impact on the original text can be assessed by 

analyzing how much the encrypted output differ from the 

original input [16, 17]. The avalanche effect is being 

strengthened in cryptographic systems in an attempt to 

improve their defenses against differential attacks. This is a 

useful feature in cryptographic algorithms, for it causes minor 

changes in input to result in significant changes in output [18]. 

NPCR is one of the criteria for the effect of differential 

attacks on image encryption. NPCR evaluates an algorithm's 

sensitivity to minute alterations in the original image. First, the 

original image is subjected to the C1 cryptographic technique 

in order to determine the NPCR. Then, a randomly chosen 

pixel from the original image is altered. After that, the 

encryption algorithm is applied to the image of which a pixel 

has been modified again, yielding a second encrypted image, 

denoted C2. The following formulae are used to calculate the 

NPCR value [19, 20]. 

 

Table 7. UACI and NPCR test results 

 
Sample pictures NPCR (UACI) 

Lena 0.99619 0.335 

Baboon 0.99602 0.334 

Baby 0.99603 0.333 

Table 8. Comparison of the proposed method with the studies in the literature 

 
Reference Method Image Parameter 

Artuğer and Özkaynak [21] Random (chaotic) Sbox Baboon NPCR= 0.9960 UACI:0.3343 

Zhu et al. [22] 1D chaotic map Lena NPCR= 0.9963 UACI:0.3347 

Benlashram et al. [23] 3D chaotic map and Pixel shuffiling  Lena 

Baboon 

NPCR= 0.9965 UACI:0.3360 

NPCR= 0.9965 UACI:0.3367 

Shariatzadeh et al. [24] Dynamic AES Lena 

Baboon 

NPCR= 0.9999 UACI:0.3364 

NPCR= 0.9999 UACI:0.3361 

El-Latif et al. [25] Arnold cat map Lena 

Baboon 

NPCR= 0.9921 UACI:0.3343 

NPCR= 0.9915 UACI:0.3338 

Norouzi et al. [26] hyper-chaotic system Lena  

Baboon 

NPCR= 0.9957 UACI:0.3347 

NPCR= 0.9961 UACI:0.3357 

Ge and Ye [27] 3D cat map Lena NPCR= 0.9961 UACI:0.3349 

Sayed et al. [28] 2D Affine Transformation Lena  

Baboon 

NPCR= 0.9960 UACI:0.3348 

NPCR= 0.9961 UACI:0.3345 

Zhang et al. [29] 3D Chaotic map and DNA coding Lena 

Baboon 

NPCR= 0.9960 UACI:0.3346 

NPCR= 0.9960 UACI:0.3345 

Nematzadeh et al. [30] Deoxyribonucleic Acid (DNA) sequence and Binary Search Tree 

(BST) 

Lena 

Baboon 

NPCR= 0.9962 UACI:0.3354 

NPCR= 0.9936 UACI:0.3350 

Zhang and Wang [31] Deoxyribonucleic acid (DNA) encoding and chaotic system Lena 

Baboon 

NPCR= 0.9961 UACI:0.3345 

NPCR= 0.9962 UACI:0.3343 

Suseela et al. [32] Torus Automorphism and 

Rubik’s cube 

Lena 

Baboon 

NPCR= 0.9984 UACI:0.3687 

NPCR= 0.9982 UACI:0.3612 

Proposed method Fibonacci polynomial matrix Lena 

Baboon 

baby 

NPCR= 0.9961 UACI:0.335 

NPCR= 0.99602 UACI:0.334 

NPCR= 0.99603 UACI:0.333 

 

D(i, j) = { 1 if C1(i, j) ≠C2(i, j) 0 if C1(i, j) = C2(i, j) 

1 1

1
( , ) %100

M N

i j
NPCR D i j

M N
= =

= 


   
(5) 

 

As shown in formula (5), the ideal value for the NPCR value 

is 100%. According to the results in Table 1 about the 

proposed approach, the NPCR value is very close to 100%, 

indicating that the approach is extremely precise to the 

smallest changes in the input. Hence, changing a pixel value 

in the original image causes all pixels in the encrypted image 

to change. 

UACL is another metric of image encryption efficiency. 

This metric is a yardstick of the avalanche effect: 

 

1 2

1 1

( , ) ( , )
%100

255

M N

i j

C i j C i j
UACI

M N
= =

−
= 

 

 
 
 
   (6) 

 

Eq. (6) is used to calculate the UACI.  

The UACI value for successful image encryption is close to 

33%. As shown in Table 7, our encryption algorithm achieved 

an UACI very close to 33%. 

Table 8 compares the proposed approach with the methods 

in literature, using Lena and baboon images and chaotic 

systems. It is clear that our approach achieved the desired 

results in NPCR and UACI, surpassing the performance of the 

contrastive methods. This is attributable to the use of 

Fibonacci polynomials matrix, which has an important place 

in the field of mathematics. 

There are different-based image encryption studies in the 

literature [33, 34]. 

 

 

5. CONCLUSION 

 

Confusion and diffusion features are two basic requirements 

for encrypted text or images, and have been studied 

extensively in history. The most well-known solution is AES, 

which adopts irreducible polynomials. In the AES encryption 
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algorithm, the same matrix is used for column shuffling in 

every cycle. By contrast, the proposed approach solves the 

Fibonacci polynomial matrices used in confusion and 

diffusion differently in each cycle. This helps to deal with 

more complex scenarios.  

This study mainly presents a new encryption algorithm 

based on Fibonacci polynomials and matrices, providing an 

alternative to other encryption algorithms designed to meet the 

needs of confusion and diffusion features. The success of our 

algorithm was evaluated through encryption and decryption of 

3 different images. The results of histogram analysis show that 

the encryption results in a uniform distribution. Besides, the 

RMSE (which is 0 for the 3 images) suggests no difference 

between the original and decoded images. Further, NPCR 

(approximate 100%) and UACI (approximate 33%) test results 

prove that our algorithm works successfully.  

The proposed system was demonstrated to be practicable. 

By making the system more complex, the system security is 

greatly increased. The future research will propose novel 

encryption techniques using polynomials and matrices of 

number series like Lucas, Pell, Jacobsthal, Padovan, and 

Perrin. New S-box tables can also be created as an alternative 

to the s-box tables of AES. 
 

 

REFERENCES  

 

[1] Mukherjee, M., Samanta, D. (2014). Fibonacci based text 

hiding using image cryptography. Acharya Institute of 

Technology. Department of MCA, Bangalore, India, 2(2): 

172-176. https://doi.org/10.12720/lnit.2.2.172-176 

[2] Ucar, S., Tas, N., Yılmaz, N.Ö. (2019). A new 

application to coding theory via Fibonacci and Lucas 

numbers. Mathematical Sciences and Applications E-

Notes, pp. 62-70. 

https://doi.org/10.36753/mathenot.559251 

[3] Zou, J., Ward, R.K., Qi, D. (2004). A new digital image 

scrambling method based on Fibonacci numbers. In 2004 

IEEE International Symposium on Circuits and Systems 

(ISCAS), 3: III-965. 

https://doi.org/10.1109/ISCAS.2004.1328909 

[4] Khadri, S.K.A., Samanta, D., Paul, M. (2014). Approach 

of message communication using Fibonacci series: In 

cryptology. Lecture Notes on Information Theory, pp. 

168-171. https://doi.org/10.12720/lnit.2.2.168-171 

[5] Diskaya, O., Avaroglu, E., Menken, H. (2020). The 

classical AES-like cryptology via the Fibonacci 

polynomial matrix. Turkish Journal of Engineering, 4(3): 

123-128. https://doi.org/ 10.31127/tuje.646926 

[6] Asci, M., Aydinyuz, S. (2022). k-Order Fibonacci 

polynomials on AES-like cryptology. CMES-Computer 

Modeling in Engineering & Sciences, 131(1): 277-293. 

https://doi.org/10.32604/cmes.2022.017898 

[7] Anderson, R. (1994). On Fibonacci keystream generators. 

In International Workshop on Fast Software Encryption, 

pp. 346-352. https://doi.org/10.1007/3-540-60590-8_26 

[8] Karaçam, C., Algül, F.N., Tavit, D. (2021). Transmission 

of time and position variable cryptology in Fibonacci and 

Lucas number series with music. Journal of 

Mathematical Sciences and Modelling, 4(1): 38-50. 

https://doi.org/10.33187/jmsm.885876 

[9] Hoggatt, V.E., Bicknell, M. (1973). Generalized 

Fibonacci polynomials. Fibonacci Qartelly, 11: 457-465. 

https://www.fq.math.ca/Scanned/11-5/hoggatt.pdf. 

[10] Koshy, T. (2019). Fibonacci and Lucas Numbers with 

Applications, John Wiley & Sons. 

[11] Mohamed, K., Ali, F.H.H.M., Ariffin, S., Zakaria, N.H., 

Pauzi, M.N.M. (2018). An improved AES S-box based 

on Fibonacci numbers and prime factor. International 

Journal of Network Security, 20(6): 1206-1214. 

https://doi.org/10.6633/IJNS.201811 20(6).21 

[12] Neri, E., Caramella, D., Bartolozzi, C. (2008). Image 

processing in radiology. Medical Radiology. Diagnostic 

Imaging, Springer, Berlin. https://doi.org/10.1007/978-

3-540-49830-8 

[13] Amin, M., Faragallah, O. S., Abd El-Latif, A.A. (2010). 

A chaotic block cipher algorithm for image 

cryptosystems. Communications in Nonlinear Science 

and Numerical Simulation, 15(11): 3484-3497. 

https://doi.org/10.1016/j.cnsns.2009.12.025 

[14] Chen, H.C., Guo, J.I., Huang, L.C., Yen, J.C. (2003). 

Design and realization of a new signal security system 

for multimedia data transmission. EURASIP Journal on 

Advances in Signal Processing, 2003(13): 1-15. 

https://doi.org/ 10.1155/S1110865703309011 

[15] https://veribilimcisi.com/2017/07/14/mse-rmse-mae-

mape-metrikleri-nedir, accessed on May 15, 2022. 

[16] Biham, E., Shamir, A. (1991). Differential cryptanalysis 

of DES-like cryptosystems. Journal of Cryptology, 4(1): 

3-72. https://doi.org/10.1007/BF00630563 

[17] Chen, L., Ma, B., Zhao, X., Wang, S. (2017). Differential 

cryptanalysis of a novel image encryption algorithm 

based on chaos and Line map. Nonlinear Dynamics, 

87(3): 1797-1807. https://doi.org/10.1007/s11071-016-

3153-y 

[18] Hussain, I., Shah, T. (2013). Literature survey on 

nonlinear components and chaotic nonlinear components 

of block ciphers. Nonlinear Dynamics, 74(4): 869-904. 

https://doi.org/10.1007/s11071-013-1011-8 

[19] Zhu, S., Zhu, C., Wang, W. (2018). A new image 

encryption algorithm based on chaos and secure hash 

SHA-256. Entropy, 20(9): 716. 

https://doi.org/10.3390/e20090716 

[20] Alawida, M., Samsudin, A., Teh, J.S., Alkhawaldeh, R.S. 

(2019). A new hybrid digital chaotic system with 

applications in image encryption. Signal Processing, 160: 

45-58. https://doi.org/10.1016/j.sigpro.2019.02.016 

[21] Artuğer, F., Özkaynak, F. (2021). An effective method to 

improve nonlinearity value of substitution boxes based 

on random selection. Information Sciences, 576: 577-588. 

https://doi.org/10.1016/j.ins.2021.07.036 

[22] Zhu, C., Wang, G., Sun, K. (2018). Improved 

cryptanalysis and enhancements of an image encryption 

scheme using combined 1D chaotic maps. Entropy, 

20(11): 843-843. https://doi.org/10.3390/e20110843 

[23] Benlashram, A., Al-Ghamdi, M., AlTalhi, R., Laabidi, 

P.K. (2020). A novel approach of image encryption using 

pixel shuffling and 3D chaotic map. In Journal of Physics: 

Conference Series, 1447(1): 012009-012009. 

https://doi.org/10.1088/1742-6596/1447/1/012009 

[24] Shariatzadeh, M., Rostami, M.J., Eftekhari, M. (2021). 

Proposing a novel dynamic AES for image encryption 

using a chaotic map key management approach. Optik, 

246: 167779. 

https://doi.org/10.1016/j.ijleo.2021.167779 

[25] El-Latif, A., Ahmed, A., Li, L., Zhang, T., Wang, N., 

Song, X., Niu, X. (2012). Digital image encryption 

scheme based on multiple chaotic systems. Sensing and 

1461

https://doi.org/10.36753/mathenot.559251
https://doi.org/%2010.1155/S1110865703309011
https://doi.org/%2010.1155/S1110865703309011
https://veribilimcisi.com/2017/07/14/mse-rmse-mae-mape-metrikleri-nedir/
https://veribilimcisi.com/2017/07/14/mse-rmse-mae-mape-metrikleri-nedir/
https://doi.org/10.1016/j.sigpro.2019.02.016
https://doi.org/10.1016/j.ins.2021.07.036
https://doi.org/10.3390/e20110843


 

Imaging: An International Journal, 13(2): 67-88. 

https://doi.org/10.1007/s11071-012-0409-z 

[26] Norouzi, B., Mirzakuchaki, S., Seyedzadeh, S.M., 

Mosavi, M.R. (2014). A simple, sensitive and secure 

image encryption algorithm based on hyper-chaotic 

system with only one round diffusion process. 

Multimedia Tools and Applications, 71(3): 1469-1497. 

https://doi.org/10.1007/s11042-012-1292-9 

[27] Ge, M., Ye, R. (2019). A novel image encryption scheme 

based on 3D bit matrix and chaotic map with Markov 

properties. Egyptian Informatics Journal, 20(1): 45-54. 

https://doi.org/10.1016/j.eij.2018.10.001 

[28] Sayed, W.S., Radwan, A.G., Fahmy, H.A., Elsedeek, A. 

(2021). Trajectory control and image encryption using 

affine transformation of Lorenz system. Egyptian 

Informatics Journal, 22(2): 155-166. 

https://doi.org/10.1016/j.eij.2020.07.002 

[29] Zhang, Q., Han, J., Ye, Y. (2021). Multi‐image 

encryption algorithm based on image hash, bit‐plane 

decomposition and dynamic DNA coding. IET Image 

Processing, 15(4): 885-896. 

https://doi.org/10.1049/ipr2.12069 

[30] Nematzadeh, H., Enayatifar, R., Yadollahi, M., Lee, M., 

Jeong, G. (2020). Binary search tree image encryption 

with DNA. Optik, 202: 163505. 

https://doi.org/10.1016/j.ijleo.2019.163505 

[31] Zhang, X., Wang, X. (2019). Multiple-image encryption 

algorithm based on DNA encoding and chaotic system. 

Multimedia Tools and Applications, 78(6): 7841-7869. 

https://doi.org/10.1007/s11042-018-6496-1  

[32] Suseela, G., Kumari, N., Phamila, Y.A.V. (2016). 

Secured Image Compression using Wavelet Transform. 

Indian Journal of Science and Technology, 9(33): 1-6. 

https://doi.org/10.17485/ijst/2016/v9i33/92311 

[33] Guler, H. (2021). Development of real-time fuzzy 

synchronization of chaos based system for image 

encryption. Traitement du Signal, 38(5): 1461-1467. 

https://doi.org/10.18280/ts.380521 

[34] Cai Q.R. (2019). A secure image encryption algorithm 

based on composite chaos theory, Traitement du Signal, 

36(1): 31-36. https://doi.org/10.18280/ts.360104 

 

1462

https://doi.org/%2010.1007/s11042-012-1292-9



