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 Currently, the internet is growing at an exponential rate and can cover just some required 

data. However, the immense amount of web pages makes the discovery of the target data 

more difficult for the user. Therefore, an efficient method to classify this huge amount of 

data is essential where web pages can be exploited to their full potential. In this paper, we 

propose an approach to classify Web pages based on their textual content. This approach is 

based on an unsupervised statistical technique (TF-IDF) for keyword extraction (textual 

content) combined with a supervised machine learning approach, namely recurrent neural 

networks. 
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1. INTRODUCTION 

 

In recent years, the World Wide Web became the main 

source of data for human due it increased development. Indeed, 

the web has become an essential tool allowing easy and quick 

access to information for, research, learning, information and 

discovering new knowledge. It allows to better respond to the 

increasing internet user needs for information and knowledge. 

In addition, the internet users are increasingly overwhelmed 

by this volume made available to them [1]. Thus, the need to 

new methods and advanced tools to facilitate access and meet 

the needs of Internet users has prompted researchers to focus 

on the classification domain. This latter is used by human in 

his daily life when he tries to answer problems and questions 

about the category of objects, i.e. the assignment of objects to 

their class (by observing their formats, colors, sizes . . .etc.) 

[2]. 

Classification has a vital role in many web-based 

information management and retrieval tasks. The content page 

classification is essential for crawling targeted, assisted web 

directory development, subject-specific web link analysis, 

contextual analysis, advertising and analysis of the web's 

thematic structure. Classification of web pages can also 

improve the quality of web search [3]. 

The web pages classification is generally done by extracting 

the textual content of the page and ignoring HTML tags, CSS 

and JS code. So, it extracts the key data from the web page and 

then, it performs the classification. There are several web page 

classification approaches (supervised and unsupervised) and 

several automatic keyword extraction methods (supervised 

and unsupervised) [4]. Unsupervised methods are emerging 

methods with the particularity of abstracting from the 

specificity of the data processed [5], This abstraction is 

explained by approaches based on observations about what a 

keyword is in the general meaning: semantic importance, 

degree of information, syntactic structure [6]. 

In contrast to unsupervised methods, supervised methods do 

not use properties defined from statistical and linguistic 

features, but they use decision models learned from these 

features, calculated on the keywords of a learning corpus. 

The use of a learning corpus implies that the learned models 

are specific to the disciplinary domain and language. This 

specificity can be advantageous when the domain and the 

language that represents the corpus are the same for the 

documents that are then analyzed. Otherwise, the results of the 

extraction can suffer. 

In this paper we propose an approach for web pages 

classification based on supervised machine learning approach, 

namely recurrent neural networks (RNN)for classification and 

unsupervised statistical technique named Term Frequency-

Inverse Document Frequency (TF-IDF) for the extraction of 

keywords from pages. 

The remainder of this paper is structured as follows: related 

works about the problem of the web pages classification are 

presented in section 2. Section 3 describes the proposed, 

architecture, and its functionality. Then in Section 4, we 

present some experimental results. Finally, our conclusion and 

direction for future works are summarized at the end of this 

paper. 

 

 

2. RELATED WORKS 

 

Nowadays, the classification of web pages has become a 

very important issue. Indeed, many studies have been 

developed for this purpose in the literature. A Web page has 

different types of features. According to these features, 

Hashemi [7] has divided the research works in the web pages 

classification field into three kinds: Text-based, image-based, 

and combined usage of text-based and image-based features. 

However, Aydos et al. [8] divided web pages classification' 

related works into four main groups: (1) Textual 

classifications: URL address, text content, title, HTML 
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description HTML code, etc. (2) Visual classification: images, 

design, videos, etc. (3) Graph-based classifications: hyperlink 

structures, neighbor web sites. (4) And other information: user 

behaviors, web directories, semantic web, raw data of domain 

(IP address, owner, hosting server, hosting country) [8]. Since, 

our paper lies in text-based classification category, we will 

focus, in this section, on text-based related works. 

Among works text-based web pages classification, we can 

cite the following ones.  

Alamelu and Santhosh [9] suggested a method to classify, 

automatically, Web pages without using the entire information 

of these latter. Indeed, they used only a minimum number of 

representative features that they extracted from a web page. In 

addition, the authors had modeled machine learning classifiers 

using the selected features. The experimental results proved 

that there was good improvement in classification accuracy. 

Su et al. [10] have built a prediction system for web page 

ranking. Indeed, they proposed a new method of classification 

where they researched keyword density and keyword position 

in the web page content. They also defined their impacts on 

rankings by using the notion of optimal keyword frequencies.  

Hashemi [7] presented methods of web page classification 

and usage scenarios in which a machine learning algorithm 

was used to classify web pages in predefined categories based 

on features extracted from text and HTML tags. As results, the 

author asserted that HTML tags play an important role in 

methods that use keyword frequencies to identify web page 

categories.  

Li et al. [11], for classifying web spams, used the deep belief 

networks (DBN) for the first time. Then, it was combined with 

the Synthetic Minority Over-Sampling Technique (SMOTE) 

and De-Noising Auto-Encoder (DAE) algorithm after the 

multi-aspect research and consideration. According to authors, 

the proposed method had improved the classification 

performance of web spam, and the results showed that the 

classification method proposed in their paper improves the 

classification performance to a certain extent, which provides 

a good direction for the future classification of web spam. 

Duari and Bhatnagar [12] proposed a supervised framework 

for automatic keyword extraction from single document. For 

this, they had modeled the text as complex network. Then, they 

had constructed the feature set by extracting selected node 

properties from it. The authors exploited several node 

properties, by using unsupervised graph-based keyword 

extraction methods, to discriminate keywords from non-

keywords. In addition, they had exploited the complex 

interplay of node properties to design a supervised keyword 

extraction method. The study of the results has shown that the 

proposed method performs better in most cases.  

Balim and Özkan [13], a deep learning based model was 

proposed for functional classification of web pages, regardless 

of language. The authors used Transfer Learning to reduce the 

cost during the feature extraction process from recorded web 

page images. In addition, they presented results of two 

different experiments to show the effectiveness of their 

method. 

Salminen et al. [14] used machine learning algorithms to 

predict web page rank for pages in the e-commerce gift 

industry. They researched 30 blogs in the selected industry that 

occupied first-page Google ranking. Two machine learning 

models (LightGBM and XGBoost) had been tested and 

conducted feature analysis. This led to the conclusion that the 

features that had most impact are links, domain security, and 

H3 headings. However, other keyword-related frequencies 

were not shown as significant.  

Lee et al. [15] proposed a novel simplified swarm 

optimization (SSO) to learn the best weights for every feature 

in the training dataset and adopted the best weights to classify 

the new web pages in the testing dataset. They had applied a 

Taguchi method to determine the parameter settings because 

these latter has an important role in the update mechanism of 

SSO. In order to demonstrate the effectiveness of their 

algorithm, they compared its performance with that of the 

genetic algorithm (GA), Bayesian classifier, and K-nearest 

neighbor (KNN) classifiers according to four datasets. 

According to authors, the experimental results indicate that the 

SSO yields better performance than the other three approaches. 

El-Hajj and Hajj [16] addressed the selection problem for 

classification. They had suggested a one-step method designed 

to select the subset of features. The authors formulated, 

mathematically, the selection as an optimization problem with 

the objective of maximizing classification accuracy while 

simultaneously deriving and choosing the most discriminative 

features. The authors proposed a statistical-based feature 

selection method (MFX) that considers all documents from the 

same category as one extended document, and chooses the 

most discriminative terms that are frequent and common 

across all documents of the same category, but rarely present 

in other categories. According to the authors, MFX is language 

independent and backed up with a mathematical formulation 

that finds the optimal number of features that guarantees 

accurate text categorization. The results indicated that MFX 

always performed similar to or better than other well-known 

feature selection methods. 

Yu et al. [17] used, at first, the keyword-weight calculation 

method to reduce the impact of a small number of high-

frequency words in the web page document on the weight 

calculation. It also allowed reducing the value of the low-

frequency word weights so that the WPCA (Web Page 

Classification Algorithms) is more accurate in the calculation 

process. Secondly, they used Chinese web pages, calculated 

the similarity between the text to be classified and all the class 

templates, and then determines the category of all texts 

according to the similarity and certain classification rules. 

Finally, in order to improve the learning rate of DL (Deep 

Learning), the authors considered the use of adaptive 

parameters. The authors proved through this study that WPCA 

based on DL are more efficient, consume less system memory 

and faster than traditional algorithms. 

 

 

3. PROPOSED APPROACH 

 

With the increase of the Internet users number, the growth 

of websites is proportional. As a result, the ranking of web 

pages has become a huge topic of research in recent years. This 

has made an ever-increasing demand for automated 

classification techniques with high classification accuracy. In 

this context fails our contribution. This latter consists to 

develop a web page classification approach based on keyword 

extraction method and machine learning.  

To reach this goal, we present in the first subsection the 

proposed architecture details. However, the second is devoted 

to the functionalities of this architecture. 

 

3.1 The architecture components 

 

In this subsection, we present the main components of our 
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architecture. As illustrated in the Figure 1, the proposed 

architecture is composed of two essential parts which are: (1) 

the extraction part: to extract keywords from a web page and, 

(2) the classification part: to classify web pages using a 

supervised machine learning approach, more precisely the 

recurrent neural networks. Between these two parts, there is a 

hidden component. Its role is to extract the first word from the 

obtained result (an ordered list of key words) of the first part, 

and it sends it to the second part (RNN) as an input. 

 

3.2 Functionality of the proposed approach 

 

In this subsection, we present the functionality of our 

approach to meet the target objectives. This is illustrated 

through a sequence diagram as shown in Figure 2.  

As mentioned above, we use a TF-IDF keyword extraction 

technique, and a supervised learning approach which is 

recurrent neural networks (RNN). We used TF-IDF technique 

to extract keywords from web pages. This technique allows to 

give as results keywords ordered, in an ascending way, 

according to their TF*IDF. Compared with other methods, the 

TF-IDF technique is easy to implement and very powerful, it 

can be applied in multiple languages using statistical 

translation and it provides the closest keywords; this is 

possibly because this method uses all the documents making 

up the corpus. In this paper, we applied this technique as it is 

defined in the literature. 

In the next sub-sections, we will explain, in detail, each part. 

 

3.2.1 Extraction part 

In the literature, there are several automatic keyword 

extraction methods. In our work, we choose to use an 

unsupervised statistical technique which is TF-IDF. This latter 

provides keywords closest to those formulated by the web 

pages designers on one hand, and it uses all the documents 

making up the corpus on the second hand. Bellow, the TF-IDF 

is explained in details. 

(a) TF-IDF technique 

TF-IDF (Term Frequency - Inverse Document 

Frequency): is a statistical measure that evaluates the 

relevance of a word for a document in a collection of 

documents [18]. 

 

 
 

Figure 1. General architecture 

 

 
 

Figure 2. Sequence diagram of the proposed approach 
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TF (Term Frequency): The frequency of a term is the 

number of occurrences of this term in the considered document; 

IDF (Inverse Document Frequency): The inverse 

document frequency is a measure of the importance of the term 

in the whole corpus; 

TF*IDF (Term Frequency - Inverse Document 

Frequency): Concerns the weight of a term T in a document 

D. It is calculated as follow: 

 

TF*IDF (Ti, Dj)=TF (Ti, Dj)*IDF (Ti) (1) 

 

where, TF (Ti, Dj): is the frequency of the term Ti in the 

document Dj; IDF (Ti) = log (N/ DF(Ti)); N: the total number 

of documents in the documentary base; DF(Ti): the number of 

documents containing the term Ti. 

(b) Extraction phases 

As shown in the Figure 2, the extraction part is composed 

of six phases, which are: 

Pretreatment phase: In this phase the inputs are a set of 

web pages, each of them contains a main content and a noisy 

content. Pretreatment is very important phase in the 

classification process because the construction of the model is 

based on the prepared data. Indeed, web pages that are not 

prepared correctly can result in a non-performing model. In 

this phase, the web page input is an html file. Thus, this latter 

contains tags, CSS code, Java scripts, etc., which are 

considered, in our context, as the noisy content. Therefore, the 

pretreatment phase consists to remove all HTML tags, CSS 

code, java script, as well as the special character strings 

(example @ h12-D*65), punctuations and digits. In addition, 

it transforms all upper case characters into lower case. (see 

Figure 3). 

Tokenization phase: This phase splits the content into 

words followed by space [19]. 

Filtration phase: This phase consists to eliminate all stop 

words. A stop word is a common word (example: I, me, my, 

myself, we, our, ours, ourselves, you, your, yours, yourself, 

yourselves, he, him, his, himself,…etc.) that there is no need 

to index it or to use it in a search. The stop word elimination 

consists of removing all the standard words (common words) 

in the content of the extracted web page. These words are very 

common and they are used in practically all texts. Their 

presence can degrade the performance of the classification 

algorithm in terms of cost and classification accuracy. To 

eliminate all stop words, we, first, store these latter in a list, 

and then we can remove them easily. NLTK (Natural 

Language Toolkit) [20] in python has a list of stop words 

stored in 16 different languages. We can find them in the 

nltk_data directory. 

Stemming phase: Stemming is a process of transforming 

words into their stem or root. The root of a word corresponds 

to the part of the remaining word after removing its prefix and 

suffix. Since the TF-IDF technique cannot check the semantic 

of words, we must use the stremming process to group 

different forms of a particular word such as "play" and "plays" 

or "played" into a single word which is "play". The Stemming 

brings together under the same term (stem) words that have the 

same root. There are two main families of stemmers: 

algorithmic stemmers [21] and dictionary-based stemmers 

[22]. In this work, we used the first family that is often faster 

and allows to extract roots of unknown words. 

At the end of this phase, we obtain as result a stemmer. 

TF-IDF calculation phase: This phase consists to calculate 

the TF of each word of the stremmer, the DF and its inverse 

(IDF) according to their mathematical formulas. Finally, the 

TF-IDF is obtained according to the formula (1), and it is the 

product between TF and IDF. 

The results display phase: In this phase, the words are 

displayed in ascending order according to their TF-IDF values. 

 

 
 

Figure 3. Extraction phases 

 

3.2.2 Classification part 

Neural networks are, generally, optimized by statistical-

type learning methods thanks to their capacity for paradigms 

allowing the generation of large functional, flexible and 

partially structured spaces. They also belong to the artificial 

intelligence methods family which they allow to take decisions 

relying more on the perception than on the logical reasoning. 

The neural network is a calculation model where the design is 

very schematically inspired by the operation of real 

classification and generalization [23]. 

A neural network is, generally, made up of a succession of 

layers. Each layer (i) is composed of Ni neurons, taking their 

inputs from the Ni-1 neurons of the previous layer. Each 

synapse is associated with a synaptic weight. So, the Ni-1 are 

multiplied by this weight and then added to the level i neurons, 

which is equivalent to multiplying the input vector by a 

transformation matrix. Putting one behind the other, the 

different layers of a neural network would amount to 

cascading several transformation matrices, and could be 

reduced to a single matrix. The product of the others, if there 

were not at each layer the output function which introduces 

nonlinearity at each step. This shows the importance of the 

judicious choice of a good output function, a neural network 

whose outputs would be linear would have no interest. There 

are several types of neural networks, including recurrent 

(looped) neural networks that are used in our work [24]. 
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(a) Recurrent neural networks 

A looped (recurrent) network, governed by one or more 

differential equations, results from the composition of the 

functions carried out by each neuron and the delays associated 

with these connections. 

Figure 4 represents the mathematical structure of the 

recurrent neural network. Thus, the below mathematical 

formulas (2) and (3) allow to calculate ht and yt in a recurrent 

way [25, 26]. 

 

ℎ𝑡=𝑔h(𝑊𝑖∗𝑥𝑡+𝑊𝑅∗ℎ𝑡−1+𝑏ℎ) (2) 

 

𝑦𝑡=𝑔𝑦(𝑊𝑦∗ℎ𝑡+𝑏𝑦) (3) 

 

where, 𝑤𝑖 is the input weight matrix, 𝑤𝑦 is the output weight 

matrix, 𝑤𝑅 is the hidden layer weight matrix, 𝑔ℎ 𝑎𝑛𝑑 𝑔𝑦 is the 

activation function, and 𝑏ℎ 𝑎𝑛𝑑 𝑏𝑦 is the bias. Eqns. (2) and (3) 

is useful for recursively calculating the values, ℎ1, ℎ2, … and 

𝑦1, 𝑦2, …. 

Formulas (4) and (5) make it possible to calculate h0 and y0 

respectively at time t=0. 

 

ℎ0=𝑔ℎ(𝑊𝑖∗𝑥0+𝑏ℎ) (4) 

 

𝑦0=𝑔𝑦(𝑊𝑦∗ℎ0+𝑏𝑦) (5) 

 

 
 

Figure 4. Mathematical Representation of Recurrent Neural 

Network [27] 

 

Whether detailed or simplified, the representation of a 

recurring network is not easy, because it is difficult to show 

the temporal dimension on the diagram. This is particularly the 

case for recurring connections, which use information from the 

previous time. To solve this problem, we often use a 

representation of the network "unfolded in time", in order to 

make it appear explicitly. The following Figure 5 shows an 

example of an unfolded network [28]. 

 

 
 

Figure 5. RNN: recurring version and unfolded version 

 

This time-unfolded version, clearly, shows the input 

variables over time: xt−1, xt, xt+1, etc. (same for the output), and 

the impact of previous outputs on the current network output. 

In its unfolded version, the matrices WW, RR and VV are 

duplicated and thus appear on the diagram as many times as 

the number of unfoldings of the network in the time. 

By explicitly showing the temporal dimension, the unfolded 

version suggests three possible uses of a recurrent network: 

sequence labeling, sequence classification or sequence 

generation [29]. In our work, we are interested in the sequence 

classification. 

- Sequence classification 

In this mode of operation, the network traverses the input 

sequence of size T according to the direction of reading, and 

produces an output only once the input sequence is finished, 

as illustrated in the following Figure 6: 

 

 
 

Figure 6. Sequence classification: the network "reads" the 

sequence in its entirety, and produces its output at the last 

time step 

 

In this case, the output is not a sequence, but only a label. 

This approach also works in regression; in this case, the output 

is a value or a vector of values. 

 

 

4. EXPERIMENTAL RESULTS 

 

The experiments run on an Intel® Core™ i7-8700k CPU 

3.7GHZ processor with a memory capacity of 32768 MB, 

under Windows 10, 64 bits with an NVIDIA graphics card. we 

used Anaconda browser and Spyder as development 

environment developed with Python. 

Our model is divided into two parts. The first part is the 

extraction of keywords and the second part the classification 

of web pages based on the results of the first part. 

 

4.1 Keywords extraction 

 

The principle of the first part consists of: 

-Read the number of web pages to be classified as well as 

their links 

- Removal of HTML, CSS and JS tags. 

- Pretreatment which is the separation of words with spaces 

- Remove stop-words (empty words). 

- Find the root of words (Stemmer) 

- Finally the calculation of TF IDF.   

In our work we will take two web pages their links are: 

1: C:\Users\pc\web pages\page1.html 

2: C:\Users\pc\web pages\page2.html 

As a result of this first part is: The keywords of the web page 

displayed in ascending order according to their frequency of 

appearance on the page (Cf. Figure 7).in our work we take the 

first 15 keywords. 
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Figure 7. The result of TF IDF (page1 and page2) 

 

4.2 Classification 

 

In this subsection we will describe in detail the 

classification part. Let's start with our dataset first. 

 

4.2.1 The creation of the dataset 

To create the dataset, we start by finding all words of the 

domain that we chose. To do this, we use an online word 

generator called Related Words. Since the result words of the 

TF-IDF will be in stemmer form, so the form of the dataset 

words will be the same. 

The part below shows the different steps to build our dataset. 

Step 1: Generate the words for each domain using the 

previously mentioned word generator (See Figure 8). 
 

 
 

Figure 8. The results of words from the computer field found 

by the Related Words generator 

Step 2: In this step we remove the stop words and find the 

root (Stemmer) of each word, classify them, put the first letter 

in capitals finally save them in a text file. The Figure 9 bellow 

shows the words of the computer science class. 

 

 
 

Figure 9.Text file contains the words of our computer 

science class 

 

We repeat this process for all the class of our dataset. 

In this study we have chosen 10 class (Cf. Figure 10). 

 

 
 

Figure 10. The domain (class) of our dataset 

 

4.2.2 Classification with recurrent neural network 

Once our Dataset is prepared, we aim to classify the target 

web pages. To do this, we calculate their keyword frequencies 

by using the TF-IDF technique. Then we classify these web 

pages according to the keyword that has the highest frequency 

using recurrent neural networks. 

We will build and train a basic RNN to rank web pages 

according to keywords. A character-level of RNN reads words 

as a series of characters, produces a "hidden state" prediction 

at each step and, feeding its previous hidden state into each 

next step. We consider the final prediction to be the output, i.e. 

which class the word belongs to. Specifically, we train our 

RNN on a few thousand words from 10 domains and predict 

which domain a word is from based on spelling. 

The data/names directory includes 10 text files named 

“[Domain].txt”. Each file contains a set of words, one word 

per line. As result, a dictionary of lists of words per domain, 

{domain: [word ...]}. The generic variables "category" and 

"line" are used for further extensibility. 
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At this stage, we obtain a category_lines, a dictionary 

mapping each category (domain) to a list of lines (words). We 

also kept track of all_categories (just alist of domains) and 

n_categories for future reference. 

 

Transformation words into tensors 

Once all the words areobtained, we need to represent them 

into tensors to use them as an input for the RNN. So, to 

represent a single letter, we use a “single vector” of size <1 x 

n_letters>. This vector is composed of a set of 0, exceptat the 

index of the current letter which is equal to 1, e.g. "b" = <0 1 

0 0 0 ...>. Thus the word is represented by a matrix 

<word_length x n_letters>.  

 

Creation of the network 

The input and the output of RNN are a fixed length tensors. 

The output length is equal to the classes number. The input is 

a word, and it is represented by the above cited matrix,  

We divide the structure of the proposed RNN into three 

layers: the input layer, the hidden layer and the output layer. 

- The input layer creates an input for the hidden layer. At 

each execution, the RNN considers as the input the word and 

the hidden state. The word is represented by the above-cited 

matrix; and the hidden state is a tensor of size <1 x n>. The 

maximum value of n is 128. Since the RNN takes a single 

tensor as input, we simply combine between the matrix and the 

hidden state to form the combined tensor. 

- The hidden layer performs a linear Input-Hidden 

transformation on the combined tensor to create an input for 

the output layer. So, the result of this layer is the prediction 

and the next hidden state.  

- The result of the output layer is the class prediction. To do 

this, we perform the softmax on the prediction to normalize 

the Input-Output values between [0..1] to obtain the multi-

class probabilities. For example, the value 0.01 indicates that 

there is a 1% probability that the word belongs to the 

Computer class. This output is directly compared to our target 

tensor, which its value is between [1..0]. This allows us to 

calculate the loss for each prediction. 

To release the RNN, we inherit from nn.Module which is 

the base class for all neural networks in PyTorch. We initialize 

an instance specifying the input/output/hidden state sizes 

which help us to create the line layers and the softmax function.  

 

RNN Training 

To train the RNN we convert at first the training pairs to 

tensors and feed them into the RNN. Then, we use the 

optimizer, loss function and learning rate to train our RNN. 

Based on our input tensors and our target tensors we update 

the network weights at each step (i.e. backpropagation). For 

this, we use the loss function to calculate the gradients based 

on the difference between a prediction and the true value. Next, 

we need to specify an optimizer and a learning rate to update 

the network. 

We train our neural network until we get the right 

classification result. This process takes several hours of 

training. below, we present the main functions and parameters 

used to build and train our RNN. 

- Loss function: NLLLoss(x): The Negative Log Likelihood 

Loss function, generally named NLLLoss(x) function, allows 

training a classification problem with C classes. The parameter 

x is an optional argument, if it must be provided, it should be 

an 1D Tensor assigning weight to each of the classes. This is 

particularly useful in the case of an unbalanced training set. In 

our case, this argument is null. 

- Optimizer function: torch.optim.SGD (rnn.par(), lr). The 

SGD() (SGD: Stochastic Gradient Descent) optimizer function 

belong to torch.optim package. This latter groups several 

optimizer methods. In this study, we have choose to use the 

SGD() function because it is most adapted to optimize the 

RNN. The parameters of this function are: rnn.par() and lr. The 

first one concerns RNN parameters to be optimized (in our 

case, these parameters are null). However, the second 

parameter concerns the learning rate, which is equal to 0.0002 

(lr= 0.0002). 

A learning step uses an input word and its corresponding 

label. Each step: 

- Set model in training mode. 

- Create the input tensor from the title and the target tensor 

from the label 

- Create an initial hidden state (full of zeros) 

- Feed the word across the network, passing hidden states at 

runtime 

- Calculate the loss by comparing it to the true value using 

the loss function 

- Update network settings with optimizer 

- Returns output and loss to show how the network is 

learning 

According to obtained TF-IDF values from the extraction 

part (Cf. Figure 7), the RNN classify the first and the second 

pages using respectively the words “inform” and “software” 

(Cf. Figure 11), since they have the highest TF-IDF value, to 

the computer science class (Cf. Figure 10). 

 

 

 
 

Figure 11. RNN training 
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5. CONCLUSIONS 

 

The web pages classification is generally based on the 

textual content extraction and then, to classify the needed web 

page from the extracted words. In this context fails our 

proposed work. Thus, this paper is mainly based on the 

combination of two methods based on the supervised and 

unsupervised techniques. In the first part of our contribution, 

the automatic word extraction task is proposed. It consists to 

analyze a web page to extract the most representative word 

from this target web page using an unsupervised statistical 

technique, which is TF-IDF.  

However, in the second part we have proposed supervised 

recurrent neural networks, which allows classifying web pages 

according to words obtained the first part. The obtained results 

show that the proposed approach give a good performance by 

classifying effectively the target web pages. 

As future work, we propose to add other languages to make 

the system multi-language, to integrate other techniques and 

methods of supervised classification. In addition, TF-IDF 

cannot check words’ semantic in documents. Therefore, it is 

only useful at the lexical level. It is also unable to detect words 

having the same root, i.e., having the same semantics. To deal 

with this problem, we aim to improve TF-IDF technique by a 

semantic verification step based on the stemming technique 

principle. 
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