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This paper presents the proposal of a stable non-consensus opinion model in an infinitely 

branched fractal network, analyzing how its percolation properties are affected and based 

on the Ising model that allows the stable coexistence of three states, forming two groups of 

agents that hold contrary opinions and a third group that assumes a state of indecision The 

model is structured in a Sierpinski folder 𝑆3
1 in which its fractal attributes are characterized

by the dimensions of Hausdorff (DH), topological Hausdorff (DtH) and the spectral 

dimension (ds) since in these the values of the critical exponents of percolation are 

determined by the set of numbers of the dimensions (DH, DtH, ds), rather than solely by 

spatial dimension (d). Our findings suggest that starting from a random distribution of 

agents to which initial conditions are given, and employing a stable opinion dynamic 

through numerical simulation to calculate the percolation threshold and its critical 

exponents, the kind of universality to which the model belongs is determined and how the 

fractal characteristics in an infinitely branched network affect its percolation properties. 
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1. INTRODUCTION

Many of the characteristics studied in the collective 

behavior of systems are independent of the attributes of each 

and the details of their interactions [1]. This makes it possible 

to model the dynamics of large groups using the tools of 

statistical physics [2]. The hypotheses of the opinion models 

are based on the observation that the agents tend to make when 

exchanging their opinions, and it is these interactions that are 

the cause of the change of opinion towards a consensus or non-

consensus between them [1, 2]. One of the most used tools to 

analyze this type of phenomenon is the theory of percolation. 

The theory of percolation has been known for several 

decades [3, 4] and is the simplest fundamental model in 

statistical physics. It is typical to approach percolation theory 

as the study of a variety of chaotic and random systems that 

exhibit criticality [5, 6]. These complex and self-organized 

systems present interconnectivity between their individuals 

either through links or sites and are characterized by being 

based on simple discrete models, but mainly by the importance 

of the study of their percolation threshold characterized by 

their critical exponents that are independent of the geometry 

of the system [7-10]. However, it has been found that 

percolation thresholds in cells with the same topological 

constraint depend on fine details of the Structure of the same 

[11-13] this may indicate that cells with different thresholds 

belong to different classes of universality. 

This also implies that the work done to build universal 

formulas to predict percolation thresholds based on a small 

number of network characteristics with the spatial dimension 

and coordination number is not sufficient. Previously, Galam 

and Mauger [10] have provided estimates for various networks 

using the formula of the power law quantified by Eq. (1). 

𝑝𝑐 = 𝑝0𝑑
𝑏𝑞−𝑎 (1) 

where, the d-dimensional lattices are determined by the 

different values of the constants p0, a and b and by the 

topological restriction Eq. (2) [10]. 

𝑞 = (𝑑 − 1)(𝑍∞ − 1) (2) 

However, there are examples of networks with equal d and 

q, but with different percolation thresholds. Therefore, it 

seems likely that there are more classes of universality since 

Galam and Mauger specified that if there is a universal 

formula for percolation thresholds, it must be based on more 

information than d and q alone. 

In addition, it can be used to identify unknown percolation 

thresholds, since although it may indicate that meshes with 

different thresholds belong to different classes of universality 

this also makes the spatial dimension and the coordination 

number not enough to build a universal law. However, this can 

be useful for testing the effects of topology and connectivity 

on the information percolation threshold in similar networks 

[11-15]. 

The rest of the article is structured as follows: section 2 

addresses the main features of the sierpinsky folder and its 

related percolation network. Section 3 reports the numerical 

simulations performed in the sierpinsky folder. Section 4 

discusses the fractal effects that resulted in the simulations 

performed. Finally, section 5 describes the relevant 

conclusions Figure 1. 
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Figure 1. Algorithm representing the methodology of the system structure 

 

 

2. INFINITELY RAMIFIED NETWORKS 

 

Recent studies have shown that infinitely branched 

networks can be quantified by topology. Hausdorff dimension 

DtH [12]. 

Infinitely branched networks are determined by their order, 

which is defined as the smallest number of links ri at a point i 

that must be cut to isolate an arbitrarily large bounded set of 

points Ci connected to i. For the infinitely branched network, 

the number ri grows with the size of the network L of Ci as ri 

∝LQi, while for finitely branched networks all numbers ri are 

finite [16]. 

To characterize fractal geometry, van der Marck [13] 

introduced a new dimension number DtH, called the Hausdorff 

topological dimension this concept of dimension for metric 

spaces is defined by a combination of topological dimension 

and the Hausdorff dimension. Mandelbrot [16] defined that for 

a subset of a Euclidean space to be a fractal its topological 

dimension must be strictly smaller than its Hausdorff 

dimension. The value of the Topological Hausdorff dimension 

is always between the topological dimension and the 

Hausdorff dimension, in particular, this new dimension is a 

non-trivial lower estimate for the Hausdorff dimension. 

That is, regular d-dimensional meshes are characterized by 

DtH=d, while, in general in fractal geometry, DtH≤DH≤d [17], 

where DH is the Hausdorff dimension that regulates the scale 

of number of sites in the network with the network size N∝LDH. 

One of the most important fractal geometries is the 

Sierpinski carpet which is a generalization of the Cantor set in 

two dimensions [18-20]. It is universal for any compact object 

in the plane. Thus, any curve drawn in the plane with the 

intersections we want, however complicated, will be 

homeomorphic to a subset of the Sierpinski carpet. That can 

be built through an iterative process as follows. The square 

unit [1,0]2 is divided into nxn sub-frames of equal size and the 

interior of m2 sub-surfaces are removed. The same procedure 

is applied recursively to all remaining sub-surfaces 

indefinitely. The boundary area of the resulting network is 

equal to zero. Figure 1 shows two three- and four-step 

Sierpinski pre-fractal carpets Figure 2. 

 

 
 

Figure 2. Sierpinski carpet pre-fractal 𝑆3
1 3 steps 

 

With the number of interactions k increases the number of 

sites, in the carpet Nk are increased as Nk=(n2–m2) k, while the 

size of the folder (measured in the number of sites k) increases 

as the size of the folder Lk=nk. So the fractal dimension 

(Hausdorff) of is equal to Eq. (3). 

 

𝐷𝐻 =
ln(𝑛2 −𝑚2)

ln 𝑛
 (3) 

 

where, m tells us the number of copies of similarity and n tells 

us the magnification factor. 

The average number of coordination (average number of 

links per site) of increases with the number of iteration steps k 

as. Eq. (4) and (5). 

 

𝑍𝑘 = 𝑍∞ [1 − (
𝑛

𝑛2 −𝑚2
)] (4) 

 

𝑍𝑘 = 𝑍∞[1 − 𝑛−(𝐷𝐻−1)𝑘] (5) 

 

where, Eq. (6) and (7). 
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𝑍∞ = 4(
𝑛2 −𝑚2

𝑛2 −𝑚2 − 𝑛
) (6) 

 

𝑍∞ = 4
𝑛2 −𝑚2 − (𝑛 + 𝑚)

𝑛2 −𝑚2 − 𝑛
 (7) 

 

It is the average coordination number at the fractal boundary 

k→∞, while Zk is the average coordination number after k 

iterations [20]. It is important to deduce the rapid convergence 

of Zk to Z∞ after some iterations. 

From here we can see that the topological dimension of 

Hausdorff of the folder of sierpinky is equal to Eq. (8). 

 

𝐷𝑡𝐻 =
𝑙𝑛(𝑛 − 𝑚)

ln 𝑛
 (8) 

 

where, the second term on the right side equals the 

connectivity of folder 3 [21]. Of the Eqns. (3), (4) and (5) it 

follows that the average coordination number Z∞ of Smn is 

related to DH and DtH as Eq. (9). 

 

𝑍∞ = 4
1 − 𝑛1−2𝐷𝑡𝐻

1 − 𝑛1−2𝐷𝐻
 (9) 

 

In addition, the phenomenological relationship for the 

spectral dimension Eq. (10) [21]. 

 

𝑑𝑠 = 2
ln(𝑛2 −𝑚2)

ln(𝑛2 +𝑚2)
 (10) 

 

which provides good estimates for the standard Sierpinski 

folder. Consequently, the standard Sierpinski folder is 

characterized by Eq. (11). 

 

𝐷𝑡𝐻 < 𝑑𝑠 < 𝐷𝐻 < 𝑑 = 2 (11) 

 

In this regard, it is pertinent to note that the rapid 

convergence of Zk to Z∞ allowing us to observe fractal effects 

in Sierpiski pre-fractal carpets after a few iterations (see, for 

example, Refs. [13, 21-28]). 

 

 

3. NUMERICAL SIMULATIONS OF THE SYSTEM 

 

To simulate the system, the pre-fractal Sierpinski carpet 𝑆3
1 

was changed in an interval of 1<N<567 nodes randomly 

distributed over the entire network in such a way that each 

node represents an agent which only interacts with its closest 

neighbors, while that said node is soon assigned any of two 

states, considering that the nodes with a third state are 

distributed in the rest of the population; a cycle is considered 

as the process carried out by N interactions between agents. 

This system is based on a non-consensus NCO model that 

shows new states in which the stable relationship of a 

reduction in agents produces percolation of majority opinions. 

This stable state is reached from an initial random 

configuration after the application of a dynamic process 

according to the increase in the number of agents in a relatively 

short time. 

It is intended to demonstrate that, when the population of an 

opinion is above a certain critical threshold, even a minority, a 

large group extension of a proportional size percolates to the 

total population. Using increasingly large simulations, it is 

shown that the phase transition in the NCO model belongs to 

the same universality class [29-31], since agents who have the 

same opinion form a group, where each member of the group 

will be part of a cluster holding its opinion, and that over time 

each cluster stabilizes at a percolating cluster saturation. The 

basic hypothesis of the proposed NCO model is that its 

formation is a process where an agent's opinion is influenced 

both by his own current opinion and by that of his nearby 

agents represented as nearest neighbors in the network [32]. 

 

 
 

Figure 3. Sierpinski S31 folder design in Net logo 

 

The system was developed in the Net logo Figure 3 

simulator, carrying out for this purpose the design and 

programming of a two-dimensional Sierpinski S31 folder with 

N agents where the initial distribution of active Agents is 

always random, with active and non-active agents respectively. 

To which a dynamic is applied to analyze their behavior. 

 

 
 

Figure 4. Evolution of the 𝑆3
1 network at the percolation 

threshold with 375 participants a) Initial condition b) 

Application of dynamics c) Start of percolation d) 

Percolation of the network 
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The model was worked on in the Sierpinski carpet, its 

behavior analysis in the simulations was based on its borders 

to find the moment when the network reaches the percolation 

threshold, an average result of 1000 simulations is reported for 

each governed point. By the update rule of 1<ai<500 where ai 

is the number of agents for each case. 

Figure 4 illustrates the evolution of the simulation process 

for the particular case of a network 𝑆3
1. In (a) the Sierpinski 

folder is shown in its initial position, in (b) the random spatial 

initial distribution is shown with 375 agents applying the 

dynamics to simulate the active and non-active agents, in (c) 

the moment in which the agents begin the initial behavior 

process at the network border, in (d) the final state of the 

configuration is shown when the percolation threshold is 

reached. 

 

 

4. BEHAVIOR OF THE SYSTEM IN A STABLE 

OPINION DYNAMIC 

 

The analysis of the distribution in the size of the cluster is 

very important since it is a very powerful tool in the 

investigation of percolation transitions. The simulations we 

perform take us to a constant scale of enlargement associated 

with a valid percolation transition under fractal dimensions 

since we are interested in the effect of fractal attributes on the 

filtration threshold in the Sierpinski carpet and universal 

checking as seen in the universal formula Eq. (12). 

 

𝑝𝑐 = 𝑝0𝑑
𝑏𝑞−𝑎 (12) 

 

The results support the assumption for the distribution size 

distribution of the cluster, provides a correction scale that must 

be taken into account in the discussion of the scale functions 

[33], so to generalize the Eq. (1) in fractal networks, we need 

to estimate percolation thresholds in Sierpinski carpets with 

similar accuracy. It is interesting to note that there is no fixed 

percolation point on the Sierpinski carpet, so the average 

percolation number is given by Eq. (13). 

 

𝑝𝐴 = 𝑝𝑐 + λ𝐿𝑘
−𝜔 (13) 

 

Which increases with the increase in the size of the folder 

Lk = nDH /k. Consequently, one can define an apparent 

percolation at the pA threshold (Zk) that is expected to 

decrease with the number of iteration steps k as [33], Eq. (14). 

 

𝑝𝐴 =𝑝𝑐 + λ𝐿𝑘
−𝜔 (14) 

 

where, pC is the percolation threshold in is the fractal limit of 

k→∞, λ is the constant, while the scale exponent is found to be 

ω>1/ν [33]. And where the average coordination number 

converges to Z∞ exponentially where the dependency size (10) 

becomes negligible with respect to the accuracy required after 

a few iterations. 

On the other hand, it is found that for percolation in 

sierpinski's prefactal folder 𝑆𝑚
𝑛 with 3≤k≤6 iterations (L6=567 

and Z∞-Z6<0.0089) [33]. This gives us the foundation that 

allows us to use Finite Size Scaling Analysis to estimate 

critical exponents and percolation threshold pC with the 

required accuracy. 

In the simulations, our amplitude search algorithm was 

determined by the spaces of the folders that were occupied one 

by one in random order starting with the empty state. The sites 

occupied in the transition formed contiguous clusters in the 

sense of with the first neighboring connectivity which 

determined a percolation pc=0.758 that provides a clear 

confirmation of a branch of the exponential function [34]. 

Based on this we can define S as the size of the cluster as a 

number of sites in it. On the other hand, the cluster expansion 

interval is defined as the cluster spanning the Lk size of the 

folder through either the horizontal or vertical directions, or 

both. [35, 36]. We calculate the interval expansion of 

probability as Eq. (15). 

 

𝑅𝐿(𝑝) = 0.5(𝑅𝐿
ℎ + 𝑅𝐿

𝑉) (15) 

 

where, 𝑅𝐿
ℎ 𝑦𝑅𝐿

𝑉  are the probabilities that the folder cluster 

expansion intervals along the horizontal and vertical directions, 

respectively (See Figure 5). 
 

 
 

Figure 5. Probability of branching RL compared to 

probability p for a Sierpinski carpet 𝑆3
1 for 3<k<5 

 

The limit of L=∞, the probability of expansion RL(p) is a 

step of the function that jumps from RL (p<pC)=0 to 

RL(p>pC)=1 that moves from close to zero to places close to 

one, where the theory of re-normalization defines the critical 

point as a fixed point RL (pC)=pC [37]. As the size of the limits 

depends on the grid of the finite size network where pc(L) 

converges to pC as Eq. (16). 
 

|𝑝𝑐(𝐿) − 𝑝𝑐| ∝ 𝐿−1/𝑣 (16) 
 

where, ν is the critical exponent that governs the correlation 

length ξ∝|p-pC|−ν [37]. A equality RL(pc)=pc can fail due to 

system conditions however it can be calculated by limit pa (c, 

L) defined as Eq. (17). 
 

𝑅𝐿(𝑃𝐴) = 𝐶 (17) 
 

For 0<c<1 [37]. Where the dependence of the network size 

on the apparent critical concentration can be adjusted as Eq. 

(18). 
 

𝑝𝑐(𝐿, 𝐶) = 𝑝𝑐 + 𝐶1𝐿
−1/𝑣 + 𝐶2𝐿

−2/𝑣 (18) 
 

where, c1(C) and c2(C) are adjustment parameters (see Ref. 

[37]). Therefore, the probability expansion intevalos that are 

covered in the pre-fractal folders𝑆𝑚
𝑛  (k) with sufficiently large 

k can be well collapsed into a single curve at coordinates, Eq. 

(19). (See Figure 6). 
 

(𝑅𝐿 , 𝑋) = [𝑝 − 𝑝𝑎(𝑘, 𝐶)]𝐿
1−𝑣 (19) 

 

while, pa(k, C) is defined as RL(PA)=C. After running the 

simulations, the values of pa(k, C) were determined for various 

values of C. We then used the collapsing probabilities of 

expansion. 
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Figure 6. Collapse of RL probability in a Sierpinski prefactal 

for pa defined by Eq. (19) with C=-0.01 

 

 

5. DATA ANALYSIS AND RESULTS 

 

Our findings suggest that starting from a random 

distribution of agents given initial conditions, and using stable 

opinion dynamics through numerical simulation to compute 

the percolation threshold and its critical exponents, the 

universality class at which that the model belongs to and how 

fractal features in an infinitely branched network affect its 

percolation properties. 

For this system, the critical exponents, α, τ, were determined 

using the scaling method of the total number of clusters Eq. 

(20). 

 

𝑁𝐿𝑝(𝑐)𝛼𝐿𝑘
(2−𝛼)/𝑣

 (20) 

 

Such a relationship can be derived from the assumption that 

the scale for the cluster distribution size is usually written Eq. 

(21). 

 

𝑛𝑠(𝑝) = 𝑠−𝜏𝑓±(𝑠|𝑝 − 𝑝𝑐|
1/𝜎) (21) 

 

where, f± are scale functions associated with the two sides of 

the critical point, τ the Fisher exponent and σ another exponent 

[30]. From which it is seen that the cluster size distribution is 

Eq. (22). 

 

𝑛𝑠(𝑝𝑐)𝛼𝑠
−𝜏 (22) 

 

And the average size spanning the cluster is Eq. (23). 

 

𝑆(𝑝𝑐)𝛼∑𝑠2 𝑛𝑠(𝑝𝑐)𝛼𝐿𝑘
𝛾/𝑣

 (23) 

 

To make sure of the veracity between the numerical values 

of the critical exponents, we verify that the following relation 

Eq. (24). 

 

𝛼 + 2𝛽 + 𝛾 = 2 (24) 

 

Consequently, the percolation threshold p(c) and the critical 

exponents τ and γ are calculated using the following 

hyperscale relationships Eq. (25). 

 

𝛾 = 𝐷𝐻𝑣 − 2𝑣 (25) 

 

And the Eq. (26). 

 

𝐷𝑐 = 𝐷𝐻−𝛽/𝑣 (26) 

 

From the above equations we can perform a calculation of 

the critical exponent τ is enough to confirm the hyperscale 

relationship [6] Eq. (27). 

 

𝜏 = 1 + 𝐷𝐻/𝐷𝑐 (27) 

 

The values of obtained from the scaling behavior for a non-

consensus network are reported in the Table 2. 

The data found in the table for the Sierpinski 𝑆𝑛
𝑚 NO folder 

It does lead us to the fact that the irregular trellises and the 

percolation of bonds that occurs between them belongs to a 

kind of universality of random percolation, where the spatial 

dimension d was determined by the critical exponents, from 

which it is inferred that, if for two systems of the same spatial 

dimension d the critical exponents are different, then these 

systems belong to different kinds of universality [6, 31]. 

However, in their generalization the critical exponents in 

their universal form (Table 1) can also depend on other 

fundamental attributes of the system as can be seen in Table 2 

and compared with the data reported in the references [37, 38] 

point out that the values of the critical exponents of random 

percolation are defined by the Dimensions (DtH, DH, ds) that 

define the network, rather than just by d. Also, esot determines 

that the hyper dependence relations between the critical 

exponents found in Table 2 are governed by the Hausdorff 

dimension DH. 

Therefore, our findings indicate that percolation in infinitely 

branched Sierpinski carpets from the data found in Table 2, 

suggest that the site filtration thresholds of standard Sierpinski 

folders can be adjusted by generalized Eq. (1) if the dimension. 

 

Table 1. Site percolation thresholds and critical exponents 

reported in the literature for three infinitely ramified 

Sierpinski carpets (Hausdorff carpets) 

 
Property Reference Sierpinski carpet  

  𝑆3
1 𝑆4

2 𝑆5
3 

DH Eq. (3) Ln8/ln3 Ln12/ln4 Ln16/ln5 

     

pc [39] 0.85 0.92 0.95 

 [40] -- -- 0.815 

 [41] 0.6898 -- 0.8273 

 [42] 0.759 <0.864 -- 

 This work 
0.758+ 

0.002 

0.858+ 

0.004 

0.914+ 

0.004 

     

γ [39] 2.13 2.43 2.69 

 [40] 1.718 -- 1.937 

 [41] 2.194 -- -- 

 [42] 1.786 <2.5 -- 

 This work 
1.790 + 

0.007 

2.65+ 

0.004 

2.40 

+0.005 

     

β [39] 0.27 -- -- 

 [43] 0.234 -- -- 

 [42] 0.115 >0.066 -- 

 This work 
0.114+ 

0.004 

0.067+ 

0.003 

0.001+ 

0.003 

     

Dc [43] 1.828 1.766 -- 

 This work 1.829 1.767 1.718 
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Table 2. Values obtained from the scaling behavior for a non-consensus network 

 
 Square Lattice WPLS Sierpinski carpet    

   𝑆5
1 𝑆3

1 𝑆3
1 NC 𝑆4

2 𝑆5
3 

DH 2 2 1.9746… 1.8927… 1.8927… 1.7924… 1.7227… 

DtH 2 2 1.8613… 1.6309… 1.6309… 1.5 1.4306… 

Z∞ 4 5.33 3.7894… 3.2 3.2 3 2.9090… 

qtH 3 4.33 2.402… 1.388 1.388 1 0.822 

Pc 0.592745 0.527 0.634+ 0.004 0.758+ 0.002 0.758+ 0.002 0.858+ 0.004 0.914 + 0.004 

Ds 2 <2 1.951 1.806 1.806 1.659 1.572 

DH - DtH 0 0 0.1133 0.2619 0.2619 0.2925 0.2920 

γ 4/3 1.635 1.50 + 0.01 1.790+ 0.007 1.825 +0.007 2.65+ 0.04 2.40 + 0.05 

β 5/36 0.222 0.134+ 0.004 0.114+ 0.004 0.195+ 0.004 0.67+ 0.003 0.011+ 0.003 

ϒ 43/18 2.825 2.69 3.16 3.062 4.6 4.1 

α -2/3 -1.27 -0.97 -1.4 -1.4536 -2.75 -2.1 

τ 187/91 2.072 2.05 + 0.05 2.03 + 0.05 2.06+ 0.05 2.01+ 0.04 2.00+ 0.02 

Dc 91/48 1.864 1.885 1.829 1.7854 1.767 1.718 

 

We also found that the data shown in Table 2. found in the 

simulations confirm that there are minimal differences 

between the pC values and their critical exponents of the 

sierpisky 𝑆𝑛
𝑚=folders. =0.758 and the folder 𝑆𝑛

𝑚NO=0.858 

obtained in numerical simulations and calculated with Eqns. 

(1), (24), and (25) and these are in the commonly accepted 

range for the application of approximate threshold by 

universal formulas (see Refs. [32, 33]). Indicating that the 

dimension number relevant to the percolation threshold is the 

Topological Hausdorff dimension. 

This confirms our initial hypothesis that starting from a 

random distribution of agents with certain initial conditions, 

and using a stable opinion dynamic by means of numerical 

simulation to calculate the percolation threshold and its critical 

exponents, the universality class to which the model belongs 

is checked and how the fractal characteristics in an infinitely 

branched network affect its percolation properties. 

 

 

6. CONCLUSIONS 

 

We found that filtration thresholds and critical exponents 

were determined for standard Sierpinski folders 𝑆𝑛
𝑚 infinitely 

branched from a random distribution of agents given the initial 

conditions, and using stable opinion dynamics by numerical 

simulation to calculate the filtration threshold and its critical 

exponents meet the kind of universality for which the non-

consensual opinion model belongs and validate the fractal 

characteristics in an infinitely branched network derived from 

its percolation properties. 

It was also found that data from two-dimensional 

simulations and networks reported in the literature show that 

percolation in infinitely branched Sierpinski carpets suggest 

that Sierpinski folder site filtration thresholds infer that a 

universality exists. This was based on the fact that the 

percolation values of the component critical exponents 

immersed in a random percolation universality class are 

determined by the established dimensions (DH, DtH, ds), 

rather than solely by the spatial dimension (d). on the other 

hand it was inferred that the hyper scalability relationship 

between the critical exponents is governed by the Hausdorff 

dimension of the network. Therefore, we discuss that the 

percolation site in infinitely branched Sierpinski carpets (DtH, 

ds, DH) concerns the universality class of random percolation, 

and that the values of the critical exponents of percolation are 

functions of DtH, DH, and ds. 

In summary it was confirmed that the hyperscalability 

relationship between the critical exponents is governed by the 

Hausdorff dimension of the network, thus validating the non-

consensual opinion model using a percolation site in 

Sierpinski carpets in infinitely branched networks belonging 

to the universality class of random percolation comparing it 

with previously reported results, while the values of the critical 

exponents of percolation are functions of the aforementioned 

dimensions. So, in the context of the site's filtering threshold, 

these networks belong to the same kind of universality. 

 

 

REFERENCES  

 

[1] Galam, S. (1999). Application of statistical physics to 

politics. Physica A: Statistical Mechanics and its 

Applications, 274(1-2): 132-139. 

https://doi.org/10.1016/S0378-4371(99)00320-9 

[2] Galam, S. (2004). The dynamics of minority opinions in 

democratic debate. Physica A: Statistical Mechanics and 

its Applications, 336(1-2): 56-62. 

https://doi.org/10.1016/j.physa.2004.01.010 

[3] Broadbent, S.R., Hammersley, J.M. (1957). Percolation 

processes: I. Crystals and mazes. In Mathematical 

Proceedings of the Cambridge Philosophical Society, 

53(3): 629-641. 

https://doi.org/10.1017/S0305004100032680 

[4] Domb, C. (1959). Fluctuation phenomena and stochastic 

processes. Nature, 184(4685): 509-512. 

[5] Essam, J.W. (1980). Percolation theory. Reports on 

Progress in Physics, 43(7): 833. 

https://doi.org/10.1088/0034-4885/43/7/001 

[6] Stauffer, D., Aharony, A. (2018). Introduction to 

Percolation Theory. Taylor & Francis. 

[7] Vogel, E.E., Lebrecht, W., Valdés, J.F. (2010). Bond 

percolation for homogeneous two-dimensional lattices. 

Physica A: Statistical Mechanics and its Applications, 

389(8): 1512-1520. 

https://doi.org/10.1016/j.physa.2009.12.049 

[8] Ziff, R.M., Newman, M.E.J. (2002). Convergence of 

threshold estimates for two-dimensional percolation. 

Physical Review E, 66(1): 016129. 

https://doi.org/10.1103/PhysRevE.66.016129 

[9] Lebrecht, W. (2010). Umbrales de percolación exactos 

en redes duales. Revista Mexicana de fÍsica E, 56(2): 

190-196. 

[10] Galam, S., Mauger, A. (1996). Universal formulas for 

percolation thresholds. Phys. Rev. E, 53(1996): 2177-

772



 

2181. https://doi.org/10.1103/PhysRevE.53.2177 

[11] van der Marck, S.C. (1997). Comment on “Universal 

formulas for percolation thresholds”. Physical Review E, 

55(1): 1228-1229. 

https://doi.org/10.1103/PhysRevE.55.1228 

[12] Suding, P.N., Ziff, R.M. (1999). Site percolation 

thresholds for Archimedean lattices. Physical Review E, 

60(1): 275-283. 

https://doi.org/10.1103/PhysRevE.60.275 

[13] van der Marck, S.C. (1997). Percolation thresholds and 

universal formulas. Physical Review E, 55(2): 1514-

1517. https://doi.org/10.1103/PhysRevE.55.1514 

[14] Van der Marck, S.C. (1998). Calculation of percolation 

thresholds in high dimensions for FCC, BCC and 

diamond lattices. International Journal of Modern 

Physics C, 9(04): 529-540. 

https://doi.org/10.1142/S0129183198000431 

[15] Kawamoto, H., Takayasu, H., Takayasu, M. (2017). 

Network anatomy controlling abrupt-like percolation 

transition. Scientific Reports, 7(1): 1-8. 

https://doi.org/10.1038/s41598-017-00242-4 

[16] Gefen, Y., Aharony, A., Mandelbrot, B.B. (1984). Phase 

transitions on fractals. III. Infinitely ramified lattices. 

Journal of Physics A: Mathematical and General, 17(6): 

1277-1289. https://doi.org/10.1088/0305-4470/17/6/024 

[17] Balka, R., Buczolich, Z., Elekes, M. (2015). A new 

fractal dimension: The topological Hausdorff dimension. 

Advances in Mathematics, 274: 881-927. 

https://doi.org/10.1016/j.aim.2015.02.00 

[18] Torquato, S., Jiao, Y. (2013). Effect of dimensionality on 

the percolation threshold of overlapping nonspherical 

hyperparticles. Physical Review E, 87(2): 022111. 

https://doi.org/10.1103/PhysRevE.87.032149 

[19] McMullen, C. (1984). The Hausdorff dimension of 

general Sierpiński carpets. Nagoya Mathematical Journal, 

96: 1-9. https://doi.org/10.1017/S0027763000021085 

[20] Hsiao, P.Y., Monceau, P., Perreau, M. (2000). Magnetic 

critical behavior of fractals in dimensions between 2 and 

3. Phys. Rev. E, 62(2000): 13856. 

https://doi.org/10.1103/PhysRevB.62.13856 

[21] Balankin, A.S. (2017). The topological Hausdorff 

dimension and transport properties of Sierpiński carpets. 

Physics Letters A, 381(34): 2801-2808. 

https://doi.org/10.1016/j.physleta.2017.06.049 

[22] Galam, S., Mauger, A. (1997). Universal formulas for 

percolation thresholds. II. Extension to anisotropic and 

aperiodic lattices. Physical Review E, 56(1): 322-325. 

https://doi.org/10.1103/PhysRevE.56.322 

[23] Wierman, J.C. (2002). Accuracy of universal formulas 

for percolation thresholds based on dimension and 

coordination number. Physical Review E, 66(2): 027105. 

https://doi.org/10.1103/PhysRevE.66.027105 

[24] Galam, S., Mauger, A. (2005). Possible crossover of a 

nonuniversal quantity at the upper critical dimension. 

Physical Review E, 71(3): 036136. 

https://doi.org/10.1103/PhysRevE.71.036136 

[25] Wierman, J.C., Naor, D.P., Smalletz, J. (2007). 

Incorporating variability into an approximation formula 

for bond percolation thresholds of planar periodic lattices. 

Physical Review E, 75(1): 011114. 

https://doi.org/10.1103/PhysRevE.75.011114 

[26] Neher, R.A., Mecke, K., Wagner, H. (2008). Topological 

estimation of percolation thresholds. Journal of 

Statistical Mechanics: Theory and Experiment, 2008(01): 

P01011. https://doi.org/10.1088/1742-

5468/2008/01/P01011 

[27] Rahman, M.M., Hassan, M.K. (2017). Explosive 

percolation on a scale-free multifractal weighted planar 

stochastic lattice. Physical Review E, 95(4): 042133. 

https://doi.org/10.1103/PhysRevE.95.042133 

[28] Newman, M.E.J., Ziff, R.M. (2000). Efficient Monte 

Carlo algorithm and high-precision results for 

percolation. Physical Review Letters, 85(19): 4104. 

https://doi.org/10.1103/PhysRevLett.85.4104 

[29] Kosior, A., Sacha, K. (2017). Localization in random 

fractal lattices. Physical Review B, 95(10): 104206. 

https://doi.org/10.1103/PhysRevB.62.13856 

[30] Monceau, P., Hsiao, P.Y. (2004). Percolation transition 

in fractal dimensions. Physics Letters A, 332(3-4): 310-

319. https://doi.org/10.1016/j.physleta.2004.09.068 

[31] Zhu, Y., Yang, Z.Q., Zhang, X., Chen, X.S. (2015). 

Critical behaviors and universality classes of percolation 

phase transitions on two-dimensional square lattice. 

Communications in Theoretical Physics, 64(2): 231-236. 

https://doi.org/10.1088/0253-6102/64/2/231 

[32] Galam, S., Mauger, A. (1998). Topology invariance in 

percolation thresholds. The European Physical Journal 

B-Condensed Matter and Complex Systems, 1(2): 255-

258. https://doi.org/10.1007/s100510050 

[33] Torquato, S., Jiao, Y. (2013). Effect of dimensionality on 

the percolation thresholds of various d-dimensional 

lattices. Physical Review E, 87: 032149. 

https://doi.org/10.1103/PhysRevE.87.032149  

[34] Hassan, M.K., Rahman, M.M. (2015). Percolation on a 

multifractal scale-free planar stochastic lattice and its 

universality class. Physical Review E, 92(4): 040101. 

https://doi.org/10.1103/PhysRevE.92.040101  

[35] Ziff, R.M., Newman, M.E.J. (2002). Convergence of 

threshold estimates for two-dimensional percolation. 

Physical Review E, 66(1): 016129. 

https://doi.org/10.1103/PhysRevE.66.016129 

[36] Yang, H. (2012). Alternative criterion for two-

dimensional wrapping percolation. Physical Review E, 

85(4): 042106. 

https://doi.org/10.1103/PhysRevE.85.042106 

[37] Lee, M.J. (2008). Pseudo-random-number generators 

and the square site percolation threshold. Physical 

Review E, 78(3): 031131. 

https://doi.org/10.1103/PhysRevE.78.031131 

[38] Monseau Hsiao, P.Y. (2004). Percolation transition in 

fractal dimensions. Physics Letters A, 332(3-4): 310-319. 

https://doi.org/10.1016/j.physleta.2004.09.068 

[39] Ben-Avraham, D., Havlin, S., Movshovitz, D. (1984). 

Infinitely ramified fractal lattices and percolation. 

Philosophical Magazine B, 50(2): 297-306. 

https://doi.org/10.108013642818408238847 

[40] Yu, B.M., Yao, K.L. (1988). Critical percolation 

probabilities for site problems on Sierpinski carpets. 

Zeitschrift für Physik B Condensed Matter, 70(2): 209-

212. https://doi.org/10.1007/BF01318301 

[41] Lin, Z.Q., Yang, Z.R. (1997). Thresholds and 

Universality of the Site Percolation on the Sierpinski 

Carpets1. Communications in Theoretical Physics, 27(2): 

145. https://doi.org/10.1088/0253-6102/27/2/145 

[42] Shinoda, M. (2003). Non-existence of phase transition of 

oriented percolation on Sierpinski carpet lattices. 

Probability Theory and Related Fields, 125(3): 447-456. 

https://doi.org/10.1007/s00440-002-0247-x 

773

https://doi.org/10.1088/0253-6102/64/2/231
https://doi.org/10.1103/PhysRevE.78.031131
https://doi.org/10.1016/j.physleta.2004.09.068
https://doi.org/10.108013642818408238847
https://doi.org/10.1007/BF01318301
https://doi.org/10.1088/0253-6102/27/2/145
https://doi.org/10.1007/s00440-002-0247-x


 

[43] Herega, A.N., Drik, N.G., Ugol'nikov, A.P. (2012). 

Hybrid ramified Sierpinski carpet: percolation transition, 

critical exponents, and force field. Physics-Uspekhi, 

55(5): 519. 

https://doi.org/10.3367/UFNr.0182.201205f.0555 

 

 

NOMENCLATURE 

 

m Number of copies of similarity 

n Magnification factor 

DH Dimensions of Hausdorff 

DtH Dimensions topological Hausdorff  

ds Spectral dimension 

Pc Percolation threshold 

Z∞ Average coordination number 

Q Topological constraint 

ZK Number of iteration steps k 

α,β, γ, τ Critical exponent 
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