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Surface Electromyography (sEMG) is an important tool for gesture recognition. Features 

and classification methods have to be carefully selected to be successful in the recognition 

of electromyografic signals. In most of the sEMG studies, time and frequency domain 

features have been extracted and classified with a single classifier. But neither one feature 

nor one classifier alone has achieved high classification accuracies. Using a feature and 

classifier combination would be a solution for this problem, and increase the accuracies. As 

a contribution to this field, a new time domain EMG feature is suggested and its 

classification performance is examined for feature and classifier combinations in this study. 

According to the results of this study, the new feature has high classification accuracy, and 

when it is used with AR and ST features, the average of the classification accuracy reaches 

99.57% for multiple SVM classifier. Besides, the new feature+AR+ ST feature combination 

shows high classification accuracy for single classifier, and this eliminates the need for 

multiple classifiers. 
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1. INTRODUCTION

EMG signal, which is created by the electrical activity of 

the muscle fibres, is an important physiological signal used as 

diagnostic tool and control signal [1, 2]. In order to increase 

accuracies of diagnostic and control processes on EMG signals, 

effective data pre-processing, feature extraction should be 

applied, and a robust classification method should be carefully 

selected [3]. Among them, feature extraction has a critical role 

to extract useful information, eliminate the unwanted EMG 

parts. So far, plenty of feature extraction techniques have been 

developed in the time, frequency, and time-frequency domains 

[4-6], and investigated on numerous specific EMG signals [3, 

7-9].

Mean value and variance are the most well-known time-

domain features and are extracted without any transformation. 

Besides, mean absolute value (MAV), slope sign changes 

(SSC), number of zero-crossing (ZC), waveform length (WL), 

and autoregression coefficients (AR) are widely used as time-

domain features [6]. The reasons for extracting features in 

time-domain are that they are quick to calculate and easy to 

implement. But they are noise sensitive, and preprocessing or 

filtering should be applied. 

Fourier transform (FT) is used to transform the time domain 

EMG signal into a frequency domain signal, and some power 

spectrum characteristics of the transformed signal are used as 

frequency domain features [10]. The most commonly used 

features in the frequency domain are mean frequency (MNF), 

mean power (MNP), power spectrum ratio (PSR), variance of 

central frequency (VCF), and mean peak frequency (PKF). 

The main advantages of these features are to overcome noise 

and extract stable characteristic indexes. Nevertheless, the 

main problem of FT is that the transformed signal loses time-

domain information and do not contain information about the 

occurance time of a particular event. As a solution to this 

problem, time-frequency domain methods short-time Fourier 

transform (STFT), Wavelet transform (WT), and S-Transform 

(ST) would be employed for feature extraction. Nevertheless, 

STFT has limited time-domain information [11]. On the other 

hand, WT helps to find data aspects that STFT misses, and can 

also de-noise or compress a signal. The main difference 

between STFT and WT is their way of partitioning the 

timescale axis [4, 5]. In addition to these transformations, ST, 

which is a hybrid of STFT and WT, is a very suitable method 

for processing nonstationary signals as well as de-noising and 

eliminating artifacts [12]. 

The selection of an appropriate classification algorithm can 

also increase the accuracies of diagnostic processes. As 

classification methods, statistical methods [13], artificial 

neural networks (ANN) [1], fuzzy approaches (FL) [14], 

Bayesian techniques [15, 16], k-nearest neighbor (k-NN) [17], 

linear discrimination analysis (LDA) [18] and support vector 

machines (SVM) have been used [15, 19]. In addition to these 

methods, the convolutional neural network algorithm (CNN) 

has been also applied in EMG signal classification [20, 21]. 

Besides, the transient effect of the EMG signal may occur due 

to electrode position, fatigue, or sweat. This can cause large 

variations in the value of a particular feature. It is quite 

difficult to deal with such a variable model for a classifier. In 

the literature, many different methods resort to the use of 

multiple algorithms to solve this problem [22-25]. 

As a contribution, a new feature extraction method based on 

time-domain features is developed in this study, and accuracy 

of it is investigated for single and multiple classifiers. Unlike 

the studies in the literature, this study utilizes multiple 

classification method that does not have a statistical structure. 

For the assessment of the findings, two different features 

derived from sEMG signals were analyzed using LDA, SVM, 

and k-NN. Selected features were AR coefficients, and ST 

features. The reason for choosing these features is that they 
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have the highest classification accuracies. The classification 

results of AR, ST and the new feature were compared to see if 

the new feature could be useful in EMG signal processing. In 

addition, the features were combined to achieve high 

classification accuracy. 

The rest of this paper is organized as follows. In the section 

II, materials and methods are introduced. Section III presents 

methodology used for classification. Section IV provides 

results and discussion with respect to classification accuracies. 

In addition, classification correctness is investigated to show 

the validity of new feature. Finally, conclusions are given in 

section V.  

 

 

2. MATERIALS AND METHODS 

 

2.1 Database 

 

In this section, the used sEMG database (CapgMyo) is 

described, which includes sEMG data of 23 intact subjects [26, 

27]. The database was recorded using 8 acquisition modules, 

and each module has 16 differential electrodes. Each gesture 

was repeated 10 times and held between 3s and 10s. There are 

three acquisition procedures for CapgMyo database, and as a 

result of these procedures, the database consists of three sub-

databases (DB-a, DB-b, and DB-c). While DB-a database has 

8 hand gestures of 18 subjects which can be seen in Table 1, 

DB-b has 8 hand gestures of 10 subjects. DB-c has 12 hand 

gestures of 10 subjects and was held for 3s. As a pre-

processing process, 45-55Hz bandstop filter was applied to 

eliminate power line interference. 

 

2.2 Feature extraction methods 

 

The feature extraction process was carried out on segmented 

data. A sliding window method was used for the segmentation. 

After trying different window lengths and increments, it is 

found that 250ms window length and 64ms increment gave the 

best classification results. AR, ST methods, which are 

frequently used in the literature and have high score values, 

and the new feature extraction method were employed to 

extract features from each segment of the data. The detailed 

explanations of the feature extraction methods are presented in 

the sub-sections below.  
 

2.2.1 AR Features 

The AR features are most popular EMG features [3], and 

uses a linear combination of the previous samples 𝑋𝑖−𝑝 and a 

white noise error term 𝑤𝑖  to describe each sample of the EMG 

signal as follows 
 

𝑋𝑖 =
1

𝑁
∑ 𝑎𝑚
𝑝
𝑚=1 𝑋𝑖−𝑚 + 𝑤𝑖   (1) 

 

where, p is the order of the AR model, and classifiers use 𝑎m 

coefficients as features. 

 

2.2.2 ST Features 

ST is the extension of WT using Morlet wavelet as basic 

wavelet. ST has a superior property that moving function 

changes with time. Moving and scalable localizing window 

(Gaussian window) gives time localization property for 

signals [28]. ST method transforms x(t) signal into time-

frequency domain as follows 
 

𝑠(𝑡, 𝑓) = ∫ 𝑥(𝑡)𝑤(𝑡 − 𝜏, 𝑓)𝑒−2𝜋𝑖𝑓𝜏𝑑𝜏
∞

−∞
  (2) 

 

where, 𝑤(𝑡 − 𝜏, 𝑓) is called as window function and can be 

expanded to form ST as follows 

 

𝑠(𝑡, 𝑓) = ∫ 𝑥(𝑡)
1

𝜎(𝑓)√2𝜋
𝑒((𝑡−𝜏)

2) (2𝜎𝑓2)⁄ 𝑒−2𝜋𝑖𝑓𝜏𝑑𝜏
∞

−∞
  (3) 

 

where, 𝜏 controls the position of the window over time, 𝜎(𝑓) 
is the standard deviation of the moving window and calculated 

as follows 
 

𝜎(𝑓) =
1

|𝑓|
  (4) 

 

The performance of ST can be improved when the standard 

deviation of the moving window is changed as follows 

 

𝜎(𝑓) =
1

𝑎+𝑏
√𝑓⁄

  (5) 

Table 1. Gestures in DB-a and DB-b 

 

1. Tumb up 

 

5. Abduction of all fingers 

 

2. Extension of index and middle, flexion of the others 

 

6. Fingers flexed together in fist 

 

3. Flexion of ring and little finger, extension of the others 

 

7. Pointing index 

 

4. Thumb opposing base of little finger 

 

8. Adduction of extended fingers 
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where, the values of a and b are varying between 0 and 1. 

Using the new 𝜎(𝑓), the Gaussian window can be written as 
 

𝑤(𝑡, 𝑓) =
𝑎+𝑏√𝑓

𝑘√2𝜋
𝑒
((𝑎+𝑏√𝑓)

2
𝑡2) (2𝑘2)⁄

  (6) 

 

where, 𝑘 < √𝑎2 + 𝑏2. ST can now be formulated as follows 
 

𝑠(𝑡, 𝑓) = ∫ 𝑥(𝛼 +
∞

−∞

𝑓)𝑒(−2𝜋
2𝛼2𝑘2) (𝑎+𝑏√|𝑓|)

2
⁄ 𝑒2𝜋𝑖𝛼𝜏𝑑𝛼  

(7) 

 

Mean value, standard deviation, energy, entropy, and 

kurtosis values of the ST signals are used as features. These 

values are calculated as follows 
 

𝑀𝑒𝑎𝑛 =
1

𝑛+𝑗
∑𝑎𝑏𝑠(𝑠(𝑗, 𝑛))  (8) 

 

where, abs is the absolute value of the complex signal, and 

s(j,n) is the transformed signal. 
 

𝑆𝑡. 𝐷𝑒𝑣. = √
1

𝑛+𝑗
∑(𝑎𝑏𝑠(𝑠(𝑗, 𝑛)) − 𝑀𝑒𝑎𝑛(𝑠))

2
  (9) 

 

𝐸𝑛𝑒𝑟𝑔𝑦 = ∑(𝑎𝑏𝑠(𝑠(𝑗, 𝑛)))
2

  (10) 

 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = ∑−𝑃(𝑠(𝑗, 𝑛))𝑙𝑜𝑔 (𝑃(𝑠(𝑗, 𝑛)))  (11) 

 

P(s(j,n)) is the probability distribution of s(j,n). 
 

𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =

1

𝑛+𝑗
∑(𝑎𝑏𝑠(𝑠(𝑗,𝑛))−𝑀𝑒𝑎𝑛(𝑠))

4

(
1

𝑛+𝑗
∑(𝑎𝑏𝑠(𝑠(𝑗,𝑛))−𝑀𝑒𝑎𝑛(𝑠))

2
)
2  (12) 

 

2.2.3 AR coefficients of positive and negative regions 

Although most of the time domain features are based on the 

statistical properties of the data, their classification accuracies 

are generally low except AR coefficients. Therefore, a new 

feature extraction method, which is based on AR coefficients 

of the sum of the samples in the positive and negative regions, 

is proposed for EMG signal classification. The first step of the 

new method is to sum the samples in positive and negative 

regions as follows 
 

𝐴n = ∑ 𝑥𝑖
𝑁𝑛
𝑖=1   (13) 

 

where, n is the index number of the region, 𝑁𝑛 is the number 

of samples of the positive or negative regions. The graphical 

representation of this process can also be seen in Figure 1. 
 

 
 

Figure 1. Summation of the positive and negative regions 

 

The AR coefficients of the sum of samples in the regions 

can be expressed mathematically as follows 

𝐴𝑖 =
1

𝑁
∑ 𝑎𝑚
𝑝
𝑚=1 𝐴𝑖−𝑚 + 𝑤𝑖  (14) 

 

 

3. MULTIPLE CLASSIFIER METHOD 

 

Many studies in the literature have shown that using 

multiple classifier methods can lead to more accurate 

classification results [24, 25, 29, 30]. Various strategies can be 

used to implement this kind of classification combination [25]. 

In this study, a simple method that is more suitable for the 

online working method was preferred. The chosen multi-

classifier strategy shown in Figure 2 divides high dimensional 

feature vectors into m feature vectors and uses the same 

classifier for low dimensional vectors. Different classifiers can 

also be used for each feature vector as an alternative multi-

classifier strategy. Then, each classifier produces a unique 

decision with respect to the class of the features. As the final 

decision step, the classification results obtained from each 

classifier are placed in a vector and the class with the highest 

score is taken as the result of the classification. The combined 

decision may be wrong when a majority of the decisions are 

wrong. But it is a fact that the majority of the classifiers would 

not often make the same mistake. 

 

 
 

Figure 2. Architecture of multiple classifier 

 

 

4. RESULTS 

 

To evaluate the accuracy of the new feature and multiple 

classifier method, the CapgMyo database with three sub-

databases (DB-a, DB-b, and DB-c) was processed with 

software written in MATLAB. 10-fold cross-validation 

methods were run. 10-fold cross-validation calculates the 

average performance of the tests and in each iteration uses one 

tenth of the data. As a first evaluation, individual performances 

of the new feature and all high scored features were 

investigated and the classification accuracy results can be seen 

in Table 2. As can be seen from Table 2, the LDA algorithm 

has poorly performed in EMG signals classification for all 

individual features. The single and multiple classifier results 

of the new feature have high classification accuracy with the 

DB-a and SVM algorithm. Nevertheless, KNN algorithm with 

the new feature seems not suitable for multi classifier method 

due to its low accuracy. The reason for this is to decrease the 

number of features in the feature space causes the 

classification results to have higher rates of error. 

Considering the average performance of the new feature for 

the SVM algorithm, it can be observed from the results in 

Table 2 that when a single classifier is used, it gives better 

results than all features. However, when a multiple classifier 
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is used, the result of the ST feature is better. It can also be seen 

that the multiple classifier results increase the classification 

accuracy. 

In the second study, AR and ST features which have the best 

classification results were used with the new feature to 

increase the classification performance. The classification 

results of the algorithms for these combined features are 

shown in Table 3. The SVM algorithm seems to give the best 

results when the three features are used together. It is seen 

from Table 3 that single and multiple classifier results for the 

SVM are very close to each other. In fact, the results of the 

KNN algorithm for three features were quite high except for 

the DB-a database. However, the low classification result in 

the DB-a database reduced the average single classifier result 

of the KNN algorithm. It can be seen from these results that 

the classification results of the features are different for each 

database and the combination of the features will increase the 

classification results. When the results are evaluated in terms 

of the number of classifiers, the single classifier results of the 

SVM algorithm are quite good. The use of multiple classifiers 

in the LDA algorithm increases the classification accuracy but 

decreases in the KNN algorithm. The problem of the KNN 

algorithm consists of the new feature. If this study is compared 

with the study of Du [27], Du achieved 99.1% classification 

accuracy in DB-a, DB-b, and DB-c by using ConvNet and the 

majority voting method. In this study, an average of 99.57%. 

success has been achieved by using the SVM algorithm with 

the new feature and two high scored features, which can be 

seem in Table 3. It is known that the computation load of SVM 

algorithm is lower than ConvNet. 

 

Table 2. Individual feature results of the methods for single and multiple classifier 

 

Feature 

DB-a 

LDA SVM KNN 

Single Multiple Single Multiple Single Multiple 

AR 82,98±2,1 83,43±1,7 85,83±1,8 85,51±1,7 87,36±1,9 73,99±3,2 

ST 79,9±3,1 81,35±1,8 85,03±1,9 94,07±0,6 91,37±1,2 91,67±1,1 

AR-Regions 80,58±2,5 83,56±1,6 97,38±0,4 98,11±0,3 77,01±2,4 58,18±4,1 

 DB-b 

AR 84,08±2,1 86,45±1,7 83,51±2,2 91,23±1,8 98,38±0,5 90,43±1,1 

ST 85,52±1,9 87,67±1,8 89,84±1,7 96,5±0,7 98,33±0,4 97,18±0,4 

AR-Regions 75,57±1,9 81,35±1,9 84,62±2,1 89,5±1,6 92,6±0,7 68,87±3,1 

 DB-c 

AR 92,60±1,8 94,13±1,3 94,84±1,2 97,01±0,7 97,47±0,8 91,2±1,0 

ST 90,39±2,1 92,25±1,4 96,08±1,1 97,67±0,6 98,57±0,6 96,51±0,7 

AR-Regions 78,75±3,6 85,25±2,1 94,39±1,3 95,51±0,9 89,88±2,1 78,38±3,1 

 Average of DB-a, DB-b, DB-c 

AR 86,55±4,2 88,00±4,5 88,06±4,8 91,21±4,6 94,40±4,9 85,21±7,9 

ST 85,27±4,2 87,09±4,4 90,32±4,5 96,08±1,4 96,09±3,3 95,12±2,4 

AR-Regions 78,30±2,0 83,38±0,9 92,13±5,4 94,37±3,6 86,50±6,7 68,47±8,2 

 

Table 3. Results of three features for single and multiple classifier 

 

Features 

DB-a 

LDA SVM KNN 

Single Multiple Single Multiple Single Multiple 

AR+ST 86,78±1,9 88,45±1,1 89,91±1,8 94,47±0,6 90,82±1,2 84,15±1,8 

AR+ST+ AR-Regions 71,90±3,4 84,32±1,3 99,67±0,2 99,59±0,2 89,44±1,7 77,50±2,4 

 DB-b 

AR+ST 94,03±0,9 96,16±0,8 94,31±0,6 98,5±0,5 98,83±0,5 96,18±0,6 

AR+ST+ AR-Regions 96,22±0,8 97,78±0,6 98,68±0,4 99,56±0,2 98,74±0,4 84,56±1,2 

 DB-c 

AR+ST 96,87±0,7 97,51±0,5 97,95±0,6 99,58±0,3 98,78±0,4 96,09±0,7 

AR+ST+ AR-Regions 97,97±0,6 97,94±0,6 99,55±0,2 99,58±0,2 98,25±0,5 75,64±1,5 

 Average of DB-a, DB-b, DB-c 

AR+ST 92,55±4,2 94,04±3,9 94,06±3,2 97,52±2,1 96,14±3,7 92,14±5,6 

AR+ST+ AR-Regions 88,70±11,8 93,34±6,3 99,30±0,4 99,57±0,01 95,47±4,2 79,23±3,8 

 

 

5. CONCLUSIONS 

 

In this study, a new time domain feature was developed for 

use in EMG studies, and multiple and single classification 

performances of this feature were observed. Studies have 

shown that although the new feature is a time-domain feature, 

it offers very good results with the SVM algorithm in the 

classification task of EMG signals. In addition, using the new 

feature together with AR and ST features gave the highest 

classification accuracy with multiple SVM classifier. In fact, 

single classifier results of the united features are close to the 

results of multiple classifier. It is also seen that when the new 

feature is not used, the results of LDA and SVM algorithms 

for AR + ST features decreases, and it can be increased by 

using the multiple classifier method. These results indicate that 

the new feature is a very useful method for EMG studies. 

Nevertheless, the multiple classifier results of the new feature 

are reduced for KNN algorithm.  
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