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People strive to make sense of the complex electroencephalography (EEG) data generated 

by the brain. This study uses a prepared dataset to examine how easily people with alcohol 

use disorder (AUD) could be distinguished from healthy people. The signals from each 

electrode are connected to one another and are first represented as a single signal. The signal 

is then denoised through variation mode decomposition (VMD) during the preprocessing 

stage. The statistical and deep feature extraction phases are the two subsequent phases. The 

crucial step in the suggested strategy is to classify data using a combination of these two 

unique qualities. Deep and statistical feature performance was evaluated independently. 

Then, using the eigenvectors created by merging all of the collected features, classification 

was carried out using our DSFC (Deep - Statistical Features Classification) model. Although 

the classification accuracy rate using only statistical features was 81.2 percent and the 

classification accuracy rate using only deep learning was 95.71 percent, the classification 

accuracy rate utilizing hybrid features created using the suggested DSFC technique was 

99.2%. Therefore, it can be proven that combining statistical and deep features can produce 

beneficial results.  
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1. INTRODUCTION

Alcohol use disorder (AUD) is a medical illness 

characterized by an inability to regulate alcohol consumption 

despite negative effects on one's health and employment [1]. 

Although the frontal lobes are the area of the brain that are 

evaluated the most, AUD also seems to be linked to 

neurocognitive deficiencies brought on by the emergence of 

neurological disorders in other regions of the brain. Medical, 

neurological, psychological, and social issues might result 

from alcohol's damaging effects when it is consumed 

frequently and long-term [2, 3]. 

Although the negative impacts of screening and managing 

AUD patients have decreased, these policies are subjective and 

heavily rely on the opinions of the people who participated in 

the surveys. Due to unique conditions, screening mechanisms 

in individual notifications may result in incorrect and 

incomplete notifications as well as inaccurate outcomes. With 

the study of neurological data, it can be demonstrated that 

there are instances where AUD screening and evaluation are 

successful. For instance, it has been demonstrated that 

magnetic resonance imaging (MRI) can identify diseases such 

frontal atrophy brought on by AUD [3]. It is advised that this 

system be created with the understanding that the diagnosis of 

AUD will be aided by the use of EEG data to support these, as 

well as the findings generated by individual scanning, 

feedback, questionnaire, and MRI. 

This study explores whether it is possible to distinguish 

between people with AUD and healthy people by analyzing 

EEG data. Consequently, the suggested method will be used 

in research on a pre-made EEG signal dataset that was 

recorded for these two groups. Both the problems to be solved 

and the steps for analysis are provided: 

• To make EEG signals available to the technique, pre-

processing is necessary. 

• The features must be extracted from each signal packet,

and an eigenvector must be created as well. 

Every data packet needs to have a spectrogram produced. 

• Extraction of deep eigenvectors from spectrograms using

deep learning (DL). 

• Generating and subjecting the hybrid eigenvector to

classification. 

1.1 Proposed approach 

The alcoholic EEG dataset was used for this experiment [4]. 

The datasets include EEG signals from AUD and controls, two 

different groups of persons. The data from each group will be 

moved to files with the same name as the group names after 

being formed. 

The signals from each electrode will first be combined and 

processed as a single signal. After the dataset has been 

rendered usable, the pre-processing approach ensures that the 

data are noise-free. Variation Mode Decomposition (VMD) is 

carried out in order to minimize possible noise in EEG 

recordings. EEG signal recordings lasting one second are 

examined for features. Mean, minimum, maximum, kurtosis, 

skewness, median, standard deviation, and energy are among 

the retrieved features. A statistical eigenvector will be 

produced from the features that need to be calculated. The 

spectrograms that will be used in the DL phase will be 

produced using the time-frequency values of each signal. The 

DL network classifies images of spectrograms. A deep 

eigenvector will be used to store the deep features that were 

obtained from the fully connected layer during the 

classification process. Both methods will produce features, 
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which will then be combined to create a hybrid eigenvector. 

Utilizing classification algorithms, the generated hybrid 

eigenvectors are divided into categories. 

 

1.2 Related works 

 

P300 Event-dependent Brain Potential is hypothesized to 

represent neuroelectric activity related to cognitive processes 

like distraction and immediate memory activation when EEG 

data are evaluated. According to Sutton et al.’s research, 

humans develop a positive potential in their brains after 

concentrating on a stimulus for 300 milliseconds [5]. Recent 

research, however, has revealed that P300 is frequently 

impacted by biological processes, such as changes in subjects' 

levels of arousal [6]. A new convolutional neural network 

(CNN) model was proposed by Li et al., who primarily used 

the principal component analysis method to reduce noise and 

speed up the process. As a result, they claimed that their results 

were 95% accurate [7]. To generate EEG signal category-

dependent representations, Zheng et al. proposed the use of 

Long Short-Term Memory networks (LSTMS-B) and 

integrated DL and collective learning. ResNet-based 

regression was trained to assess the application's meaning 

using the original image and the associated EEG 

representations that were previously learned. They achieved a 

classification accuracy of 90.16 percent overall [8]. In addition 

to addictions, in some conditions such as sleep disorders and 

seizure, EEG signals are used and applications are developed 

to ensure their detection [9, 10]. 

Numerous studies have made use of the alcoholic dataset. 

Principal component analysis (PCA) was used by Sun et al. 

[11] to analyze the EEG data before using the Wavelet 

transform to divide the signals into five frequency bands. By 

comparing the power spectra of people with AUD with 

controls in the five primary frequency bands, it is evident that 

people with AUD have higher theta and delta power. 

Alcoholics have much lower alpha power, whereas controls 

have somewhat higher power in the gamma and beta bands. 

With the use of the power spectrum of the Haar mother 

wavelet and PCA, Nazari Kousarrizi et al. [12] retrieved 

features and reduced features. They were successful in 

classifying with 94.67 percent and 98.83 percent accuracy 

using support vector machines (SVM) and neural networks, 

respectively. They classified with 94.67 percent and 98.83 

percent accuracy using SVM and NN, respectively. A system 

that uses nonlinear methods to separate AUD brain signals 

from regular signals has been proposed by Acharya et al. [13]. 

They demonstrated significant differences in the dynamic 

properties of the control and AUD EEG signals using 

nonlinear features such as Large Lyapunov Exponent (LLE), 

Approximate Entropy (ApEn), Sample Entropy (SampEn), 

and four other Higher Order Spectra (HOS), and they 

classified the signals with SVM, achieving an accuracy rate of 

91.7 percent.  An EEG signal categorization system with time-

frequency representation, co-creation of histograms of 

Directed Guardians (CoHOG), and classifier-based Sparse 

Display (SRC) was proposed by Bajaj et al. [14]. They used 

the non-negative least square classifier (NNLS) as the 

classifier and got results that were 95.63% accurate. Zubair [15] 

created a way to use the Sliding Singular Spectrum Analysis 

approach to evaluate EEG signals. They isolated the EEG 

signals using this technique after first cleaning the signals of 

noise. Following these procedures, they used classification 

techniques to identify the AUD signals.  

 

1.3 Contributions 

 

The most crucial component of this strategy is the use of a 

hybrid eigenvector. In the deep learning (DL) model, a hybrid 

vector is produced by combining the values obtained from the 

statistical feature calculation with the deep features collected 

from the fully connected (FC) layer into a single vector. As a 

result, systems using simply statistical features or deep 

learning can reach higher accuracy levels. When running the 

application on the right data, the VMD utilized in the non-

preprocessing stage adds a specific value. It makes sure that 

any noise that might be present in the EEG signals is 

eliminated and that only clean signal data is used for the 

operation. 

The proposed method and the model's block diagram are 

provided in Section II. Here are the step-by-step theoretical 

details of the suggested approach. A designation of the 

scenario is also provided. The evolution of the selling 

performance function is then described. The experimental 

findings are provided in Section III in accordance with the data 

employed. Results are contrasted individually for each 

classification algorithm, and performance and error analyses 

are conducted. The conclusion is provided in Section IV, 

which also covers results and potential future advancements. 

 

 

2. METHODOLOGY 

 

The DSFC technique for classifying EEG signals was put 

out in this study. The block diagram in Figure 1 shows the 

current strategy, which consists of mixing and classifying 

eigenvectors derived from both DL and statistical methods. 

The recorded signals from each electrode in this method are 

first merged to create a single signal. 

 

 
 

Figure 1. The block diagram for the new DSFC model 
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2.1 Signal denoising with VMD 

 

In the pre-processing stage, VMD initially denoises the 

signals in the EEG dataset. A real-valued signal is divided into 

a small number of sub-signals and phases using the VMD 

method [16]. In this non-recursive signal separation technique, 

each sub-signal is generated around the center frequency. The 

bandwidth of each mode is evaluated in three steps. The 

Hilbert transform is used in the first stage to determine the 

frequency spectrum of each mode. In the second stage, each 

mode is shifted to the fundamental center frequency using its 

frequency spectrum feature. In the third step, the demodulated 

signal's Gaussian smoothness is used to calculate the mode's 

bandwidth [16]. the demand that outcomes be characterized as 

a variational problem. The following constrained optimization 

problem is addressed by VMD: 

 

𝑚𝑖𝑛
{𝑠𝑘}{𝑤𝑘}

{∑‖ 𝜕𝑡

𝐾

𝑘=1

[(𝜕(𝑡) +
𝑗

𝜋𝑡
) ∗ 𝑠𝑘(𝑡)] 𝑒−𝑗𝑤𝑘||

2
2

 } (1) 

 

∑ 𝑢𝑘

𝑘

= 𝑓 (2) 

 

where, uk is the k-th decomposed mode; wk is the k-th mode 

signal's center frequency; f(t) is the input signal; [(𝜕(𝑡) +
𝑗

𝜋𝑡
) ∗ 𝑀𝑘(𝑡)] is the Hilbert transform of uk(t). The exponential 

term 𝑒−𝑗𝑤𝑘  pushes each mode's frequency spectrum to the 

center frequency [17, 18]. The augmented Lagrangian can be 

used to solve the constrained optimization problem. 

 

𝐿({𝑢𝑘}, {𝑤𝑘}, 𝜆) = 𝛼 ∑‖𝜕𝑡

𝑘

 [(𝜕(𝑡) +
𝑗

𝜋𝑡
)
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2
2

 

+ ‖𝑓(𝑡) − ∑ 𝑢𝑘

𝑘

(𝑡)‖

+ 〈𝜆(𝑡), 𝑓(𝑡) − ∑ 𝑢𝑘(𝑡)

𝑘

〉 

(3) 

 

For the decomposition, initial parameters must be 

established. The parsing number wk, the data fit constraint 

compensation parameter α are the parameters in question [17]. 

 

2.2 Extracting signal features 

 

The features of the denoised signal are calculated separately 

for each sample, producing an eigenvector. The mean feature 

of the signal can be calculated by: 

 

a =
1

𝑛
∑ 𝒳𝑘

𝑛

𝑘=1

 (4) 

 

where, a is the mean; n is the number of signal samples; x is 

the value of the sample in the signal; k is the sample number. 

The median is the value that divides a signal in half when the 

values are sorted in ascending order. The middle value in the 

sorted array is the median value when the index number is odd, 

and the median value is the average of the two middle values 

when the index number is even. The steps in the calculation 

are as follows; 

The index number is odd, the median value in the sorted 

array is the middle value; when the index number is even, the 

median value is the average of the two middle values. The 

calculation steps are as follows; 

Calculate the signal's size, sort the signal in ascending order, 

and then locate the median value and designate it as the median. 

Each signal's values are listed in ascending order from 

minimum to maximum, and the value in the first index is 

added to the eigenvector as the feature representing the 

minimum value. The value in the signal's last index, which is 

ranked from lowest to highest, represents the value of the 

feature. The eigenvector's maximum value field is expanded 

to include this determined value. 

Skewness is the measurement of a non-symmetric 

probability distribution of a real-valued random variable in 

probability theory and statistics. Eq. (5) uses mathematical 

notation to determine the skewness, which is the third 

standardized moment [19]. 

 

𝑠 =
𝐸(𝑥 − 𝑎)3 

𝜎3
 (5) 

 

The term "kurtosis" is used to describe the probability 

distribution's sharpness, or "kurtosis" quality, for real-valued 

random variables. It is derived from the distribution's visual 

representation. Kurtosis, the fourth standardized moment, is 

calculated using Eq. (6) [19]. 

 

𝑘𝑢 =
𝐸(𝑥 − 𝑎)4

𝜎4
 (6) 

 

In Eqns. (5) and (6), E(x) is the expected value; a is the mean; 

σ is the standard deviation; s is skewness; ku is kurtosis. 

Eq. (7) calculates the standard deviation as the square root 

of the sum of the squares of the difference between the signal 

value and the mean. 

 

𝜎 = √
1

𝑛
∑(𝑥𝑘 − 𝑎)2

𝑛

𝑘=1

 (7) 

 

where, σ is the standard deviation; a is the mean; n is the 

number of samples in the signal; x is the value of the sample 

in the signal; k is the sample number. 

The signal is first subjected to a fast Fourier transform to 

calculate the energy feature. The new signal and its conjugate 

are then multiplied point by point, and the energy is computed 

by adding them together: 

 

e = ∑ 𝑓𝑓𝑡(𝒳𝑘).∗ 𝑐𝑜𝑛𝑗(𝑓𝑓𝑡(𝒳𝑘)) 

𝑛

𝑘=1

 (8) 

 

where, e is the energy; n is the number of samples in the signal; 

x is the value of the sample in the signal; k is the sample 

number. 

 

2.3 Computing deep features 

 

The spectrogram of the signal samples is first formed at this 

point. The time-frequency axis graph that is produced by 

figuring out the immediate signal's frequency serves as a 

representation of the spectrogram. Figure 2 is an example of a 
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spectrogram. 

In this case, the window w(t) and the signal x(t) to be 

evaluated. Preferably, the window should be an impulse in the 

time-frequency domain. In Figure 2, the signal is initially 

separated into windows, after which the fast Fourier transform 

is used to convert the signal to the frequency domain. 

 

 
 

Figure 2. STFT representation for signal [20] 

 

The signal's spectrum was then obtained by creating a time-

frequency graph. It is crucial to frame the noise-free signals 

during the windowing stage in order to extract spectrograms 

from them. The frames for EEG signals split into 25 ms 

segments are programmed to overlap by 50%. The Hamming 

Window was used to highlight the core part of the signal and 

reduce unnecessary radiations in the end region in order to 

prioritize discontinuity at the start and end of each frame [21]. 

The signal is made available for rapid Fourier transform after 

this windowing procedure. These actions produce 

spectrogramics that should be analyzed in the DL phase. 

AlexNet is utilized for this task. The evolving neural network 

AlexNet took first place in the annual ImageNet competition 

in 2012 [22]. The architecture is pre-trained on the ImageNet 

database and is capable of differentiating 1000 different 

photos. This network's design primarily comprises of 3 FC 

layers that can serve as a function extractor and 5 

convolutional layers. The FC layer of the AlexNet architecture 

is utilized for deep feature extraction, as seen in Figure 3. 

Spectrograms are used to categorize AlexNet into pre-trained 

networks. Deep features are acquired in the FC stage and used 

for the hybrid vector in addition to the classification results. 

 

2.4 Classification 

 

At this point, eigenvectors acquired by DL stages and 

statistical approaches are integrated. The EEG signal is 

classified using the newly discovered eigenvector. Four 

different classification techniques are being used at this time. 

These include SVM, k nearest neighbor (KNN), decision trees 

(DT) and linear discriminate analysis (LDA). 

 

2.4.1 Support Vector Machines 

SVMs are supervised learning methods for classification, 

regression, and outlier detection. The general classification 

method classifies the input field that the point defines into the 

output space. To classify anything, find the relationship 

between its y and x attributes, and then decide to which class 

it belongs [23]. SVM searches through all potential splitter 

planes in search of the best separation sub plane to categorize 

the data. 

 

2.4.2 K Nearest Neighbor 

When calculating distances, the KNN algorithm, a 

supervised learning technique used to solve classification and 

regression issues, can use Euclidean, Manhattan, or 

Minkowski distances. Which value belongs to which class is 

determined by computing the distance values between each 

vector and the Euclidean distance. The class to be included in 

the new value is decided upon as a result of the calculated 

distances, d [24]. 

 

2.4.3 Decision Trees 

One of the supervised learning algorithms, tree-based 

approaches are frequently utilized in classification and 

regression issues. From the top, they have a structure that falls. 

Algorithms such as entropy, Gini, and least squares approach 

are employed to descend to sub nodes. It is initially determined 

from which feature the Gini index can be divided by taking a 

look at its value. The Gini value [25] depicts the distribution 

of variables in the dataset. 

 

2.4.4 Linear Discriminate Analysis 

With a predetermined n number of features, linear 

discriminate analysis (LDA), a multivariate statistical 

technique, aims to assign the closest assignment to the real 

classes of structures. Classes are selected and covariance is 

computed during the classification stage [26]. 

 

 
 

Figure 3. AlexNet basic architecture 
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3. EXPERIMENTAL RESULTS 

 

The State University of New York Health Center's open 

EEG database was used in this investigation to get the EEG 

data [4]. These findings come from a significant investigation 

into the relationships between EEG and inherited propensities 

for drinking. The measurements are taken from 64 scalp 

electrodes sampled for one second at 256 Hz and included in 

a dataset of time series EEG recordings of control and 

alcoholic participants. There are 233 control signals and 235 

alcoholic EEG signals in the dataset. These EEG signals were 

recorded by displaying images, and they came from 10 

alcoholics and 10 non-drinkers [4]. 

These findings are based on a thorough investigation into 

the relationship between genetic vulnerability to EEG and 

AUD. Each electrode's 256 bits of information were combined 

together to create a signal that had 64 x 265 = 16384 bits of 

information. Later, this signal was used to conduct the 

transactions. 
 

 
 

Figure 4. VMD of EEG signal for 9 modes 

 

 
 

Figure 5. Original and denoised EEG signal 

All calculation results in our DSFC model were achieved by 

Matlab R2020a. In the first stage, the signal is denoised using 

VMD with the selected parameters wk=5, α=120 and tol=10-7. 

For efficient signal decomposition, the above parameters are 

kept constant in many investigations [17]. Figure 4 shows 9 

mode decomposed EEG signals. Figure 5 displays the original 

EEG signal and the noise removed by applying VMD.  

The statistical features are calculated separately for each 

signal sample. The graphic in Figure 6 was obtained for the 

mean feature. It can be seen that the shift ranges between -12 

and 15 when the graph is analyzed. These values are the 

calculated mean results to be used for classification. 

 

 
 

Figure 6. Computed data for the mean feature 

 

The median feature detected has values that range from -13 

to 10. The standard deviation is computed, and some of the 

outcomes are displayed in Table 1. Similar to all other features, 

the energy feature is determined for each EEG signal sample. 

The minimum value is another feature that is determined for 

each signal. The value change range for this feature is between 

-10 and -150. Variable maximum feature values range from 2 

to 450. 

The calculated results for all data are shown in Figure 7 as 

a result of the calculation performed in the skewness feature, 

which revealed a change between -6 and 8. Another feature is 

the kurtosis value, which has a value range of 1 to 140 values. 

 

 
 

Figure 7. Data calculated for the skewness feature 

 

 

Table 1. Sample values calculated for statistical features 

 
Sample Mean 

(a) 

Median 

(m) 

Standard deviation 

(σ) 

Energy 

(e) 

Kurtosis 

(ku) 

Skewness 

(s) 

Maximum 

(ma) 

Minimum 

(mi) 

1 1.98 1.22 7.50 16.18x109 6.46 0.84 51.90 -39.82 

2 1.89 1.17 10.90 32.88x109 34.13 3.36 146.26 -63.37 

3 -6.83 -5.43 8.39 31.46x109 6.32 -1.16 28.07 -90.62 

4 0.20 -1.77 15.69 66.12x109 38.13 4.42 202.25 -64.35 

5 -0.32 -0.29 6.73 12.19x109 6.57 0.19 35.84 -56.44 

6 -1.45 -1.2 8.61 20.50x109 20.99 1.15 98.63 -78.30 
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Figure 8. All electrodes combined EEG signal graph and 

spectrogram response 

 

The statistical features calculation is already complete. 

Table 1 shows the statistical features calculated for six 

different sample signals. 

Prior to performing calculations for the extraction of deep 

features, spectrograms for each EEG data sample are first built. 

By matching the signal's value in the frequency domain to its 

value in the time domain, visual graphs known as 

spectrograms are produced. A spectrogram created for a 

sample EEG input is shown in Figure 8. Figure 9 and Figure 

10 are the randomly chosen spectrograms for the control group 

and all individuals with AUD, respectively.  

 

 
 

Figure 9. Examples of individuals with AUD spectrograms 

 

At this phase, deep features must be estimated. For this 

reason, spectrograms are classified using AlexNet. The 

AlexNet FC layer's 4096 output values will be applied as deep 

features. These in-depth properties are noted for each signal 

spectrogram. The accuracy and loss graph produced following 

the training and validation phases of AlexNet is shown in 

Figure 11. The remaining 30% of the spectrograms from the 

70% training stage are used for validation in the DL step. For 

each network, the program has advanced through 1000 

iterations. 

 

 
 

Figure 10. Examples of control spectrograms 

 

 
 

Figure 11. AlexNet accuracy and loss graphics 

 

The results of classification using only statistical features 

are displayed in Table 2 when each feature is used 

independently. It is evident from Table 2 that SVM yields the 

best outcomes. The most useful feature for LDA classification, 

according to Table 2, is Energy, which accounts for 55.8% of 

the classification algorithm. The Minimum has a 65.6 percent 

share of the market for DT. The Minimum feature is the one 

with the highest weight in KNN, at 61.1 percent. When 

compared to all other SVM classifier methods, it can be shown 

that the best results are obtained for all features with the 

exception of the skewness feature. The smallest value feature, 

which yielded a result of 66.0 percent, produced the best 

results using this strategy. In light of this circumstance, it is 

evident that the statistical traits with the least value stand out 

as the most useful. 
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Table 2. Classification results according to separate statistical features 

 
Classification 

Algorithm 

Mean Median Minimum Maximum Skewness Kurtosis Energy Standard 

Deviation 

LDA 45.9% 48.9% 50.0% 48.3% 45.9% 55.3% 55.8% 45.7% 

DT 58.1% 60.5% 65.6% 57.3% 57.7% 56.2% 62.0% 56.6% 

KNN 57.7% 57.5% 61.1% 57.5% 54.9% 59.2% 60.3% 56.2% 

SVM 58.3% 60.7% 66.0% 59.6% 57.5% 60.7% 62.4% 59.4% 

Table 3. Different classification algorithm results of 

statistical features 

 
Classification algorithm Result 

LDA 66.5% 

DT 68.4% 

KNN 76.3% 

SVM 81.2% 

 

Table 3 shows a classification that was generated by 

combining all statistical variables and attempting to predict the 

signals from the control group and the individuals with AUD. 

At this point, it can be observed that Table 3's results are 

superior to Table 2's results. 

At this time, it has been concluded that assessing all traits 

jointly is preferable to assessing them singly. Despite the fact 

that SVM delivers the best classification results using only 

statistical data, the 18.8% error rate indicates poor 

performance and needs to be decreased. 

The AlexNet DL model is shown to have a 95.71 percent 

accuracy rate when only spectrogram data is used to create DL 

results. 

 

Table 4. DL results obtained with spectrogram images 

 
Model Learning type Train and test images Classes / Image number Iteration Accuracy (%) Elapsed time (min) 

AlexNet Deep Learning 
Train 70% 

Test 30% 

Alcoholic / 

235 image 
1000 95.71 14.25 

Control /  

233 image 

The results of the DL approach are shown in Table 4. These 

results are considered insufficient even though they are 

superior to the accuracy rate determined from statistical 

features. As can be seen, the error rate is 4.29 percent. 

The confusion matrix for the AlexNet model's 30% 

validation procedure results is displayed in Figure 12. The 

suggested hybrid DSFC technique is anticipated to improve 

the accuracy attained thus far and deliver more precise results. 

 

 
 

Figure 12. Confusion matrix of AlexNet DL algorithm 

 

4104 features in hybrid eigenvectors have been created and 

categorized. Using features from two separate deep learning 

techniques, distinct hybrid eigenvectors were built, classified, 

and the outcomes were compared. 

Table 5 shows that the accuracy rates have increased, and 

the result—which is a better value than the earlier findings—

was obtained using the SVM classifier, even though other 

classification techniques also gave results that were superior 

to those of the earlier applications. At the end, the mistake rate 

dropped to 0.8 percent, which was a lower error rate than in 

the initial case. 

 

Table 5. Classification of EEG signals with hybrid feature 

values 

 
Classification algorithm DSFC results (%) 

AlexNet +Statistic Feature 

LDA 93.60 

DT 76.10 

KNN 92.30 

SVM 99.20 

 

 
 

Figure 13. Confusion matrix of SVM algorithm for DSFC 

 

Judging by the SVM’s confusion matrix in Figure 13, it can 

be seen that the individuals with AUD group received 234 

correct results, while the control group received 230 correct 

predictions. 
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Table 6. Literature comparison 

 
Literature Dataset Method Classifier Accuracy 

[11] Alcoholic PCA+Wavelet Transform - - 

[12] Alcoholic PCA+Wavelet Transform SVM-NN 94.67% - 98.83% 

[13] Alcoholic LLE, ApEn, SampEn, and four HOS SVM 91.70% 

[14] Alcoholic CoHOG and Eig(Hess)-CoHOG NNLS 95.83% 

[15] Alcoholic SSA-ICA - PCA XGBoost 98.97% 

Proposed Method 

(DSFC) 

Alcoholic Deep Feature + Statistical Feature SVM 96.80% 

VMD + Deep Feature + Statistical Feature SVM 99.20% 

 
 

Figure 14. ROC plot of SVM algorithm 

 

The ROC chart for the SVM technique that yields the best 

results is displayed in Figure 14. At this stage, it is clear from 

a comparison of the methods that the proposed hybrid method 

performs more accurately than the others. As seen by the 

hybrid vector classification's greater valid accuracy rate when 

compared to the prior test results, the approach in this instance 

is unquestionably more successful. The results of the DSFC 

methodology were found to be 3.49 percent better than the DL 

method and 18 percent better than statistical feature 

classification. A comparison of studies that made use of the 

same dataset is presented in Table 6. 

 

 

4. CONCLUSIONS 

 

Human motions, thoughts, mood swings, sleeping, and 

resting are known to cause EEG signals in the brain, which 

also vary based on the circumstance. This study sought to 

determine whether EEG signals might be used to identify 

addictions while accounting for alterations in people's moods. 

The study used a pre-made alcoholic data collection with two 

groups: AUD sufferers and controls. In order to appropriately 

separate the EEG signals of the two groups, statistical features 

were first extracted and categorized, and 81.2 percent, which 

was deemed insufficient, was achieved. The hybrid model was 

chosen in order to achieve a better result, even though AlexNet, 

which is used for the classification method of spectrograms 

with the DL model, achieved a 95.71 percent accuracy rate. 

The primary approach used in this work, referred known as 

DSFC, combines statistical and in-depth data to create and 

categorize a hybrid eigenvector. A 99.2 percent accuracy rate 

is attained when hybrid eigenvectors are classified using SVM, 

which is better than the prior tested methods. 

In order to interpret EEG signals more precisely and create 

decision support systems that can help experts, we will keep 

researching EEG signals captured in various addiction and 

disease states. 
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NOMENCLATURE 

 

AUD Alcohol Use Disorder 

EEG Electroencephalography 

VMD Variation Mode Decomposition 

DSFC Deep - Statistical Features Classification 

DL Deep Learning 

SVM Support Vector Machines 

KNN k Nearest Neighbor 

CNN Convolutional Neural Networks 

LSTM Long Short Term Memory networks 

PCA Principal Component Analysis 

NN Neural Network 

LLE Large Lyapunov Exponent 

ApEn Approximate Entropy 

SampEn Sample Entropy 

HOS Higher Order Spectra 

SRC Sparse Display 

NNLS Non-Negative Least Square Classifier  

FC Fully Connected 

DNN Deep Neural Network 

FFT Fast Fourier Transform 

STFT Short-Time Fourier Transform 

DT Decision Trees 

LDA Linear Discriminate Analysis 

CoHOG Co-creation of Histograms of Directed 

Guardians 
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