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Recent advances in deep learning models have made them the state-of-the art method for 

image classification. Due to this success, they have been applied to many areas, such as 

satellite image processing, medical image interpretation, video processing, etc. Recently, 

deep learning models have been utilized for processing Ground Penetrating Radar (GPR) 

data as well. However, studies general focus on building new Convolutional Neural Network 

(CNN) models instead of utilizing baseline ones. This paper investigates the usefulness of 

existing baseline CNN models for classifying GPR B-scan images and aims to determine 

how well pre-trained models perform. To that end, a real bridge deck GPR data, 

DECKGPRHv1.0 dataset was used to evaluate the transfer learning performances of various 

CNN models. Different variants of the models in terms of varying depths and number of 

parameters were also considered and evaluated in a comparative manner. Although it is an 

older model, ResNet achieved the best results with 0.998 accuracy. The experimental results 

showed that there is generally a direct correlation between the simplicity of the model and 

its success. Overall, it is concluded that near perfect results are possible by just adapting pre-

trained models to the problem without fine-tuning. 

Keywords: 

ground penetrating radar, image 

classification, deep learning, transfer 

learning 

1. INTRODUCTION

Ground Penetrating Radar (GPR) is a fast and efficient way 

to sense information about subsurface without drilling or 

digging. The visualization mode of a GPR signal can be done 

in 1D, 2D or 3D, which are named as A-scan, B-scan, and C-

scan, respectively. Buried objects are typically represented as 

hyperbolas in GPR B-scan images. However, due to the 

challenging nature of processing such data and its difficult 

interpretation, automated approaches were needed and 

developed over time [1]. Although, the number of studies 

using conventional machine learning techniques were 

decreased in the past 3-4 years, Support Vector Machines [2], 

Artificial Neural Networks (ANN) [3, 4], boosting algorithms 

[5, 6], Hidden Markov Models [7] were utilized for detection 

and classification tasks on GPR images. With the 

improvement in computation power of GPUs, deep learning 

techniques which proved their superiority on image 

classification started to replace them. 

Recently, deep learning techniques have been successfully 

studied for processing GPR images, including land mine 

classification [8, 9], classification of soil types [10], 

subsurface target detection and classification [11-14], object 

size prediction [15], recognition of tunnel lining elements [16], 

rebar detection [17, 18], detection of moisture damages [19] 

and recognition of subgrade defects [20, 21]. All these studies 

applied deep learning techniques in one of the two ways. The 

first way is to build a user-defined Convolutional Neural 

Network (CNN) for the solution of the given problem. Many 

researchers preferred this way for their specific studies [9, 10, 

14, 15, 20, 22, 23]. However, this strategy requires lots of 

effort and time for deciding an optimal network structure and 

its optimal hyper parameters. Therefore, some researchers 

preferred to utilize existing CNN architectures as an 

alternative and 2nd way. In this strategy, researchers are 

required to make a choice of using an existing model with or 

without its pre-trained weights. Using pre-trained weights 

obtained from ImageNet is referred as transfer learning. An 

alternative way is ignoring those weights and train the model 

from scratch. While the former makes it possible to get faster 

results, usually higher performance is achieved with the latter 

if a large dataset is provided. Therefore, seeking a good 

enough performance with the least effort, which is possible 

when existing CNN models are used with transfer learning, 

forms the motivation of this study.  

In this paper, a comparative analysis is performed to 

investigate various existing CNN models using transfer 

learning. Their classification performances are evaluated on a 

real bridge deck GPR dataset containing B-scan images. The 

rest of the paper is organized as follows: Section 2 presents the 

literature review of the previous studies that utilized existing 

pre-trained models. In Section 3, a general information about 

CNNs is given. Section 4 describes the general workflow of 

the experiments done. In Section 5, information about the 

dataset, experiments, and the discussion are presented. Finally, 

Section 6 contains the conclusion. 

2. THE LITERATURE REVIEW

The studies that utilize existing CNN models can be 

categorized in two: studies that directly use existing models or 

use them as a backbone model for Region Based CNN (R-

CNN) or similar frameworks. Studies in the first category 
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utilized AlexNet [12, 13, 18] and ResNet-50 [19] directly. Kim 

et al. utilized both B-scan and C-scan images to classify 

underground objects with AlexNet model as cavity, pipe, 

manhole and subsoils background [12]. Their study showed 

that it is difficult to classify underground objects using only B-

scan images and including C-scan images can yield better 

results. The authors also classified hyperbolas on cropped B-

scan images in a different study [13]. Although, the overall 

classification accuracy of the trained AlexNet model was 

96.2%, the authors stated that the model fails for the images 

where the shape of the hyperbolas are not visually 

distinguishable. Another study using AlexNet dealt with rebar 

detection [18]. The classification accuracy of their model 

ranged from 70% to 90%, depending on the window sizes. The 

final study in this category successfully utilized ResNet-50 

model to extract image features, and then use them in a YOLO 

v2 model for moisture damage detection [19]. The highest 

recall and precision achieved in experiments were 94.53% and 

91%, respectively. 

In the second category, where existing CNN models were 

used as a backbone model for frameworks, ResNeXt-101 [11], 

ResNet-101 [16] and Vgg16 [17, 21] were successfully 

applied. Hou et al. incorporated ResNeXt-101 into a Mask 

Scoring R-CNN (MS R-CNN) architecture to improve the 

object signature detection performance in GPR scans [11]. 

Although, the average precision and recall were generally 

below 50%, the authors showed that their architecture 

outperforms various versions of R-CNN framework. In a study 

where a similar MS R-CNN framework is built to recognize 

tunnel lining elements from GPR images, ResNet-101 model 

is used for feature extraction [16]. Their architecture achieved 

recognition accuracies of 96.02%, 91.17%, and 95.45% in a 

field GPR survey experiment with three targets. In one of the 

studies that applied Vgg16 model, a Single Shot Multibox 

Detector (SSD) model was constructed for rebar detection and 

localization [17]. The performance of the proposed model was 

compared with a Faster R-CNN model and proved to be 

slightly better. Xu et. al also chose Vgg16 as the base network 

for their Improved Faster R-CNN framework for automatic 

identification of railway subgrade defects [21]. The authors 

compared their results with a traditional SVM+HOG method 

and the baseline Faster R-CNN. The proposed model 

outperformed them with a mean Average Precision (mAP) of 

83.6%. 

All these past studies above chose an existing model and 

stick with it during their experimentation. However, there are 

many existing CNN models with different architectures and 

surely, the success of those studies would have been different 

if another CNN model had been used. Therefore, the 

performance of different models for processing GPR images 

needs to be investigated. So far, it has been observed that there 

is just one study which compares performances of different 

CNN architectures on analyzing GPR B-scan images [24]. 

However, the number of CNN models used in that study is 

rather few; only AlexNet, VGG-16, GoogleNet (i.e., 

Inception), ResNet-50 and SqueezeNet were considered. Their 

transfer learning performances were evaluated on both 

simulated and real GPR images. Material type classification 

performances was found poor, since at most 56.78% accuracy 

has been achieved with ResNet50. Shape and soil type 

performances were notably better, again ResNet50 was the 

best with accuracies of 95.32% and 98.27%, respectively. 

Shape type classification accuracy of the models in real data 

couldn’t achieve better than 66.67% accuracy, including the 

new model presented by the authors which obtained 74.07% 

accuracy. In addition to the lack of sufficient number of 

existing models in that study, all existing models considered 

in this study were rather old. The newest model among them 

was ResNet50 which was presented in 2015. As new CNN 

models are introduced every day that outperform their 

predecessors in the ImageNet competition, their performances 

are needed to be assessed to guide researchers who are aiming 

to improve deep learning solutions that analyze GPR images. 

This is the main contribution of this paper; investigating the 

existing CNN models, identify their capabilities for the given 

problem and determine the best one. Additionally, to our 

knowledge, this paper is the only study that compares different 

variants of a CNN model. Therefore, as another contribution, 

the effect of model depth and parameters are also investigated 

and the possible reasons of performance differences between 

these variants are discussed. 

 

 

3. CONVOLUTIONAL NEURAL NETWORKS 

 

CNN is a type of deep learning model specifically built for 

analyzing images. The most notable difference from a 

conventional feed forward ANN is that CNNs initially include 

a series of layers which are responsible for feature extraction. 

It is the design of this part that makes a CNN model superior 

to others. Typically, it contains some convolutional layers 

where a set of filters are convolved with the input to obtain 

feature maps, and some pooling layers for down sampling 

these maps to reduce the computation. Generally, the output 

obtained from this part is first flattened and then fed into 

several fully connected (FC) layers usually designed as a 

multi-layer Perceptron (MLP) structure. An illustration of 

such an architecture is given in Figure 1. 

 

 
 

Figure 1. General structure of a CNN 

 

Most CNN configurations use a dropout layer where some 

neurons are temporarily removed to help overcome the 

overfitting problem. Another important parameter is the 

activation function which is responsible for forwarding the 

amount of information through layers. The most common ones 

are ReLU, Softmax, tanH and the Sigmoid. Finally, loss 

functions are used to calculate the predicted error which is 

optimized in training stage. Cross-Entropy is the most 

common one, used in classification problems. On the other 

hand, Euclidean loss function is generally preferred in 

regression tasks. 

Table 1 shows the CNN models used in this study present 

in Keras API which are publicly available with pre-trained 

weights [25]. As can be seen from Table 1, the publication year 

of the CNN models investigated in this study varies from 2015 

to 2021. The top-1 accuracy refers to their performance on 

ImageNet validation dataset. The term depth corresponds to 

the topological depth of the network, including activation 

layers, batch normalization layers, etc. The M in number of 

parameters corresponds to millions. 
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Table 1. Pretrained CNN models on ImageNet 

 

Model 
Size 

(MB) 

Top-1 

Accuracy 
Parameters Depth 

Publish 

year 

Vgg16 528 71.3% 138.4M 16 2015 

ResNet50 98 74.9% 25.6M 107 2015 

ResNet101 171 76.4% 44.7M 209 2015 

InceptionV3 92 77.9% 23.9M 189 2016 

Xception 88 79.0% 22.9M 81 2017 

MobileNet 16 70.4% 4.3M 55 2017 

MobileNetV2 14 71.3% 3.5M 105 2017 

DenseNet121 33 75.0% 8.1M 242 2017 

DenseNet201 80 77.3% 20.2M 402 2017 

NASNetMobile 23 74.4% 5.3M 389 2018 

EfficientNetB0 29 77.1% 5.3M 132 2019 

EfficientNetB4 75 82.9% 19.5M 258 2019 

EfficientNetV2B0 29 78.7% 7.2M - 2021 

EfficientNetV2S 88 83.9% 21.6M - 2021 

 

 

4. METHODOLOGY 

 

Figure 2 shows the workflow of the experiments. The input 

image is the GPR B-scan image which is a grayscale 2D image. 

Since the CNN models considered in this study (Table 1) 

requires a 3-channel input, this 2D image is first converted to 

an RGB image by giving the original 2D image to all channels. 

In addition, CNN models don’t necessarily have the same 

input size and pixel value ranges (i.e., scales). Therefore, for 

each model, input images are reshaped using Bilinear 

Interpolation to match the input size required for that model, 

and then pixel values are rescaled accordingly. 

 

 
 

Figure 2. The workflow of the experiments 

 

In this study, transfer learning was applied to use those 

models given in Table 1. The idea of this technique is keeping 

the layers that are responsible for feature learning (Figure 1) 

and then replace the last layers with new ones depending on 

the problem [26]. These new layers are fixed for each base 

model chosen. This is because, they determine the output of 

the problem. In this study, a 2D global average pooling, 

dropout and a dense layer with a single unit are inserted to 

replace the removed layers (Figure 2). Dropout rate was 

chosen as 0.2. The activation function in Dense layer is 

selected as Sigmoid, since the number of classes in the dataset 

used in experiments is 2 (i.e., positive and negative samples). 

In this architecture represented in Figure 2, weights between 

the feature learning layers of the base model are directly taken 

and not changed during the training step. Only weights of the 

newly inserted layers are updated in training. This layout is 

constructed for each model given in Table 1. 

 

 

5. RESULTS AND DISCUSSION  

 

In experiments, the DECKGPRHv1.0 dataset [27] was used 

that contains 17,260 GPR B-scan images which are cropped 

from real bridge deck GPR field data. There are 2 reasons for 

choosing this dataset. First, it contains cropped images so that 

a preprocessing is not needed to identify all hyperbolas from a 

single scan and crop them to feed the proposed model. Possible 

inaccuracies in this procedure may lead to false alarms in the 

final classification, thus, these are avoided as well. Second, it 

is a reliable dataset since it is already used in a past journal 

study [28]. The dataset contains 8,664 positive and 8,596 

negative samples with sizes 50x50 and 48x48, respectively. 

Some samples from the dataset are given in Figure 3. 

 

     

     
 

Figure 3. Sample positive (top) and negative (bottom) 

images 

 

To evaluate the generalization ability of the models 10-fold 

stratified cross validation was used. The reason of 

implementing cross-validation using stratified sampling is to 

maintain the ratio of positive to negative samples in each fold. 

All models were trained with Adam optimizer where learning 

rate was set to 10-3 and the loss function was chosen as Binary 

Cross Entropy. The training was performed until the loss value 

converges with a maximum of 100 epochs. To avoid 

overfitting, early stopping technique was used with a tolerance 

of 10 epochs. Therefore, if validation loss fails to improve 

after 10 epochs, the training stops. Among all experiments, the 

maximum number of epochs reached with this configuration 

was 41. On the other hand, the shortest training lasted for 17 

epochs. A checkpoint mechanism was also included in this 

configuration. Therefore, when training ends due to early 

stopping, best weights of the model were loaded back. 

Model performances are evaluated by 3 metrics which use 

the primitives of True Positive (TP), True Negative (TN), 

False Positive (FP) and False Negative (FN): 

- Accuracy: The ratio of the number of correctly classified 

samples to all samples calculated by Eq. (1). 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (1) 

 

- Recall: The ratio of the number of correctly classified 

positive samples to all positive samples calculated by Eq. (2). 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (2) 

 

- Precision: The ratio of the number of correctly classified 

positive samples to all samples which are predicted as positive, 

calculated by Eq. (3). 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (3) 

 

The results for 10-fold stratified cross validation is given in 

Table 2. The values are the average of the folds. All 

experiments were done in Google Collab. Since the GPU 

assigned for the run varies in each session and model runs were 
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resumed from checkpoints when internet connection fails; a 

comparison between training times would not be fair, thus, not 

given. Therefore, models that are too heavy on computation 

are not considered in this study. However, a general opinion 

can be formed by examining the inference times of their 

training on ImageNet. A summary of such information can be 

found in Keras API where their inference times for both CPU 

and GPU are presented [25].  

Table 2 presents some interesting results. Overall, all 

models except NasNetMobile achieved 94% or better accuracy 

even without using data augmentation or training from scratch. 

The performance of NasNetMobile is not a disappointment 

though since the classification accuracy is almost 89% with 

nearly approximately recall and precision. Surprisingly, the 

best results were obtained by the oldest models ResNet50 and 

ResNet101 which are introduced in 2015. On the other hand, 

two variants of the newest model EfficientNetV2 (2021) in 

Table 1 performed almost identical results (i.e., less than 0.01 

accuracy) compared to ResNet variants, thus, missed the first 

place narrowly. Despite their slightly worse performance, it 

should be noted that EfficentNet models are the smallest in 

terms of size except the mobile CNN models (Table 1), and 

they are usually trained faster while still achieving good results 

[29]. Comparing its variants, the first versions of EfficentNet 

(B0 and B4) performed slightly worse compared to V2 

versions, as excepted. The next model in top ranking was 

another old model, Vgg16 (2015), that slightly outperformed 

EfficientNetB4, however, it fell behind EfficientNetB0. 

 

Table 2. Results of 10-fold stratified cross validation 

 
Model Loss Accuracy Recall Precision 

DenseNet121 0.080 0.977 0.981 0.975 

DenseNet201 0.084 0.973 0.978 0.968 

EfficientNetB0 0.032 0.991 0.994 0.989 

EfficientNetB4 0.050 0.984 0.987 0.982 

EfficientNetV2B0 0.017 0.996 0.997 0.995 

EfficientNetV2S 0.024 0.992 0.993 0.990 

InceptionV3 0.396 0.941 0.946 0.940 

MobileNet 0.038 0.989 0.993 0.984 

MobileNetV2 0.175 0.943 0.965 0.924 

NasNetMobile 0.294 0.889 0.901 0.887 

ResNet50 0.009 0.998 0.998 0.998 

ResNet101 0.008 0.998 0.999 0.997 

Vgg16 0.047 0.986 0.989 0.983 

Xception 0.144 0.952 0.953 0.956 

 

Another surprising result is that the smallest model (i.e., 

MobileNet) in terms of both depth and number of parameters 

in Table 1 was able to outclass popular models like DenseNet, 

Xception and Inception. Considering this together with 

ResNet’s superiority, it can be concluded that smaller models 

generally perform better when compared to larger models. 

This result might not be so surprising after visually examining 

the GPR B-scan images. Recall that all models in Table 1 were 

previously trained on RGB images of 1000 categories and their 

weights, which are obtained after this heavy training, are used 

to classify GPR images. Some examples of those images are 

presented in Figure 4 which are taken from CIFAR-100 dataset 

to give an idea how complicated patterns these RGB images 

have.  

As seen in Figure 3, GPR images have less textural 

complexity than the images which these models are pre-

trained on (Figure 4). Examining the textures in GPR images 

in Figure 3, it can be derived that those images have circular 

patterns which are either hyperbola, line, or noise like small 

granules. The background is generally homogenous or slightly 

speckled. On the other hand, as seen in Figure 4, RGB images 

corresponding to real world objects often have much detail due 

to their variety. Their backgrounds might also include some 

level of detail if they do not correspond to smooth regions like 

sky and road. Therefore, instinctively, there is no need to 

extract complex features to classify GPR B-scan images as 

opposed to RGB images which contain numerous objects and 

backgrounds, both usually have detailed textures. Since deeper 

models with more parameters tend to extract more details 

compared to smaller models, it is expected that they perform 

better. However, this is not the case for GPR images, thus, 

simpler models also have a potential to achieve good results. 

 

 
 

Figure 4. Sample RGB images from CIFAR-100 dataset 

 

In addition to the textural detail, another factor might be the 

input image size (50x50) which is rather small compared to the 

input sizes of CNN models that generally have a few hundreds 

of pixels in height and weight. For instance, ResNet requires a 

3-channel input with each having a size of 224x224. Since the 

level of detail gradually degrades when image size is 

decreased, number of features to be extracted will also be 

limited when compared to images with higher resolutions (i.e., 

sizes). For this reason, smaller models might have gotten the 

upper hand. 

Comparing CNN models with their variants, a similar 

deduction to the one mentioned about image complexity level 

can be made. Inspecting the results given in Table 2 together 

with model sizes (number of parameters and the depth) shown 

in Table 1, it is seen that many models with the smaller variant 

outperformed the bigger one, even though the performance 

difference is rather small. The only exception is ResNet where 

the larger ResNet101 model achieved almost equal results. 

The biggest performance difference is observed between 

MobileNetV2 and MobileNet in which the former obtained 

more than 4% accuracy. Although, MobileNetV2 has 

somewhat less parameters compared to MobileNet, it is twice 

deeper. This also explains the poor performance of 

NasNetMobile. Although, the number of parameters is not 

much more than the MobileNet models, NasNetMobile is 

more than 6 times deeper than MobileNet and more than 3 

1764



 

times deeper than MobileNetV2. Deeper models offer more 

non-linearity which might be too much for simple cases. 

Hence, that should have affected those model’s classification 

ability adversely. 

 

 

6. CONCLUSIONS 

 

In this paper, an investigation was made to determine the 

usefulness of pre-trained deep learning architectures for 

classifying GPR B-scan images. Using transfer learning, a 

total of 14 different CNN models were considered with 

varying depths and number of parameters, including new 

models like EfficientNet. The best result was obtained by 

ResNet variants that explains why it is still popular in many 

deep learning applications for image analysis. Still, it should 

be noted that the accuracy difference between ResNet and 

EfficentNetV2B0 model was just 0.002 and it is a lighter 

model than ResNet. For this reason, EfficientNet might be 

more practical for use. On the other hand, 6 of these models 

achieved better than 0.98 classification accuracy. Therefore, it 

can be concluded that it is possible to have almost perfect 

results in GPR image classification problem using existing 

models with pre-trained models. 

Another conclusion derived in this study is that smaller 

models can compete with even newer models which have more 

layers and parameters, although the general performance of 

these smaller models on ImageNet is worse. It has been 

suspected that their success lies on the textural complexity of 

input images which are generally less detailed when compared 

to colored photographs of real-world objects. Therefore, 

analyzing GPR B-scan images with deep learning models do 

not necessarily require a deeper and larger model which 

generally provides better results compared to smaller models 

on other image processing tasks. Comparing variants of the 

same model also supports this conclusion since, a variant with 

more layers and/or parameters generally didn’t improve the 

classification performance.  

Using deep learning models for the solution of problems is 

generally costly since they require too much time and effort to 

setup and train. Therefore, it is believed that findings of this 

paper can also guide the researchers who aims to create new 

CNN models for analyzing GPR images when considering the 

architecture of their model. As a future work, releases of new 

CNN models should always be examined and compared with 

the earlier models. In addition, it will be enlightening to use 

different datasets and make similar studies on other problems 

and that require processing GPR images. 
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