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In the field of image processing, removing impulse noise has been regarded as one of the 

most important tasks, primarily because of the noise pattern it presents. Existing filters used 

the effect of only those non-noisy pixels which were present inside the specified windows 

ignoring the effect of the non-noisy pixels present in the surrounding windows. So, the least 

distant non-noisy pixels in the present window as well as in the surrounding windows may 

have an influence on the present window's noisy pixels. Hence, considering the above 

factors, in this paper, a two-step technique named KMDCIFF (K-medoid clustering 

identified fuzzy filter) is proposed for removing impulse noise from digital images. In the 

proposed KMDCIFF algorithm, the first step is noise detection using K-medoid clustering, 

followed by a fuzzy logic-acquainted noise reduction strategy that utilizes the least distant 

local and non-local non-noisy pixels for removal operation. The detection process involves 

the application of K-medoid clustering on all 5×5 windows produced by centering each pixel 

of the considered image. In order to remove noise, a 7×7 window is constructed with each 

detected noisy pixel in the center. Analyzing the impact of the least distant local and non-

local pixel on each noisy pixel, the same is replaced by an estimated pixel’s intensity value 

obtained from the most influential non-noisy pixels. KMDCIFF is evaluated using well-

known metrics for diverse types of images. At a high noise density of 80%, KMDCIFF 

exhibited significant peak-signal-to-noise-ratios (PSNRs) of 26.97 dB and 29.67 dB and 

structural similarity indexes (SSIMs) of 0.8045 and 0.9288 on random and fixed valued 

impulse noise impacted Lena image, respectively. Comparing the results of the 

contemporary study to those of previous studies of a similar kind in this sector, the results 

are unswervingly astounding. 
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1. INTRODUCTION

In the field of image processing, eliminating impulse noise 

[1] is a challenging task. Noise may have a significant impact

on digital images throughout the collection, transmission, and

atmospheric turbulence processes. An erroneous analog-to-

digital conversion or an inaccurate memory placement may

also lead to noise. Moreover, the presence of noise degrades

the quality of the images and impairs subsequent image

processing operations, such as compression, morphological

processing, segmentation, object identification, and so on. In

light of this, image de-noising [2] is a vital step that must be

completed in order to pave the way for the subsequent image

processing methods. The main goal of this study is to develop

a new technique for denoising grayscale images containing

impulsive noise patterns. The creation of an 8-bit grayscale

image involves assigning intensity values that may land

anywhere between 0 and 255 on the defined scale. In general,

impulse noise distorts the uniformity of the pixel intensities,

causing their values to fluctuate in an unpredictable way.

There are two distinct types of impulse noise patterns, which

are referred to respectively as fixed-valued impulse noise

(FVIN) [3] and random-valued impulse noise (RVIN) [4]. 

Fixed value impulse noise is also known as salt and pepper 

noise because it causes abrupt black and white dots in digital 

images, with black dots having ‘0’ (minimum) intensity values 

and white dots having ‘255’ (maximum) intensity values. 

Black dots are referred to as ‘pepper’ noise, whereas white 

dots with maximum intensity values of ‘255’ are referred to as 

‘salt’ noise. These noisy granules with fixed values may be 

found randomly placed across the images. Edges may also 

have values as low as 0 and as high as 255, therefore all the ‘0’ 

and ‘255’ intensity values may not represent noise in their 

entirety. However, if these intensity levels are abruptly 

fluctuated from low to high or vice versa, the images seem to 

be distorted. In contrast to this, RVIN impulse noise generates 

a wide range of random noise patterns in images owing to its 

disorderly character. Any grayscale value between 0 and 255, 

may represent noise in this category. In either case, the noise 

does not have an effect on all of the pixel’s intensities but 

owing to the arbitrary nature of RVIN, it is difficult to 

eliminate it in an effective manner. The key issue in this 

endeavour is to perform the necessary restoration techniques 

while maintaining the structural integrity of the images. For a 
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few decades, a variety of non-linear filters were developed to 

reduce impulsive noise in digital images. The most well-

established and extensively used filters for removing 

impulsive noise are median filters and their modified forms, 

which have been developed by various authors during all these 

years. Years of research into the elimination of impulse noise 

have proven that a filter's success is predicated primarily on 

the accuracy of its detection mechanism, which must be 

followed by an equally precise elimination procedure. A 

variety of improvised median filter variants were developed 

during the course of the last decade. One of them was the 

switching median filter, which used detection to separate out 

noisy pixels from clean ones. The elimination procedure only 

impacted the noisy pixels, leaving the non-noisy ones 

untouched by the process. Nair and Mol [5] suggested a 

switching median filter that operated on a conventional 

detection approach for filtering out non-noisy pixels. To 

reconstruct the noisy pixels, either the non-noisy pixels in four 

directions or the weighted median of the non-noisy pixels in a 

defined window were used. The primary disadvantage of 

switching median filters was the degradation in visual fidelity 

of the produced image brought on by several missed classified 

pixels. Over the year, another filter by Yuan and Li [6] 

employed morphological cues paired with dilation to identify 

the noisy pixels. The modified median filter and the 

morphological filter were merged into a single approach as 

part of the removal procedure in order to fix the pixel artefacts 

brought on by the noise. At varying levels of noise, both 

switching median filters failed to sustain the filter's efficacy to 

some extent. In order to solve this problem, adaptive switching 

median filters have been developed. Thus according to the 

study of Meher and Singhawat [7], an adaptive switching 

median filter with variable window size dependent on the 

availability of non-noisy pixels and a recursive procedure to 

recover the noisy pixels was recommended. Another filter by 

Lee et al. [8] exploited the non-noisy pixels in the aadaptive-

sized neighbourhood to restore noisy pixels and also used the 

intensities of the previously treated pixels to remove the 

residual noise. Both adaptive and recursive methods enhanced 

the results, albeit at the cost of increased computing 

complexity. In order to enhance the performance, decision-

based filters were put forth as a potential solution. Innovative 

approaches and tactics were used by these filters to reduce 

noise. A modified decision-based un-symmetric trimmed 

median filter [9] presented a simple detector that detected salt 

and pepper noise by extreme low and high intensities and then 

restored those identified noisy pixels by un-symmetric 

trimmed median of a certain sized neighbourhood. Samantaray 

et al. [10] used a neighborhood-based decision technique for 

detection, followed by a first - order neighborhood-oriented 

resolution for restoring noisy pixels. Neither of these filters 

was able to maintain the image's boundaries. Moreover, they 

often caused spurious noise edges and break up image edges 

when there was low signal-to-noise ratio. Modifications have 

recently been suggested to Adaptive Median Filter. Instead of 

using the median of the AMF, one must use an adaptive 

frequency median filter (AFMF) [11] to restore the grey values 

of distorted pixels. The frequency median helped to filter out 

noisy pixels while measuring the grey value of the window's 

centre pixel, and it emphasised the individuality of grey values. 

Another modification of the AMF was carried out using a filter 

known as Different Adaptive Modified Riesz Mean Filter 

(DAMRmF) [12]. DAMRmF redesigned the Adaptive Median 

Filter's pixel weight function and evolving criteria, improving 

the filter's performance. Another current method [13] searches 

for outliers in a 3 × 3 area initially, and then looks for outliers 

in a larger area. Then the four neighbouring pixels are 

inspected for damaged pixels if the treatment pixel is disrupted. 

When there are outliers in the neighbourhood, the average of 

the four neighbours is utlized and when there are no outliers, 

the result of eccentrically modified trimmed mean is used to 

substitute the result. All three of the adaptive filters tested did 

a suitable job with the Salt and Pepper noise. But, the 

fundamental problem of these adaptive median filter 

techniques [11-13] is blurring, which became worsen as the 

adaptive windows got larger. Furthermore, some of the filter 

employed the median value when all values are 0 or 255, 

which brings with it all the downsides of a traditional median 

filter within these regions of the image. 

There has also been recent progress made for the RVIN. A, 

new modified median filter is proposed that can locate random 

value impulse noise efficiently, which is based on an improved 

noise classifier that has improved the total algorithm hugely 

[14]. Another work on the similiar time frame, Zhu and Zhang 

[15] focused on the criteria for local brightness for restoration 

operation which created a new horizon in the restoration work. 

Localized luminosity adaptation is used to first identify visible 

noisy pixels, and then a difference-oriented approach is used 

to trace down the noisy pixels. The observable noisy pixels are 

restored using a weighted mean filter during the removal step. 

A fuzzy based morphologically oriented filter [16] has 

recently been developed which was very impactful. Fuzzy 

morphological procedures and the weighted arithmetic 

average aggregation function were used in the work to propose 

a novel filter for acoustic signals. Meanwhile, Veerakumar et 

al. [17] constructed an empirical mode decomposition-based 

noise detector with a bilateral filter for the refining and 

restoration of noisy pixels. In the same year, Jin and Ye [18] 

introduced a noise removal technique that expanded the 

conventional RPCA methods by manipulating the spectral 

domain sparseness using the rank-deficient Hankel matrix. 

This method was aimed at removing unwanted background 

noise. In impulse noise elimination studies, these two filters 

made a significant difference. The core issue with the 

empirical mode decomposition method is that it is a purely 

nonlinear computational operation, and the generated 

representation is very reliant on the specifics of the 

implementations. Additionally, two more filters by 

Veerakumar et al. [19] and Chen et al. [20] demonstrated 

significant gains in the impulse noise category for specialised 

salt and pepper noise removal. Extreme density salt and pepper 

noise reduction using an iterative model was made possible by 

Veerakumar's asymmetrically trimmed shock filter, and by 

Chen's detector, which employed normal distribution statistics 

in conjunction with native pixel intensity statistical 

characteristics. On the basis of sequential weightage, a 

neighborhood-focused median filter was used for the removal 

purpose. Due to the amount of iterations required, the 

suggested shock filter [19] requires much more time to 

calculate the results than the conventional techniques. 

Additionally, the proposed filter's higher differential equation 

also contributes to the increased complexity. Similiarly the 

filter proposed by Chen et al. [20] takes higher computational 

time to execute due to its sequential weighting scheme. In the 

mean time impulse noise reduction approaches using neural 

networks has made an effect in the restoration field. Turkey 

and colleagues [21] suggested an artificial neural network 

(ANN) noise predictor with edge-preserving regularisation for 
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filtering. After that, Chen et al. suggested a blind Convolution 

neural network (CNN) prototype [22] employing changed 

training data for RVIN elimination. When employing the ANN 

technique [21] with the Edge preservation methodology, the 

filtering process is tedious and takes a very long time. Also, 

the blind CNN procedure [22] is computationally intensive 

and CNN have problems generalizing to new domains or by 

learning undesirable correlations rather than the targeted 

classes. 

The theory of impreciseness becomes a burning topic 

recently to capture the idea of ambiguity of an uncertainty 

based model in any sectional area. After the invention of the 

fuzzy set concept [23] in 1965 portrayed by Prof. Zadeh it is 

widely used in numerous portions of engineering, science, and 

technical fields. As research goes on, people utilized these 

concepts in numerous application fields of mathematical 

modeling [24-27]. Further, the structural modifications are 

done by the researchers in fuzzy sections. Researchers 

incorporated the idea of triangular fuzzy numbers [28] and 

applied it to several problems [29-32] to resolve ambiguity 

cases. Recently, several impulse noise level works both in 

ordinary and digital images based on fuzzy theory like Roy et 

al. [33] proposed fuzzy SVM-based impulse noise detection 

from Gray Images; Kumar and Nagaraju [34] incorporated 

fuzzy entropy-based noise level detection using correlation 

methods for digital images; Roy et al. [35] imposed region-

wise fuzzy filter approach for removal of random valued 

impulse noise; Kiani and Zohrevand [36] proposed fuzzy-

based directional median filter method to capture the removal 

of fixed-value impulse noise has been established in numerous 

reputed journals and books. Schulte et al. [37] proposed a 

fuzzy impulse noise detection model; Yuksel and Besdok [38] 

incorporated the neuro-fuzzy noise detection model; Russo 

and Ramponi [39] introduced the concept of fuzzy filtering in 

the case of noise detection; Schulte et al. [40] manifested fuzzy 

filtering in case colour images; Verma and Singh [41] 

developed fuzzy filtering based boundary discriminative noise 

detection; Morillas et al. [42] introduced fuzzy-based gaussian 

impulse noise detection from coloured images etc.  

Hence, fuzzy filters gained a lot of popularity because of 

their ability to deal with these uncertainties, especially in the 

case of impulse noise removal. Lin [43] implemented a 

decision-based impulse noise removal filter that used a 

Dempster-Shafer theory-oriented noise detection scheme and 

a fuzzy averaging-based noise removal methodology 

depending on a fixed fuzzy set. Wu and Tang [44] proposed 

another fuzzy filter that used rank-ordered absolute differences 

statistic and an extension of the non-local means concept using 

a fuzzy weighting scheme to remove impulse noise. Chen et al. 

[45] elevated the detection accuracy by designing a filter that 

used fuzzy estimation based on structure adaptiveness and 

thereby effectively restored RVIN-affected noisy pixels. The 

re-estimation errors of the non-noisy pixel intensities were 

also assessed to predict an iteration-stopping strategy. Wang 

et al. [46] used a detection strategy that divided the observed 

noisy pixels into three separate groups depending on their 

severity of corruption, and a removal technique to restore 

those noisy pixels using a weighted fuzzy switching mean 

filter employing distance-based criteria. Roy et al. [47] 

developed a novel strategy that used a support vector machine 

classifier to identify noise and a decision-based fuzzy filter to 

eliminate it. 

Occasionally, in complicated operations, fuzzification and 

defuzzification required a significant amount of time, and it is 

sometimes the case that the rules are inconsistent and do not 

match. However, fuzzy logic, on the other hand, is superior to 

other statistical approaches that rely on comprehensive human 

understanding of the system when dealing with ambiguous 

situations characterized by vague and inaccurate facts. To 

utilize the effectiveness of fuzzy logic, Bandyopadhyay et al. 

[48] employed K-means clustering methodology to identify 

impulsive noise coupled with a fuzzy logic-based noise 

reduction strategy. Both of these methods were used in recent 

times. The capability of these fuzzy logic-based strategies to 

cope with indistinctness and uncertainty contributed to their 

enormous effect on the field of image restoration. 

According to the results of the study, researchers are 

focused on developing impulsive noise reduction methods 

based on adaptive switching, convolution neural networks, 

and fuzzy logic. RVIN detection is a difficult job since the 

pixel's alteration due to noise is random in nature, making it 

difficult. The researchers tried a variety of soft computing 

strategies [49] to help them sort out the noisy pixels, but they 

were unable to cope effectively with the detection process's 

inherent uncertainty and imprecision. The statistical filters 

were unable to handle these issues because of these 

uncertainties and ambiguous input data. Although adaptive 

frequency median or trimming, switching, and adaptive 

median filters with pixels weighting functions would improve 

the end results, but they cannot offer a precise answer for the 

restoration of impulsive noise at greater density noises. The 

issue of a large dependence on the details of the filter 

implementations affects another class of filters based on 

empirical mode decomposition. More advancements were 

made by other ANN or CNN-based techniques, but they were 

unable to lower the computational complexity and significant 

time requirements. Fuzzy logic or probability can be used as a 

way to handle these uncertain issues. Fuzzy logic is basically 

a partial dimension of truthfulness concept. Contrarily, 

probability deals with clear-cut statements and propositions 

that may either be true or untrue; where the likelihood of a 

proposition is the level of confidence in its veracity. As a result 

of the different truth degrees, fuzzy logic was finally used to 

resolve ambiguity and produce outcomes that were almost 

accurate. K-medoid Clustering was utilized in the suggested 

study to assemble the pixels with comparable intensities, 

separating the non-noisy dispersed pixels from the noisy ones. 

The goal of the work was to create a cluster of non-noisy pixels 

since their intensity fluctuation is smaller, therefore they are 

more likely to form a coherent group. The noisy pixels, on the 

other hand, are often dispersed in nature, forming small 

separate clusters. In addition, researchers have presented a 

novel fuzzy-based technique that uses fuzzy membership to 

choose the most influential pixel that can replace the 

discovered noisy pixel. In order to arrive at this conclusion, the 

researchers examined a variety of distance measures. Distance 

and SSIM (Structural Similarity Index) have been employed 

in our suggested study; these two factors have been combined 

to build a FIS (fuzzy inference system), and this has allowed 

us to discover which pixel is more significant. It's also feasible 

that certain global neighbourhood pixels might have a greater 

influence than some of the local neighbourhood pixels in the 

removal process, which hasn't been considered in different 

latest state-of-the-art researches. Thus, to find more precise 

replacements for the noisy pixels, we considered both local 

and global criteria in our study. 

Researchers have eliminated impulse noise from the 

affected images in a variety of techniques, a number of which 
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have been already highlighted in the aforementioned literature 

review. To deal with the noise pattern's inherent uncertainty, 

various methods rely on fuzzy membership. The primary focus 

of the study is on the elimination of impulsive noise, which is 

accomplished by the use of K-medoid clustering in addition to 

the local and non-local non-noisy neighborhood's impacted 

effect on the noisy pixels guided by fuzzy measurements. A 

list of ingenuities is provided below in this section. 

1. Leveraging K-medoid clustering for the detection of 

impulse noise so as to apply medoid's least average divergence 

to all other objects in a cluster and thus separate the noisy and 

non-noisy pixels in an impulse noise corrupted image. 

2. It's possible that two or more clusters have the same 

membership value, thus the lowermost ratio of standard 

deviation and mean is utilized to pick a best cluster, which 

leads to effective noise and non-noisy pixel segregation. 

3. During the noise elimination process, considering the 

intensities of nearby non-local non-noisy pixels that might also 

have an impact on the chosen noisy pixel apart from the local 

non-noisy pixels. 

4. Constructing a Fuzzy Inference System (FIS) that takes 

distance and Structural Symmetry measures (SSIM) for the 

purpose of determining the influence value (IV) of non-local 

nearby pixels on the evaluated noisy pixel. 

5. Utilizing fuzzy logic’s ability to deal with realistic 

vagueness and uncertainty to find out the degree of influence 

of the impactful local and non-local nearest non-noisy pixels 

over the inspected noisy pixel and thereby execute precise 

noise removal operation.  

Owing to the fact that 50 photographs were used to test the 

filter, just a few images are utilized in this situation due to the 

article's length restrictions. The suggested algorithms were 

first visually analyzed and evaluated in comparison to several 

state-of-the-art filters, as shown by Figures 9 and 10 in section 

4 of the study. The proposed technique is then statistically 

evaluated using many established metrics for evaluating image 

quality, including the structural similarity index (SSIM), peak 

signal-to-noise ratio (PSNR), ‘miss’ and ‘false’ hits. Miss and 

false hits evaluated the K-medoid based detection's accuracy, 

while other metrics evaluated the final result after the whole 

restoration process. The proposed method yields a minimal 

miss and false hit value of ‘37841’ and ‘9245’ (out of total 

number of image pixels ‘262144’ in 512 × 512 input image) 

for the intrinsic texture image "Fingerprint" at 80% noise 

density, as shown in Table 2 in Section 4. Additionally, the 

proposed KMDCIFF outperforms the previous recognized 

filters, producing PSNR values of 29.48 and 26.97 as well as 

SSIM values of 0.9288 and 0.8045 for Lena images at 80% 

high noise density. Finally, the windowing frame size and K-

medoid method’s cluster size used have been justified in the 

results section. Throughout all evaluation aspects, the 

suggested KMDCIFF was discovered to be better than all the 

comparable filters.  

The rest of the paper is laid out as follows. For a deeper 

comprehension of the proposed method, the mathematical 

preliminaries are discussed in Section 2. Section 3 provides a 

step-by-step explanation of the Proposed Methodology, 

illustrated using flowcharts. Section 4 depicts the findings and 

discusses the improvements that were made in Section 3. A 

Section 5 on the conclusion comes at the very end of the paper. 
 

 

2. MATHEMATICAL PRELIMINARIES 
 

Definition 2.1: Interval Number: An interval number X is 

denoted by [𝑋𝐿 , 𝑋𝑅] and defined as 𝑋 = [𝑋𝐿 , 𝑋𝑅] = {𝑥: 𝑋𝐿 ≤
𝑥 ≤ 𝑋𝑅, 𝑥 ∈ 𝑅} , where R real number set and 𝑋𝐿 and 

𝑋𝑅generally denoted the left and right range of the interval 

respectively. 

Lemma 2.1.1: The interval [𝑋𝐿 , 𝑋𝑅] can also represented as 

𝑃(𝛼) = (𝑋𝐿)
1−𝛼(𝑋𝑅)

𝛼  for 𝛼 ∈ [0,1]. 
Definition 2.2: Fuzzy Set: [1] A set S̃ , defined as S̃ =

{(α, μ
S̃
(α)) : α ∈ S, μ

S̃
(α) ∈ [0,1]} , where μ

S̃
(α)  denote the 

membership function ofS̃, is called a fuzzy set. 

Definition 2.3: Triangular fuzzy number (TFN) [6]: A 

number �̃� = {(𝑎1, 𝑎2, 𝑎3); 𝜇�̃�(𝑥)} will be treated as triangular 

fuzzy number if it satisfies the following conditions, 

(1) 𝜇�̃�(𝑥)is a continuous function in [0,1] 

(2) 𝜇�̃�(𝑥) is an explicitly continuously growing function 

in [𝑎1, 𝑎2] 
(3)𝜇�̃�(𝑥)will attains the value 1 at 𝑎2 

(4) 𝜇�̃�(𝑥) is an explicitly decreasing and continuous 

function in [𝑎2, 𝑎3] 
Definition 2.4: Linear TFN with Symmetry: A linear 

TFN with symmetry normally denoted in Figure 1 as ÃLS =
(s1, s2, s3)  where 𝑠3 − 𝑠2 = 𝑠2 − 𝑠1 ; whose corresponding 

membership function is: 

 

𝐹𝐴𝐿𝑆(𝑥) =

{
 
 

 
 
𝑥 − 𝑠1
𝑠2 − 𝑠1

𝑤ℎ𝑒𝑛 𝑠1 ≤ 𝑥 < 𝑠2

1            𝑤ℎ𝑒𝑛  𝑥 = 𝑠2
𝑠3 − 𝑥

𝑠3 − 𝑠2
 𝑤ℎ𝑒𝑛 𝑠2 < 𝑥 ≤ 𝑠3

0                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

 
 

Figure 1. Linear TFN with symmetry 

 

Definition 2.5: Linear TFN with Asymmetry: A linear 

TFN with asymmetry normally denoted in Figure 2 as ÃLS =
(s1, s2, s3)  where 𝑠3 − 𝑠2 ≠ 𝑠2 − 𝑠1 ; whose corresponding 

membership function is: 

 

𝐹𝐴𝐿𝑆(𝑥) =

{
 
 

 
 
𝑥 − 𝑠1
𝑠2 − 𝑠1

𝑤ℎ𝑒𝑛 𝑠1 ≤ 𝑥 < 𝑠2

1            𝑤ℎ𝑒𝑛  𝑥 = 𝑠2
𝑠3 − 𝑥

𝑠3 − 𝑠2
 𝑤ℎ𝑒𝑛 𝑠2 < 𝑥 ≤ 𝑠3

0                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

 
 

Figure 2. Linear TFN with asymmetry 
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Definition 2.6: Parametric form of TFN: The parametric 

form or Alpha (𝛼) cut form of the TFN is: 

 

𝐹𝐴𝐿𝑆1(𝛼) = 𝑠1 + 𝛼(𝑠2 − 𝑠1) 

𝐹𝐴𝐿𝑆2(𝛼) = 𝑠3 − 𝛼(𝑠3 − 𝑠2) 

 

 

3. PROPOSED METHODOLOGY 

 

An impulse noise-affected grayscale image INM of 

dimension 512 × 512 is taken as an input for further processing. 

Given that the input noisy images in all of the standard 

research articles were generally 512 × 512 dimensions test 

images, it is convenient to compare the proposed findings up 

against the state-of-the-art filters in terms of a number of 

various image quality assessment metrics. Through this, the 

effectiveness of the proposed strategies may be swiftly 

assessed. Hence, 512 × 512-pixel images are used as inputs as 

they are the accepted practice for such evaluations. Let us 

denote the matrix form of the image as MINM. Detection and 

removal are the two main components of the proposed 

KMDCIFF. 

In this work, a detection algorithm engrossed in the K-

medoid clustering technique is proposed. From the literature 

survey, we have identified several important factors that drove 

us to use the said clustering method for impulse noise 

detection. In general, impulse noise produces chaotic and 

disordered dots on the images regardless of its nature, whether 

fixed or random. It's tough to see any pattern in the seemingly 

random dots or pixel noise. In contrast, when seen as a small 

kernel inside a image, the noise-free pixels might form some 

kind of pattern or similarity. In most cases, a kernel this small 

represents the little portion of a larger image. So, it is more 

likely that the non-noisy pixel components inside a kernel are 

the least diverse in nature, which makes them analogous. This 

analogy within the non-noisy pixel elements is exploited in the 

way of making the proposed algorithm. The K-medoid 

clustering is favored because it can exploit this similarity to 

build clusters that can separate homogeneous non-noisy 

components from dispersed noisy pixels and also because of 

its efficacy in separating outliers. 

The K-medoid clustering-based noise detection method is 

applied to each of the MINM matrix's 5 × 5 kernels, which are 

generated around the pixel elements. The element, located at 

the center (m,n) of a 5 × 5 kernel is denoted by C and its 

intensity is denoted by PVC. Experimentation with various 

odd-numbered window widths was used to decide the kernel 

size. The 5 × 5 size turned out to be suitable as a result of this 

study. A flag image INFL, having the identical size to INM is 

engendered. The corresponding flag image matrix is denoted 

as MINFL and filled initially with ‘0’ values. MINFL can 

encompass binary values (0 and 1). Let us consider a pixel (r, 

c) in the image INM, where r=1, 2, 3, ..., 512 and c=1, 2, 3, …, 

512. Once the proposed algorithm detects (r, c)th pixel as non-

noisy, it sets MINFL[r][c] by ‘0’. Although, once the (r, c)th 

pixel is detected as noisy, it sets MINFL[r][c] by ‘1’. The next 

sub-section demonstrates the proposed detection algorithm. 

 

3.1 Detection methodology 

 

i) In the primary step, the local 5 × 5 matrix elements are 

skimmed and arranged in an ascending directive. This 

arranged succession of elements is kept in an SRR array. 

ii) K-medoid clustering was performed on the elements of 

the local 5 × 5 matrix's pixels, and as a result, the four clusters 

Cls1, Cls2, Cls3, and Cls4 were formed. These clusters were 

formed by positioning all of the specified matrix elements in 

such a way that the homogeneous elements were placed in an 

identical cluster. The key challenge of the proposed approach 

is to cope with the unpredictability of the noise pattern in the 

images impacted by impulse noise. Since we are inspecting 

individual local 5 × 5 kernels of a contaminated image one at 

a time, we may imply that the non-noisy pixels of the 

investigated kernel are often not random in their behaviour, 

but the unpredictability of the noisy pixels can be inferred 

based on the fact that we are focusing on the randomness of 

the noisy pixels. Because a small kernel specifies a minuscule 

portion of a noisy picture, there is less chance of randomness 

in non-noisy pixels, but noisy pixels are typically varied in 

character. As a result, the chance of noisy pixels forming a 

cluster with a larger number of members is far lower than the 

probability of noisy pixels forming a cluster at all. Non-noisy 

pixels will, therefore, form the largest cluster, which is crucial 

for achieving additional noise detection goals. In the case of 

K-medoids clustering, rather than using the mean of the items 

in a cluster as a locus point as in k-means clustering, the 

medoid is used. A medoid is an object in the Cluster that is 

utmost centrally placed or has the smallest average divergence 

to all other objects. As a consequence, the K-medoids 

approach outperforms the other classic clustering algorithm in 

terms of noise resiliency. The non-noisy pixel intensity values 

observed in the largest membership cluster might be very 

useful in noise detection applications in the future. 

Experiments have shown that choosing the number of clusters 

to be four yields better results than choosing the number of 

clusters to be two, three, five, or six. Numbers bigger than six 

are not included since the results for clusters 5 and 6 are 

worsening. 

 
 

Figure 3. Flowchart of detection procedure 

 

iii) The Most productive cluster (MPC) is measured by 

comparing clusters reliant on the number of constituent 

elements in each cluster. MPC refers to the cluster with the 

greatest number of members. If more than one cluster does 

have maximum membership value then the ratio of standard 

deviation of the cluster members and the mean of the cluster 

members, is used to find the MPC and in this case the cluster 

having the lowest ratio is considered as the MPC.  
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iv) Finally, the pixel intensities belonging to the MPC under 

the MINM matrix are labeled as non-noisy ones and the rest of 

the pixels are detected as noisy ones by the whole detection 

method portrayed in Figure 3. Afterward, the detected non-

noisy pixels are utilized in the subsequent noise removal 

procedure (Figure 4). 
 

 
 

Figure 4. Flowchart of removal procedure 

 

3.2 Removal methodology 

 

Fuzzy logic is implemented into the suggested noise 

reduction strategy to take advantage of its flexibility and 

ability to deal with real uncertainty. The proposed fuzzy logic-

based noise removal approach cleaned the damaged pixels of 

INM, which were identified using the proposed noise detection 

methodology, with high accuracy. 

In order to carry out the noise reduction operation, MINFL 

is segmented into matrices of size 7 × 7. Within each matrix, 

a non-noisy region denoted by the notation NP may be found 

at the intersection of the matrix's diagonals. Let NNPX 

represent a set of non-noisy pixels in a 7 × 7 matrix, and NPX 

represent the set of noisy pixels in the matrix. The suggested 

noise removal algorithm is executed on each of the 7 × 7 

matrices on the whole image. 

Let’s consider a 7 × 7 matrix ‘w’. Let NNPL is the closest, 

in terms of Manhattan Distance, the local non-noisy pixel of 

NP in w. Now, four 7 × 7 matrices in the closest affinity of ‘w’ 

have been taken. Each of these neighboring matrices of w is 

represented by wK, where, 1<=K<=4. Now the NP can be 

influenced by NNPL. Also, as a matter of fact, NP may get 

influenced by its non-local nearby non-noisy pixels belonging 

to wK matrices where K=1 to 4. Let NNPNK belonging to wK, 

where k= 1 to 4, is NP’s, non-local non-noisy pixel.in terms of 

Manhattan Distance (MD). It is to be remembered that the 

maximum possible Manhattan distance between NP and any 

non-noisy pixel in ‘w’ is 6. This is because NP is the center of 

‘w’. Let MD (NP, NNPL) is the Manhattan distance between 

NP and NNPL and MD (NP, NNPNK) is the Manhattan 

distance between NP and NNPNK. Now if MD (NP, NNPL) 

<MD (NP, NNPNK), then NNPL will be chosen as the most 

influencing non-noisy pixel denoted as NNPNM.  

It is to be remembered that the maximum possible 

Manhattan distance between NP and any non-noisy pixel in ‘w’ 

is 6. This is because NP is the center of ‘w’. Let MD (NP, 

NNPL) is the Manhattan distance between NP and NNPL and 

MD (NP, NNPNK) is the Manhattan distance between NP and 

NNPNK. Now if MD (NP, NNPL) <MD (NP, NNPNK), then 

NNPL will be chosen as the most influencing non-noisy pixel 

denoted as NNPNM.  

If for some NNPNK, MD (NP, NNPNK) <MD (NP, NNPL), 

then among all those NNPNKs, the NNPNK having the 

maximum influence on NP is to be found out. In order to find 

the most influential NNPNK a Fuzzy Inference System (FIS) is 

designed. This Fuzzy Inference System (FIS) calculates an 

influence value (IV) for each NNPNK on NP depending on the 

Manhattan distance of NP and NNPNK and SSIM (Structural 

Similarity Index Measure) of ‘w’ and ‘wK’. Input variables, 

Manhattan distance, and SSIM of the FIS are defined by the 

following triangular membership function. 

Now the fuzzy inference rules are defined as follows: 

i) If MD is Close and SSIM is Good then IV is High. 

ii) If MD is Close and SSIM is Average then IV is Medium. 

iii) If MD is Close and SSIM is Bad then IV is Medium. 

iv) If MD is Far and SSIM is Good then IV is Medium. 

v) If MD is Far and SSIM is Average then IV is Medium. 

vi) If MD is Far and SSIM is Bad then IV is Low. 

Rule base of the proposed FIS is portrayed in Table 1. 

 

Table 1. Rule base for proposed FIS 

 

Variable Category 

Associated 

fuzzy sets' 

lingual elements 

Triangular 

membership 

functions' 

intervals 

Distance Input 
Close (1, 1, 3) 

Far (6, 6, 2) 

SSIM Input 

Good (60, 100, 100) 

Average (40, 60, 70) 

Bad (0, 0, 50) 

IV Output 

High (65, 100, 100) 

Medium (45, 55, 70) 

Low (0, 0, 40) 

 

Figure 5 demonstrated the schematic diagram of the link 

between verbal phrases of triangular fuzzy number and the 

parameters. The triangle membership functions of two input 

variables are shown in Figures 6-7, and the output variable's 

membership function is shown in Figure 8. 
 

 
 

Figure 5. Schematic diagram of link between verbal phrases 

of triangular fuzzy number and the parameters 

 

 
 

Figure 6. Triangle membership function of input variable 

“Distance” 
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Figure 6's and Figure 7's horizontal axis represents precise 

values of the 'Distance' and 'SSIM' input as in the range of 1 to 

6 and 0 to 1 respectively. The degree of membership grades is 

shown by the vertical axis with the 0 to 1 range with respect to 

the horizontal axis values mentioned in the fuzzy sets depicted 

in Table 1. If an input or output variable value's degree of 

membership is significantly larger (closer to 1), the input or 

output value of the variable has a strong presence in the 

relevant fuzzy set. 

Degrees of membership values of 1 and 0 reflect the highest 

degree of presence and absence of an input or output variable 

value in a matching fuzzy set, correspondingly. This article 

makes advantage of the triangular membership function's 

characteristic, which is distinguished by its mathematical 

precision. It has three arguments, a1, a2, and a3, in which the 

membership function 𝜇�̃�(𝑥) is defined for every value x in 

Definition 2.3 and 2.4 of Chapter 2. These arguments were 

discovered via the authors' research on the suggested system. 

As was already indicated, "Distance" and "SSIM" are the two 

input variables used. The lingual members of the 

corresponding fuzzy sets for the distance variable are “Close” 

and “Far”, respectively. The linguistic members of the linked 

fuzzy sets for the SSIM variable are, in order, "Good," 

"Average," and "Bad". At the end, "High," "Medium," and 

"Low" are the linguistic constituents of the linked fuzzy sets 

representing the IV output variable. The IV of NNPNK on NP 

is now determined for every NNPNK where MD (NP, NNPNK) 

< MD (NP, NNPL) and NNPNK having maximum IV on NP is 

decided as the most influencing non-noisy pixel (NNPNM) 

neighboring to NP and its pixel intensity is denoted as 

PVNNPNM. Now, NNPL is already obtained, and apart from it; 

MNNP (median pixel of the non-noisy pixels of the window) 

can also have an influence on NP. So, in that case, there may 

exist some non-noisy pixels that are not NNPL but belong to 

the window ‘w’. Let’s denote those pixels as NNPNC (non-

noisy pixel not close) where NNPNC∈w. Again, it may be 

possible for some NNPNCs: MD (NP, NNPNC)>MD (NP, 

NNPNK). So, the above situation implies that the NNPNK are 

closer to NP rather than the NNPNC. In these circumstances, 

those NNPNCs are excluded from the calculation of MNNP 

and, instead, the NNPNKs that are closer to NP are included. 

Say, there are ‘n’ no of non-noisy pixels in ‘w’. Now, it has to 

be found out that, how many of these non-noisy pixels have 

MD (NP, NNPNC) > MD (NP, NNPNK). 
 

 
 

Figure 7. Triangle membership function of input variable 

“SSIM” 
 

 
 

Figure 8. Triangle membership function output variable “IV” 

Let the number of such NNPNCs be ‘m’. Then, (n-m) 

number of non-noisy pixels (NNP) in ‘w’ having MD (NP, 

NNP) < MD (NP, NNPNK) are considered in the calculation of 

MNNP, and the rest of the ‘m’ number of pixels will be those 

NNPNKs that are having MD (NP, NNPNK) < MD (NP, 

NNPNC). 

Thus, MNNP is calculated by taking the median of (n-m) 

number of NNPs belonging to w and ‘m’ number of NNPNK 

belonging to the neighboring wK. Its pixel intensity value is 

denoted as PVMNNP. Then PVNP is calculated by utilizing 

PVMNNP and PVNNPNM using self-published earlier fuzzy 

oriented approach [48]. The median pixel PVMNNP of the noisy 

pixel's non-noisy neighbours and the noisy pixel's closest non-

noisy neighbour PVNNPNM are used as reference pixels. It is 

anticipated that the noisy pixel's estimated pixel intensity 

value would fall somewhere in the middle of the two reference 

pixel intensities. To get the predicted pixel intensity value, it 

is crucial to know how much impact the aforesaid two 

reference pixels have on the noisy pixel. Using the term 

"induction factor", we may describe how much an external 

reference pixel affects an internal noisy pixel. For each of the 

reference pixels, there is an induction factor on the noisy pixel, 

and we need to determine which one has the greater induction 

factor. However, we cannot completely disregard the other 

reference pixel's induction factor. Fuzzy logic is utilized to 

deal with ambiguity and uncertainty, and it has successfully 

enlightened us by accurately computing the induction factors 

of two reference pixels on the noisy pixel. This is made 

possible by fuzzy logic's capacity to deal realistically with 

ambiguity and uncertainty.  

A fuzzy set called "Near" is created using a fuzzy 

membership function called "Near". Near takes as an input the 

Manhattan distance between the coordinate position of the 

noisy pixel in the corrupted picture and the coordinate position 

of a reference pixel in the damaged image. As an output, “Near” 

produces the membership value of that Manhattan distance in 

the fuzzy set "Near". Manhattan distance membership value 

between noisy pixels and "Near" reference pixels reflect the 

influence of that reference pixel on the noisy one. The 

induction factor ranges from 0 to 1. Zero represents no 

induction, while one indicates maximum induction. Reference 

pixels that have an induction factor of 1 are given preference 

over other reference pixels that do not have induction factors 

of 1, and this preference is used to determine which of the two 

reference pixels should be used to calculate the predicted pixel 

intensity value of the noisy pixel.  

The mean of the two reference pixel intensity values is 

allocated as the predicted pixel intensity value if both the 

reference pixels have the same induction factors on the noisy 

pixel. This is referred to as a "neutral" scenario. If the 

induction factor of the reference pixel is greater than that of 

another reference pixel then the situation is referred as non-

neutral or biased scenario. In biased scenario, the predicted 

pixel intensity value of the noisy pixel varies from its neutral 

scenario value and tends to approach the pixel intensity value 

associated with the reference pixel having greater induction 

factor on the noisy pixel. The deviation is derived by 

multiplying the 1/2 of the absolute difference between the 

intensity values of two reference pixels with the absolute 

difference between the induction factors of two reference 

pixels on the noisy pixel. Predicted pixel intensity value PVNP 

of the noisy pixel is calculated by associating the deviation to 

the neutral scenario value. 
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4. RESULTS AND DISCUSSION 

 

This section investigates the qualitative and quantitative 

comparative findings for FVIN and RVIN. A comparison of 

the proposed KMDCIFF with eight existing techniques is 

made for both RVIN and FVIN. An Intel Core i5 CPU and 

8GB of RAM having MATLAB 2018a was used for all of the 

testing, which took place on several different test images 

featuring varying noise levels. The performance of the 

proposed filter is evaluated and objectively compared with the 

help of measurements of the peak signal-to-noise ratio (PSNR), 

as well as the structural similarity index (SSIM). 

The following is the interpretation of PSNR, expressed in 

decibels (dB): 

 

MSE
PSNR

2

10

255
10log=

 
(1) 

 

𝑀𝑆𝐸 = (∑ 𝐾, 𝐿
(𝑂𝑟𝑔(𝑘, 𝑙) − 𝐷𝑛(𝑘, 𝑙))2

𝐾 × 𝐿
) (2) 

 

where, Org=Original Image, Dn=De-noised image, K=No. of 

rows and K=No. of Columns. 

It is appropriate to observe the original and restored images 

using SSIM. According to the SSIM definition, 

 

𝑆𝑆𝐼𝑀(𝑖, 𝑗) =
(2𝜓𝑖𝜓𝑗 + 𝜉1)(2𝛽𝑖𝑗 + 𝜉2)

(𝜓2
𝑖
+𝜓2

𝑗
+ 𝜉1) (𝛽2

𝑖
+ 𝛽2

𝑗
+ 𝜉2)

 (3) 

 

where, image i and Image j each have a mean value of 𝜓𝑖  and, 

𝜓𝑗  respectively. Image i's standard deviation is shown by 

𝛽𝑖 and image j's standard deviation is shown by βj and the 

constants are ξ1 and ξ2. βij is the co-variance between i and j. 

Lena and Baboon, two well-known test photos, exhibit the 

visual output of the suggested filter. Even though 50 images 

were used to test the filter, only the two shown above are used 

in this circumstance owing to length constraints on the article. 

Figure 9 provides an interpretation of the visual output 

comparison of the proposed filter in contrast to the recent 

filters at a variety of noise levels that are influenced by FVIN 

for Baboon image. In addition, Figure 10 shows how the 

suggested filter's output varies with the applied input when 

affected by RVIN for a standard Lena image. As can be 

observed in both Figure 9 and Figure 10, the recommended 

filter has produced visually noticeable improvements for 

impulse noise pattern. These improvements can be seen in 

both Figure 9 and Figure 10. 

Typically, the detecting method has a major influence on 

the following restoration process. This algorithm's detection 

approach is examined for both the RVIN and FVIN, although 

the assessment of the detector's performance will be mostly 

focussed on its results for RVIN, because RVIN is 

substantially more difficult to identify than FVIN. The 

suggested algorithm's detection accuracy is evaluated using 

"miss" and "false-hit" metrics for 512 × 512 test images. The 

term "miss" refers to the number of legitimately corrupted 

pixels that the proposed detector incorrectly identifies as non-

corrupted, while the term "false-hit" refers to the number of 

legitimately non-corrupted pixels that the suggested detector 

incorrectly identifies as corrupted. A "false-hit" number, rather 

than a "miss" value, is a far more significant aspect from a 

logical standpoint. A high false-hit value may lead to the 

inaccurate identification of a genuine non-corrupted pixel and 

hence have a significant impact on the eradication process. 

Experimental images with varying noise levels are included 

in Table 2 to illustrate the proposed detector's 'miss' and 'false-

hit' scores, respectively. The Lena, Goldhill, and Baboon 

images show minimum miss and false hit scores with the 

proposed KMDCIFF. The technique has also been checked on 

more complex images as Bridge, Boat, Barbara, where it 

performed well, although with relatively less accuracy. The 

fingerprint picture yielded average results since it consists of 

textural qualities and fine minutiae. On the other hand, when 

the aggregate noise from each of the test images is factored in, 

the recommended strategy produces extremely compelling 

outcomes. 

 

Table 2. Detection result of the proposed KMDCIFF by miss 

and false-hit for different images 

 

Noise Images 
60%ND 80%ND 

miss false-hit miss false-hit 

RVIN 

Lena 16870 5069 29874 7617 

Goldhill 17254 5354 30198 7868 

Baboon 19874 5984 32568 8245 

Boat 18471 5520 31101 7996 

Barbara 21548 6120 35481 8756 

Cameraman 17056 5111 30150 7715 

Fingerprint 25487 7005 37841 9245 

FVIN 

Lena 15478 4580 27659 6548 

Goldhill 16351 4759 28655 6785 

Baboon 18459 5689 29593 7246 

Boat 17005 5115 30254 6943 

Barbara 19985 5945 31848 7545 

Cameraman 15984 4695 28159 6677 

Fingerprint 22167 6519 34597 8563 

 

 
 

Figure 9. Comparison of proposed work with other recent 

filters for FVIN 

 

Table 3 and Table 4 compared the proposed filter's 

performance based on PSNR and SSIM up against the state-

of-the-art filters for RVIN and FVIN on standard test images, 

such as: Lena, Barbara, and Baboon. The two forms of noise 

that were discussed earlier each cause images to have either 

fixed or random spots, which results in an exaggerated 

appearance. The proposed KMDCIFF handled both noise 

models effectively even at high noise densities which is 

noticeable in Table 3. The proposed KMDCIFF produces 

exceptional PSNR of 29.48 dB, 25.36 dB, 26.22 db and 

26.97dB, 23.98 dB, 24.01 dB for Lena, Barbara, and Baboon 

images at 80% noise density for FVIN and RVIN respectively. 
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Table 3. Restoration results in terms of PSNR 

 

Image Noise Filters 
Noise Density 

40% 60% 80% 

Lena 

FVIN 

SVMF [47] 31.24 27.71 24.86 

AFSWMF [46] 31.23 27.03 24.46 

EMDABF [19] 36.00 31.25 27.01 

VEERA [17] 34.20 31.05 27.38 

ASWM [20] 34.74 32.82 27.93 

AFMF [11] 33.71 30.46 28.46 

DAMRmF [12] 35.55 32.72 29.37 

DBNATMTF [13] 29.58 27.69 25.95 

KMDCIFF 35.45 32.75 29.48 

RVIN 

ANN [21] 30.32 27.22 23.65 

SAFE [45] 32.18 28.38 24.46 

EMDABF [19] 35.26 30.55 26.35 

JIN [18] 30.62 28.68 24.65 

CHEN [22] 31.17 28.29 24.36 

DBMF [14] 13.52 12.75 11.65 

ZHU [15] 27.19 25.02 23.25 

AWAM [16] 33.91 29.67 25.12 

KMDCIFF 34.68 32.02 26.97 

Barbara 

FVIN 

SVMF [47] 26.61 22.93 19.95 

AFSWMF [46] 29.73 25.01 22.19 

EMDABF [19] 30.20 27.07 23.78 

VEERA [17] 31.10 27.03 23.93 

ASWM [20] 31.31 27.32 24.11 

AFMF [11] 29.62 26.98 24.56 

DAMRmF [12] 30.19 27.06 25.21 

DBNATMTF [13] 29.58 26.88 24.86 

KMDCIFF 30.78 27.68 25.36 

RVIN 

ANN [21] 27.66 24.34 21.11 

SAFE [45] 27.97 25.08 21.05 

EMDABF [19] 25.98 22.55 19.87 

JIN [18] 28.69 26.12 23.56 

CHEN [22] 30.98 25.87 22.13 

DBMF [14] 11.05 10.65 10.22 

ZHU [15] 26.25 24.26 22.35 

AWAM [16] 30.02 26.12 23.09 

KMDCIFF 30.28 26.51 23.98 

Baboon 

FVIN 

SVMF [47] 26.01 22.12 18.72 

AFSWMF [46] 29.17 24.55 21.48 

EMDABF [19] 30.85 27.98 24.56 

VEERA [17] 30.96 26.78 23.23 

ASWM [20] 33.34 30.92 26.13 

AFMF [11] 31.25 28.78 25.48 

DAMRmF [12] 31.94 29.54 26.02 

DBNATMTF [13] 32.05 29.69 26.12 

KMDCIFF 32.21 30.98 26.22 

RVIN 

ANN [21] 27.14 23.88 20.17 

SAFE [45] 27.67 24.72 20.65 

EMDABF [19] 25.87 22.15 19.24 

JIN [18] 22.48 19.25 16.59 

CHEN [22] 32.25 27.48 23.47 

DBMF [14] 13.12 12.02 10.96 

ZHU [15] 30.74 26.14 22.59 

AWAM [16] 31.25 27.06 23.56 

KMDCIFF 31.88 27.57 24.01 

 

Furthermore, the proposed KMDCIFF yielded SSIM of 

0.9288, 0.8355, 0.8452 and 0.8045, 0.6987, 0.6654 for Lena, 

Barbara, and Baboon images at 80% noise density for FVIN 

and RVIN respectively. It is pertinent from both Table 3 and 

Table 4 that, KMDCIFF outperformed current credible filters 

at a variety of noise levels, particularly at larger noise 

densities. According to the analysis, the proposed filter 

accomplishes 80% similarity for all images at a high noise 

density of 80% with reference to FVIN and also over 97% 

resemblance at a moderate noise density of 40%. For RVIN, 

the recommended KMDCIFF have a similarity of over 80% at 

a noise density of 40% and a similarity of over 66% at an 

extreme noise density of 80%. 

 

Table 4. Restoration results in terms of SSIM 

 

Image Noise Filters 
Noise Density 

40% 60% 80% 

Lena 

FVIN 

SVMFF [47] 0.9134 0.8347 0.8132 

AFSWMF [46] 0.9305 0.8349 0.8176 

EMDABF [19] 0.9445 0.8525 0.8245 

VEERA [17] 0.9441 0.8698 0.8269 

ASWM [20] 0.9874 0.9702 0.9212 

AFMF [11] 0.9749 0.9624 0.9215 

DAMRmF [12] 0.9854 0.9701 0.9198 

DBNATMTF 

[13] 
0.9548 0.9343 0.8909 

KMDCIFF 0.9862 0.9748 0.9288 

RVIN 

ANN [21] 0.8747 0.7987 0.7125 

SAFE [45] 0.9199 0.8461 0.7573 

EMDABF [19] 0.9199 0.8194 0.7539 

JIN [18] 0.9268 0.8295 0.7749 

CHEN [22] 0.8916 0.7931 0.7321 

DBMF [14] 0.8342 0.7724 0.7002 

ZHU [15] 0.8648 0.7995 0.7254 

AWAM [16] 0.9146 0.8254 0.7712 

KMDCIFF 0.9178 0.8621 0.8045 

Barbara 

FVIN 

SVMF [47] 0.8614 0.7865 0.7123 

AFSWMF [46] 0.9047 0.8258 0.6903 

EMDABF [19] 0.9099 0.8318 0.6927 

VEERA [17] 0.9089 0.8343 0.7113 

ASWM [20] 0.9798 0.9479 0.8254 

AFMF [11] 0.9645 0.9358 0.8142 

DAMRmF [12] 0.9541 0.9124 0.7548 

SVMF [47] 0.9245 0.8752 0.7124 

KMDCIFF 0.9771 0.9512 0.8355 

RVIN 

ANN [21] 0.7458 0.7125 0.6125 

SAFE [45] 0.8668 0.7362 0.6425 

EMDABF [19] 0.7698 0.7249 0.6358 

JIN [18] 0.7795 0.7459 0.6597 

CHEN [22] 0.7549 0.7198 0.6216 

DBMF [14] 0.7124 0.6584 0.5987 

ZHU [15] 0.7654 0.7259 0.6458 

AWAM [16] 0.7785 0.7452 0.6874 

KMDCIFF 0.8459 0.7698 0.6987 

Baboon 

FVIN 

SVMF [47] 0.8543 0.7737 0.6772 

AFSWMF [46] 0.8816 0.8149 0.6826 

EMDABF [19] 0.8963 0.8198 0.6785 

VEERA [17] 0.8951 0.8214 0.6958 

ASWM [20] 0.9788 0.9451 0.8245 

AFMF [11] 0.9674 0.9247 0.7961 

DAMRmF [12] 0.9586 0.9324 0.8009 

SVMF [47] 0.9524 0.9148 0.8124 

KMDCIFF 0.9745 0.9462 0.8452 

RVIN 

ANN [21] 0.7267 0.6859 0.5579 

SAFE [45] 0.7585 0.6987 0.6077 

EMDABF [19] 0.7412 0.6805 0.5989 

JIN [18] 0.7698 0.7015 0.6125 

CHEN [22] 0.7349 0.6789 0.5896 

DBMF [14] 0.7005 0.6124 0.5486 

ZHU [15] 0.7537 0.7104 0.6245 

AWAM [16] 0.7658 0.7195 0.6477 

KMDCIFF 0.8048 0.7259 0.6654 

 

These results justify that the proposed technique is capable 

of restoring the structure of the images to an excellent level 

post restoration. 

The proposed experimentation had been carried out 

between three to four times for each of the reference images 

and noise densities, and this had been done for both FVIN and 

RVIN. It was discovered that the divergence of the PSNR and 
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SSIM values collected were between the ranges of 0.06-0.18 

DB and 0.045-0.183 respectively, both of which are 

considered to be extremely trivial. Consequently, it became 

evident that the variation in the findings was within a tolerable 

range.  

The performance of the proposed KMDCIFF, measured in 

terms of PSNR and SSIM, is shown for a range of images in 

Tables 5 and 6. From a total of 50 images tested, the following 

exhibits the outcomes of random 4 images after implementing 

the filter proposed. Table 5 demonstrates that the proposed 

filter generates an outstanding PSNR of 23.05 db and SSIM of 

0.6954 for an intricate fingerprint image that has been 

damaged by RVIN at a high noise level of 80%. In addition, at 

a mid-level noise of 40%, the proposed filter delivers notable 

PSNR and SSIM performances, that is visible from the Table 

5 and 6 respectively. Table 6 demonstrates the proposed 

filter’s performance for FVIN. The KMDCIFF yields a PSNR 

of 24.68 db and an SSIM of 0.7525 for the same Fingerprint 

image at a significant noise density of 80%, and it also 

performs healthy at mid-level and low-level noise densities.  

In order to determine the appropriate window size for the 

suggested technique, an approach based on trial and error was 

used. Following the successful application of the method 

across a variety of odd-numbered window sizes, it was 

determined that the 5 × 5 and 7 × 7 grid sizes were suitable for 

the proposed detection and correction strategy. 
 

 
 

Figure 10. Visual demonstration of the proposed filter’s 

performance for RVIN at various noise densities 

 

Table 5. Restoration outcomes of proposed KMDCIFF for 

diverse images distorted by RVIN 

 
Approach Goldhill Boat Cameraman Fingerprint 

PSNR 

40% 33.98 33.71 34.35 29.67 

60% 31.72 31.47 31.91 26.21 

80% 26.01 25.67 26.32 23.05 

SSIM 

40% 0.9019 0.8997 0.9115 0.8547 

60% 0.8506 0.8467 0.8594 0.7854 

80% 0.7844 0.7757 0.7988 0.6954 

 

Table 6. Restoration outcomes of proposed KMDCIFF for 

diverse images distorted by FVIN 

 
Approach Goldhill Boat Cameraman Fingerprint 

PSNR 

40% 34.17 34.11 35.02 31.12 

60% 32.01 31.88 32.24 28.76 

80% 26.82 25.99 27.38 24.68 

SSIM 

40% 0.9725 0.9658 0.9802 0.8994 

60% 0.9459 0.9241 0.9654 0.8125 

80% 0.9188 0.8897 0.9047 0.7525 

It is clear from Table 7 that the proposed technique 

generated the best PSNR values, when both of the nominated 

odd-numbered window sizes were picked. 

 

Table 7. Performance measure of the proposed KMDCIFF 

based on window wise for Lena image 

 
Noise 

 

Window Size Noise Densities 

Detection  Removal 40%  60%  80%  

RVIN 

3 * 3 

3 * 3 31.98 30.48 24.49 

5 * 5 32.54 31.12 25.23 

7 * 7 32.66 31.16 25.34 

5 * 5 

3 * 3 32.74 31.24 25.45 

5 * 5 33.17 31.69 26.08 

7 * 7 34.68 32.02 26.97 

7 * 7 

3 * 3 32.98 31.54 25.98 

5 * 5 34.22 31.78 26.12 

7 * 7 34.48 31.94 26.77 

FVIN 

3 * 3 

3 * 3 34.12 31.21 25.19 

5 * 5 34.48 31.78 26.15 

7 * 7 35.04 32.08 27.09 

5 * 5 

3 * 3 34.98 32.01 26.94 

5 * 5 35.11 32.27 27.25 

7 * 7 35.45 32.75 28.01 

7 * 7 

3 * 3 35.06 32.07 27.11 

5 * 5 35.14 32.24 27.21 

7 * 7 35.24 32.47 27.58 

 

Prior to execution of a removal method, detection is the 

most important function of a filter. Cluster size must be 

specified in order for the suggested approach to use K-medoid 

clustering to differentiate noisy from non-noisy components in 

detection. Because the detection method uses a window size 

of 5 × 5, as was mentioned before, the 25 elements of that 

window will be divided into their own distinct clusters when 

the K-medoid algorithm is used. Choosing a large number of 

clusters may undercut clustering's goal by generating many 

little clusters, most of which will have scattered noisy pixel 

values. As a result, it will be difficult to find a cluster with the 

most non-noisy members. Consequently, a smaller cluster size 

was chosen, and the research was carried out through trial and 

error. Table 8 shows that, when tested on a variety of images, 

a cluster size of '4' produced the maximal performance for the 

recommended technique. 

 

Table 8. Performance measure of the proposed KMDCIFF 

based on cluster size for Lena image 

 

Noise Images 
Cluster Size 

3 4 5 

FVIN 

Lena 32.54 32.75 32.05 

Goldhill 31.88 32.01 31.65 

Baboon 30.14 30.98 29.92 

Barbara 27.09 27.68 26.87 

Cameraman 31.94 32.24 31.54 

Boat 31.45 31.88 30.99 

Fingerprint 27.98 28.76 26.89 

RVIN 

Lena 31.55 32.02 31.05 

Goldhill 31.21 31.71 30.95 

Baboon 26.88 27.58 25.75 

Barbara 25.45 26.51 24.97 

Cameraman 31.29 31.91 30.74 

Boat 30.73 31.47 30.01 

Fingerprint 25.06 26.21 23.82 

 

To summarize, KMDCIFF outperforms other modern filters 

in several aesthetic and quantitative aspects. 
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4.1 Discussion 

 

The aforementioned results, whether qualitative or 

quantitative, emphasize and validate the significance of the 

whole study. K-medoid clustering's detection ability was 

strengthened mostly by the 'miss' and 'false' hits, which served 

as the proposed work's foundation. The succeeding procedure 

may have been severely impeded if an actual non-corrupted 

pixel is incorrectly identified due to a greater false-hit value. 

Table 1 shows that with the proposed method, the false-hit 

numbers are much reduced, demonstrating that the work's 

strength factor may undoubtedly aid in achieving better 

removal outcomes. Secondly, the proposed algorithm 

performed significantly better than those of the state-of-the-art 

approaches, as shown in Tables 3 and 4 with respect to major 

two metrics (PSNR and SSIM). In addition, Manhattan 

Distance and SSIM were used in the development of a Fuzzy 

Inference System that produced an 'IV' that determined the 

effect of local as well as nearby adjoining windows' non-noisy 

pixels on the inspected noisy pixel. As seen in Table 1, "miss" 

and "false-hits" had an enormous influence on the detection 

results. To get the best results, the algorithm is run three times 

for each different noise density, and only very little variations 

in the results are seen, defining the method's stability. In 

furthermore, the proposed work has been tested on a variety of 

images with varying levels of noise, some of which are 

displayed in Tables 5 and 6. It is clear that the suggested 

strategy performed well on diverse images that were 

completely unrelated to each other. Furthermore, the choice of 

cluster size and window size during the K-medoid clustering 

phase and the whole operation is critical since the noise might 

be random in nature. In Table 8, a variety of cluster 

modifications and their impact on the final result have been 

shown, and as a result, the ideal size of the cluster has been 

selected. In a similar fashion, the differences in window size 

and the results of those variations have been depicted in Table 

7, and the best combination being found. Rigorous testing has 

been performed on a number of different combinations in 

order to identify the one that is acceptable for picking both the 

cluster size and the window sizes. 

 

4.2 Advantages of work 

 

In comparison to other partitioning methods, the K-medoid 

Algorithm is quick, capable of approximating in a defined 

sequence of steps, and is significantly less prone to outliers. 

Additionally, Fuzzy logic is a natural option to handle the 

random aspect of impulse noises since it is designed to deal 

with ambiguous and uncertain circumstances. Moreover, the 

proposed method also considered influential non-local non-

noisy pixels as an option during the fuzzy implementation for 

the impulse noise reduction strategy, in addition to the local 

non-noisy pixels. When taken as a whole, the quantitative and 

qualitative findings show that the suggested method 

outperforms the state-of-the-art filters. 

 

4.3 Limitations of work 

 

The first k medoids are selected at random, thus subsequent 

iterations using the same data may yield different outcomes 

but the deviation is negligible. The succeeding rounds of K-

medoid based detection combined with the fuzzy inference 

system to produce the final result is a precise but time-

consuming process. Overall, the suggested strategy produces 

better results across the board but at the expense of time. 

 

 

5. CONCLUSIONS 

 

This work presented a seamless combination of K-medoid 

clustering-based noise detection with fuzzy logic-based noise 

reduction. During the detection phase, K-medoid clustering is 

used for establishing cluster identification to select the most 

effective cluster that divided non-noisy and noisy pixels. After 

that, a mix of local and global fuzzy criteria was used to 

replace the noisy pixels in the removal technique. K- medoid's 

use in the detection process boosted the suggested strategy in 

its first stages. The ability of its rigorous similarity-oriented 

grouping to differentiate exactly between noisy and non-noisy 

pixels boosted the recommended technique and minimized the 

propensity toward blurring. Additionally, the significance of 

non-local non-noisy pixels' influence on noise removal 

established a standard that opened up new possibilities for the 

area of image restoration. On the basis of detection accuracy 

by K-medoid clustering and fuzzy logic's intrinsic capacity to 

create near correct results from the uncertain dataset, together 

with the use of non-local neighboring non-noisy global pixels 

influence in the filtering scheme, the proposed filter is distinct 

from and more effective than the state-of-the-art filters. The 

effectiveness of the method is evaluated on a variety of images 

in terms of the PSNR and SSIM metrics. Additionally, the 

window size and cluster size selection processes have been 

analyzed and validated for their respective effectiveness. The 

suggested KMDCIFF has been found improved to the other 

recent filters in a number of ways. In future, more accurate 

results may be achieved with new optimized procedures by 

developing new technology that raises the PSNR value of the 

restored image. In addition, we would want to do in-depth 

research minute edge detection principles and on the many 

other categories of noise patterns. The article has no conflicts 

of interest for the authors. 
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