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 The problem of finding the pattern that deviates from other observation is termed as 

outlier. The detection of outlier is getting importance in research area nowadays due to the 

reason that the technique has been used in various mission critical applications such as 

military, health care, fault recovery, and many. The analysis of functional data and its 

depth function plays a crucial role in statistical model for detecting outlier. The depth 

values alone not enough for finding outliers, since all the low depth values not be an 

outlier. The main problem of using classical model is that it cannot cop up with the high 

dimensionality of the data This paper proposed a novel technique based on Reproducing 

Kernel Hilbert Space curve (RKHS) for detecting outliers in functional data. The proposed 

RKHS model is based on a special Hilbert space curve associated with a kernel so that it 

reproduces each function in the space to enhance the performance of data depth function. 

The proposed method uses distance weighted discrimination classification that avoids 

overfitting the model and provides better generalizability in high dimensions. The kernel 

depths perform better performances for detection of outlier in a number of artificial and 

real data sets. 
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1. INTRODUCTION 

 

The work proposed a novel technique for outlier detection 

during the analysis of functional data. Outlier detection is 

performed to find any deviation in normal behavior. An 

observation that diverges from all other in a sample of pattern 

on data is termed as Outlier. Since the outliers bias any 

statistical analysis, outlier detection is important in 

exploratory analysis process. In the analysis of functional data, 

outlying properties can be exhibited. Some of the observations 

have most extreme maximum or minimum values. This may 

be obtained due to the variability in data measurement or in 

errors in experimental data. Outlier normally falls under two 

classes, namely Univariate and Multivariate. Univariate 

outlier is the one in which the values are distributed over the 

single feature space. In Multivariate, distribution of values is 

happened through n-features space. In most of the applications, 

outliers shown in Figure 1 can be considered as noise 

otherwise exceptions that should be excluded. In some of the 

disciplines like physics, economy, machine learning and cyber 

security etc. detecting outliers is acquiring major importance. 

The predictions or accuracy of the training model is affected 

by the outliers due to the occurrence of drastic change in 

estimation of fitness [1]. It is up to the analyst to make decision 

about the necessity of including outlier consideration in their 

context. The process of detecting and analysis of outlier data 

is termed as outlier mining. 

Generally, outliers are defined as, “Given D dimensional 

Feature space with a set of N data objects, then the expected 

number of outliers (ω) is found out by considering the top ω 

data objects that has dissimilarity with respect to the remaining 

data objects” [2-4]. The outliers are classified into three 

categories namely, Global outlier, a data object deviates from 

real data set, Contextual outlier, a data object deviate from the 

context it is specified, and Collective outlier, a subset of the 

data objects deviates from the whole data set. Supervised 

learning and Unsupervised learning are the two basic 

methodologies used for mining the outliers. Supervised 

learning is the one in which the outlier detection is 

implemented based on the labeled example, while in 

unsupervised learning the labeling is not necessary. 

Unsupervised Learning based outlier detection mechanisms 

falls under various categories such as statistical based 

approach, distance-based approach, deviation based approach 

and density based approach.  
 

 
 

Figure 1. Outliers in datasets 

 

Distance based outlier getting importance when compared 

to other detection technique since it has dealt mainly based on 
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the non-parametric machine learning approaches. A point 

outlier in distance based approaches are defined as “A point x 

is said to be outlier if no more points 𝜶 in the data sets are at a 

distance of d or less distance from x”. Detection of the point 

outliers has implemented as polynomial algorithm or 

exponential algorithm. But these algorithms have restrictions 

in terms of two parameters a and d. To overcome these issues, 

a new definition based on the distance Dk(p) in k-nearest 

neighbor is defined as, “Given k and n number of data objects, 

a point x is said to be outlier if no more n-1 points are having 

maximum distance Dk than p”. 

Univariate Outlier detection methodology is inadequate for 

functional data because the curve values are non-outlying at 

each time points of observations even though the curve is 

functional outlier. Multivariate outlier detection methods have 

some drawbacks due to the following reason. The plotting 

methods suitable only up to three dimensions [4, 5]. The 

methods are not robust methods. The procedure is restricted 

for normal or elliptical samples. To overcome these issues, an 

approach based on the functional depth is proposed. There are 

several strategies evolved to find the functional depth of the 

curve. This paper proposed a novel multivariate methodology 

which is based on reproducing kernel Hilbert spatial curve for 

outlier detection of functional data. The proposed 

methodology decreases the high dimensionality in a large 

dataset without loss of useful information. 

The next section discusses the survey of the Literature and 

section three discusses the mathematical model of the 

Reproducing Kernel Hilbert Space (RKHS) curve. The section 

4 elaborates the concepts of RKHS by conducting numerical 

experiments and section 5 concludes. 

 

 

2. RELATED WORKS 
 

Outliers can be identified through the parametric and non-

parametric approaches. Parametric approach is the one which 

involve some assumption about underlying normal 

distribution of feature space while non parametric approach is 

the one which does not require any assumption. In parametric 

approach, the outlier can be recognized by finding probability 

occurrence of the observation otherwise by calculating the 

deviations from the mean of the observations. The actual 

distribution of observations is plotted either as normal 

distribution or log-normal distribution. The underlying 

distribution cannot be generalized due to the fact that the 

parameters associated with the distribution, sometimes even 

the type of the distribution could not be determined previously. 

By fitting the curve to the data, the parameters of the data 

could be inferred. The change in the parameters due to the new 

incoming data will reflect the change in the location of the 

curve or deformation in shape of the curve is learned. The 

change in parameter value is identified as Outliers.    

Non parametric approach is the one that generates the 

mapping function without making any assumption. This 

approach has the benefits of producing high flexibility by 

fitting the curve to a large number of functional forms, 

superior power due to weak assumptions about the underlying 

function and excellent performance in prediction of accuracy 

of the model. In univariate outlier detection approach, the 

feature space has dealt with single variables, so that the 

detection of outlier is obtained by finding the unusual values 

for a single variable. Multivariate data analysis is required 

when the data points map to a higher dimensional feature 

space as follows 

 

𝑌(𝑡) = [𝑌1(𝑡), 𝑌2(𝑡) … . . 𝑌𝑃(𝑡)] ∈  𝑅𝑝 (1) 

 

The main objective of this research paper is to detect the 

outlier. The outliers can be identified based on the depth 

function. A depth function D(y, P) is defined as measurement 

of median or closeness of the curve y to a probability 

distribution P on the curve. The position of the curve with the 

respect to center of the data set is measured. Based on the 

center of the data set, and the position of the curve, the score 

is calculated.  

The four approaches such as density based, distance based, 

and the subset based learning approaches are involved in the 

existing outlier detection systems. Probability based model is 

used in the distribution based approach using the parameters 

such as mean or Poisson distribution to find the outliers. 

Distance threshold is considered with the help of Functional 

Outlier Map (FOM) to detect the outliers in distanced based 

outlier detection model. Neighbor’s local density is considered 

in detecting the outlier in density-based outlier based detection 

model. there are many subset based approaches have been 

evolved for the detection of outliers. Fraiman et al. [6] 

proposed a subset based outlier model that involves a new 

concept in definition of data depth for functional data. The 

depth function for univariate data points is analyzed and also 

average of the central observations (1-α)n where 0≤α≤1 

namely, trimmed means that constitutes a class of sample 

estimates from mean to median for functional data is defined. 

The obtained result achieves good performance in terms of 

efficiency and robustness.  

Cuevas et al. [7] analyzes the level of NOx around the 

control station using the functional data analysis. In 

multidimensional space whose dimensions are infinity, let Y 

be a random variable of functional data. The value of the 

variable at different discrete times (t1, t2, ... tm) is observed as 

a set of values y(t1), y(t2) … y(tm). In the closed interval [tmin, 

tmax] of the observation space. The behavioral characteristic 

between the levels of NOx is analyzed for working and week 

days. The sample is analyzed between two estimators such as 

functional and trimmed standard deviations. The distance 

based function is proposed in the paper for the detection of 

outlier. 

Febrero et al. [8] proposed a depth-based approach to 

measure the centrality of the given curve within a group of 

trajectories for findings functional outlier detection. The 

performance of the approach is compared with the existing 

Monto Carlo Methodology using the data set of NOx . The 

outliers which mask others are detected at each iteration. Sun 

and Genton [9] proposed tools namely functional boxplot and 

enhanced functional boxplot for visualization of data and to 

generalize it. Functional boxplot and enhanced boxplot are 

implemented on the children growth data set and U.S. 

precipitation data set and the performance of the outlier 

detection is simulated based on the statistics techniques. The 

band depth of ordering from the center outward of a sample 

curve for functional data is proposed.   

Hubert et al. [10, 11] proposed novel numerical and 

graphical techniques for detection of functional outliers of 

multivariate functional data. The statistical depth functions 

and distance measures are observed using P-dimensional 

vector space. A functional data set consists of n-curves is 

observed at different set of time points 𝑡1, 𝑡2, … . . 𝑡𝑇 . In 

multivariate functional data, it is necessary to observe p-
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dimensional vector of measurements for each curve and each 

specified time points. A novel statistical distance measurement 

technique namely bag distance is used to measure the depth 

function and rank the data. Wenlin et al. [12] proposed a 

functional directional outlyingness based outlier detection 

methodology. A framework based on directional outlyingness 

for both univariate and multivariate functional data on 

multidimensional domains is introduced. The functional 

outlyingness is decomposed into two cases magnitude 

outlyingness and shape outlyingness. The variation in shape of 

the curve is measured using conventional depth of statistical 

approach. The similarity between the sequences of the 

observations is measured using Dynamic Time Warping 

methodology.  

The distance measurement for depth function of univariate 

data is calculated using different methodology. Integrated 

square error is one of the methodology in which error is 

obtained for each principal components of each curve and then 

integrate the squared value of error. The integrated squared 

error is checked against the threshold value for detection of 

outlier. The novel methodology namely squared robust 

Mahalanobis distance is measured by converting the given 

curve into p-dimensional vector data and then applies 

x2 distribution. The outlier is detected if the squared distance 

is greater than x0.99,p
2 . Multivariate data analysis, uses 

Mahalanobis distance to measure the observations deviation 

from the center of the curve. This distance is necessary for 

calculating Euclidean distance. 

 

 

3. PROPOSED METHODOLOGY 

 

3.1 Reproducing Hilbert spaces 

 

A continuous function whose range lies either in two 

dimensional planar curve or three dimensional space curve on 

the closed interval [0, 1] in the Euclidean distance space. The 

Euclidean distance (s) between real valued function is 

calculated based on the metric space 𝑠: 𝑋 × 𝑋 → 𝑅 and the 

points 𝑥, 𝑦, 𝑧 ∈ 𝑋 as follows 

 

1. The distance (s) is real valued, finite and non negative. 

2. 𝑠(𝑥, 𝑦) = 0 iff 𝑥 = 𝑦. 

3. 𝑠 is symmetry that is 𝑠(𝑥, 𝑦) = 𝑠(𝑦, 𝑥). 

4. 𝑠  has triangle inequality property, 𝑠(𝑥, 𝑧) ≤ 𝑠(𝑥, 𝑦) +
𝑠(𝑦, 𝑧). 

 

The function 𝐹 is said to be continuous one that mapping 

𝑓: (𝑋, 𝑠) → (𝑌, 𝑠) at 𝑥0, where 𝑥0𝜖𝑋 for every ∂>0 and ∃𝛿 >
0, then 𝑠(𝑥, 𝑦) < 𝜕 → 𝑠(𝐹𝑥, 𝐹𝑦) < 𝛿. A space that is linear 

which is closed under addition of vector and scalar 

multiplication is called as vector space H. 

• If 𝑥, 𝑦, 𝑧 ∈ 𝐻, then vector space closed under addition is 

represented as  

 

𝑥 + 𝑦 = 𝑦 + 𝑧 ∈ 𝐻 (𝑐𝑜𝑚𝑚𝑢𝑡𝑎𝑡𝑖𝑣𝑒 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦) 

𝑥 + (𝑦 + 𝑧) = (𝑥 + 𝑦) + 𝑧 ∈ 𝐻 (𝐴𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑣𝑒 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦) 

 

• If 𝑐 is scalar, then 𝑐𝑥 ∈ 𝐻 

A vector space 𝐻 is said to be normed space with the norm 
‖𝑥‖ 𝑤ℎ𝑒𝑟𝑒 𝑥 ∈ 𝐻 is defined on as 

 

‖𝑥‖ = √< 𝑥 − 𝑥 > 

 

An inner product on 𝐻 over complex field 𝐶 is a function <
. , . >: 𝐻 × 𝐻 → 𝐶 with the property of  

1. < 𝑢, 𝑣 >=< 𝑣, 𝑢 > ⃐                ̀ , for 𝑢, 𝑣 ∈ 𝐻 

2. < 𝛼𝑢 + 𝛽𝑣, ℎ >= 𝛼. < 𝑢, ℎ > +𝛽 < 𝑣, ℎ >  and <
𝑢, 𝛼𝑣 + 𝛽ℎ >= �̅� < 𝑢, 𝑣 > +�̅� < 𝑢, ℎ >
 𝑤ℎ𝑒𝑟𝑒 𝛼, 𝛽 ∈ 𝐶 𝑎𝑛𝑑 𝑢, 𝑣, ℎ ∈ 𝐻 

3. < 𝑢, 𝑢 ≥ 0 for 𝑢 ∈ 𝐻 and < 𝑢, 𝑢 >= 0 ⇔ 𝑢 = 0 

A Hilbert space is a vector space H with the inner product 

< 𝑢, 𝑣 > defined with norm ‖x‖ on it is defined by  

 

|𝑥| = √< 𝑥 − 𝑥 > (2) 

 

that turns H into a complete metric space. Hilbert spaces in 

finite dimensional space is specified as Real numbers Rn and 

Complex number Cn . In infinite dimensional space, Hilbert 

space is defined as  

 

< 𝑢. 𝑣 >= ∫ 𝑢(𝑥). 𝑣(𝑥)𝑑𝑥
∞

−∞

 (3) 

 

An evaluation function over the Hilbert space functions (F) 

is represented as a linear function as follows  

 

𝐿𝑥 ∶ 𝐹 → 𝑅 such that 𝐿𝑥(𝑓) = 𝑓(𝑥), ∀f ∈ F (4) 

 

where, f is a bounded linear functional in which 𝑓(x) =<
𝑥, 𝑚 > in which m is defined by f and has norm ‖f‖ = ‖m‖. 

Reproducing Kernel Hilbert spaces (RKHS). 

If a set Y in which all the point evaluations are considered 

as bounded linear functional in a Hilbert space of Functions, 

then the space is termed as Reproducing Kernel Hilbert Space 

(RKHS). 

For each 𝑦𝑖 ∈ 𝑌, 𝑌 ∈  𝑅𝑛 , the function 𝐿𝑦𝑖
∶ 𝐹 → 𝑅  such 

that 𝐿𝑦𝑖
(𝑓) = 𝑓(𝑦𝑖), ∀f ∈ F, then according to the definition 

of RKHS, the function {𝐿𝑦𝑖
}𝑦𝑖∈𝑌  is said to be bounded. 

According to Reisz theorem, the set of functions {𝑘𝑦𝑖
} ⊆  𝐹 is 

defined in a way that  

 

𝐿𝑦𝑖
 𝑓 =< 𝑓, 𝑘𝑦𝑖

>, ∀𝑓 ∈ 𝐹 (5) 

 

The function k is called as reproducing kernel function 

which is defined over the feature map function ∅: 𝑌 → 𝐹 such 

that ∅(𝑥) → 𝑘 𝑦 and 𝑘: 𝑌 × 𝑌 → 𝑅 as 

 

𝑘(𝑢, 𝑣) =< 𝑘𝑢, 𝑘𝑣 >= (∅(𝑢), ∅(𝑣)) (6) 

 

where, ky is called the representer of evaluation at y. A space 

filing curve is the one that performs mapping of N- 

dimensional space into one dimensional space. It is the curve 

that proposed as a linear order of pixels by visiting each pixel 

only once in a multidimensional space. 

 

3.2 Functional data outlier 

 

The multivariate outlier can be detected by estimating the 

central tendency of the curve. Generally, the multivariate 

functional median is identified based on the depth and then the 

deviation of the curve from the center point is calculated by 

measuring the distance deviated from the curve. Various depth 

functions are used for identifying the center point of the curve. 

Sampling is the concept associated with the evaluation. 

Whenever the point evaluations are continuous, then sampling 
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in functional spaces is essential to ensure the stability of the 

functional data.   

According to Reisz’s lemma, the function has the ability to 

reproduce the functional values by means of inner product 

termed as RKHS [13]. The main issue lies in reproducing the 

functional values. In earlier, Shannon’s theorem proposed a 

sine function with inner product of L2 as reproducing kernel 

in RKHS. The functional space is taken as [−𝜋, 𝜋]. Nowadays 

the reproducing is generalized through semi-inner products for 

Banach spaces. The accurate reconstruction is possible only 

when sampled data is available. The minimum norm 

interpolation technique is proposed for RHKS with the benefit 

of over-sampling that reduces the approximation errors 

exponentially. Optimal Finite sampling points could be found 

based on the concept of fixed reproducing kernel [14-20]. 

The optimal approximation of the linear functions 𝑓 is 

produced from a RHKS by considering a class of linear 

functional. The optimal approximation based on linear 

function is studied and the function is approximated by finding 

the 𝑛𝑡ℎ minimal errors of class of functions characterized by 

the eigen values. 

Let 𝛿𝑥  is a point evaluation functional that has a unique 

kernel function 𝑘: 𝑌 × 𝑌 → 𝑅  defined over 𝑓 ∈ 𝐻  and 𝑥 ∈
𝑌 , 𝐾(𝑥, . ) ∈ 𝐻 and we get 

 

𝑓(𝑥) = (𝑓, 𝐾(𝑥1,𝑋2. . 𝑋𝑖))𝐻 (7) 

 

The above equation states that the functional values of the 

function f in H can be reproduced using the kernel function. 

The characteristics of reproducing kernels to be considered are 

 

1. RKHS is called as positive-definite function on, that is 

for all the points (𝑥1, 𝑥2 … … 𝑥𝑚) ∈ 𝑌 , the matrix 

[𝐾(𝑥𝑢 , 𝑥𝑦)]𝑚,𝑎𝑛𝑑 𝑢,𝑣=1  is hermitian one and semi-

positive. 

2. K is called as RKHS on 𝑌 if and only if there exists a 

mapping of ∅: 𝑌 → 𝐻  where 𝐻 is a Hilbert space such 

that 

 

𝐾(𝑢, 𝑣) = (∅(𝑢), ∅(𝑣))𝐻,𝑎𝑛𝑑 𝑢,𝑣∈𝑌 

 

Two classes of functional data classes such as polynomial 

and exponential RKHS are proposed. The polynomial classes 

is specified through the equation 

 

𝐾(𝑢, 𝑣) = ∑ 𝑎𝑚(𝑢. 𝑣)𝑚, 𝑢, 𝑣 ∈ 𝑅𝑑

𝑚=∞

𝑚=0

 (8) 

 

where, {𝑎𝑚} denotes a sequence of non negative number of the 

kernel series of polynomial class. The series of the numbers 

that converges for all the functional values 𝑢, 𝑣 ∈ 𝑅𝑑.  

 

Procedure Outlier_ detection 

1. Select a functional space for sampling is RKHS. Optimal 

sampling points are obtained by applying the following 

procedure 

a. Obtain m sampling points 𝑆 = {𝑦𝑛, 1 ≤ 𝑛 ≤ 𝑚} ∈ 𝑌  

b. Generate m space-filling curve by using Hilbert curve 

families 

c. Construct a subspace and approximate the subspace 

by finding the eigenvectors of a compact operator by a 

kernel space. 

d. The optimal method of reconstructing function f̃ for 

the given function f ∈ Hk from sampled data points f(x) 

 

𝑓(𝑥)̅̅ ̅̅ ̅̅ = ∑ αj 
m
j=1 k(xj, x), x ∈Y 

 

where the coefficients 𝛼𝑗, 1 ≤ 𝑗 ≤ 𝑚, are the solutions of  

 

∑ αj 
m
j=1 k(xj, xk) = f(xk) 

 

e. Optimal sampling points in Karhunen–Loève 

subspace is designed by kernel space and approximate the 

best one. 

f. The 𝑛𝑡ℎ  minimal reconstruction error of linear 

transformation is found out.  

2. The error estimates using the function 

 

𝑓(𝑥)̅̅ ̅̅ ̅̅ − 𝑓(𝑥)̌ ≤ √𝑘(𝑥, 𝑥) (𝑦 − 𝑦  ̆ )∗𝐾[𝑆]−1(𝑦 − 𝑦  ̆) 

 

3. Obtain optimized sample points 𝑆𝑜𝑝𝑡 and compare it with 

the equalized sample points 𝑆𝑒𝑞𝑢       

4. Distance of each point from the optimized sample point of 

the curve is measured. If there are more deviations then 

that point is considered to be outlier. 

5. Stop 

 

3.3 Procedure for Outlier detection 

 

The steps shown above describes the procedure for 

Generally, Outliers occur at the low probability region of the 

stochastic model, inliers occur at the high probability region. 

The number of sampling points m is fixed. The reconstruction 

RKHS and the approximation error measurement are the two 

factors that constitute the mechanisms of selecting the 

sampling points. According to the Gaussian Reconstruction 

kernel  

 

𝑘𝜎  (𝑢, 𝑣) = exp (
‖𝑢 − 𝑣‖2

𝜎
) , 𝑢, 𝑣 ∈ 𝑅𝑑  (9) 

 

where, 𝜎 > 0 and ‖. ‖ denotes a standard Euclidean norm on 

higher dimensional space. The general form of reconstruction 

error is constructed as minimization problem as follows 
 

𝑚𝑖𝑛 ∫ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒2
𝑢

𝜔

(𝐾(𝑢, . ), 𝛿)𝑑𝜇(𝑢) 

 

where, 𝛿 refers to subspace in n-dimensional space and 𝜇. Is 

variation on measurement space. The procedure for outlier 

detection is shown in Figure 2. 

 

 
 

Figure 2. Three heat sources 
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4. RESULTS AND DISCUSSIONS 

 

4.1 Numerical experiments 

 

All the data points from the multidimensional space is 

transformed into uni-dimensional data points in order to 

identify the outliers This concept is implemented by finding 

the distance between two points using Euclidean distance. The 

performance is further improved by considering the nearest 

neighbor up to k. Distance vector that consists of distance 

information for k-neighbors is the right choice for calculating 

the right outliers. According to the normal distribution, the 

points below the T is termed as outliers where T is defined as 

follows 

 

𝑇 = 𝛼𝑎𝑟𝑔𝑚𝑎𝑥(∑ 𝑓(𝑥𝑖 , 𝑦𝑖

𝑛

𝑖=1

)) (10) 

 

where, n denotes the total number of observations and 𝑓(𝑥, 𝑦) 

is defined as  

 

𝑓(𝑥, 𝑦) =
1

2𝜋𝛽𝑑𝑄3

𝑒
−

(𝑥−𝑥𝑖 )
2+(𝑦−𝑦𝑖)

2

2𝛽𝑑𝑄3  (11) 

 

where, 𝛽  represents a constant and 𝑑𝑄3 denotes the third 

quartile. According to the k-closest neighbor the function 

𝑓(𝑥, 𝑦) is defined as  

 

𝑓(𝑥, 𝑦) =
(𝛿)2

𝜋
𝑒

−
(𝑥−𝑥𝑖 )

2+(𝑦−𝑦𝑖)
2

𝛿2  (12) 

 

𝛿 = (𝛾 (1 + 𝑑𝑘)2⁄ )2 (13) 

 

Table 1 discusses the mapping of multidimensional data to 

a single dimensional data and the corresponding Hilbert curve 

in Figure 2 and 3. 

 

Table 1. Mapping of N-dimensional space to one 

dimensional 

 
n-d 1-d n-d 1-d n-d 1-d n-d 

(00, 00) 0000 (01,00) 0001 (10, 00) 1110 (11,00) 

(00, 01) 0011 (01,01) 0010 (10, 01) 1101 (11,01) 

(00,10) 0100 (01,10) 0111 (10,10) 1000 (11,10) 

(00,11) 0101 (01,11) 0110 (10,11) 1001 (11,11) 

 

 
(a)                                      (b) 

 

Figure 3. Gaussian Estimation Model a) Points with critical 

values that used to decide outliers b) Points that designated as 

outliers based on the boundaries 

 

4.2 Analysis of proposed methodology  

 

The performance of the proposed approach is analyzed with 

the help of different datasets using MAT LAB 14.1, Intel 

Processor. The Univariate datasets PenDigits with samples of 

6870, 2.27% outliers, 16 number of features, MNIST datasets 

with samples of 7603, 9.2% outliers, 100 number of features 

have taken for analysis. The Multivariate dataset Wine Quality 

with 7 classes of data with outlier percentage ranges from 

0.1% to 44.49% has taken. The detection rate and the detection 

accuracy is considered to be the parameters for analysis of the 

proposed methodology is calculated as follows  

 
𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 (𝐷𝑅) = (1 − 𝐹𝑁𝑅) × 𝑇𝑁𝑅 

𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝐴𝑐𝑐 = (𝐷𝑅)/𝑂𝑎𝑐𝑡𝑢𝑎𝑙 × 100 
where 

 

𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝐹𝑁𝑅) =
𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

  

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝑇𝑁𝑅) =
𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

 

The proposed model RKHS curve model is compared with 

the existing Modified Hidden Markov Model (MHMM), 

Hidden Semi Markov Model (HSMM) for outlier detection 

rate and detection accuracy as shown in Figure 4. 

 

 
(a)                                         (b) 

 

Figure 4. Detection Rate a) Univariate b) Multivariate 

 

It can be observed from the Figure 4.a) that the detection 

rate of proposed methodology produces better outlier detection 

rate compared with the existing models Modified Hidden 

Markov Model and Modified Semi Markov Model. The RKHS 

model produces a detection accuracy that nearest to the actual 

outlier percentage. 

 

 
(a)                                     (b) 

 

Figure 5. Detection Accuracy a) Univariate b) Multivariate 

 

It can be observed from the Figure 5, the detection accuracy 

of the proposed technology is high compared to the existing 

MHMM and MSMM. The improvement in detection of outlier 

accuracy leads to the corresponding improvement in 

classification accuracy of the system. 

 

 

5. CONCLUSION 

 

In data analytics, the detection of outliers plays an important 

role for preprocessing the task. Most of the existing 
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approaches for outlier detection needs huge amount of data 

points to work in an efficient way. It is very difficult to detect 

the outlier using few data points and they require huge 

computational cost for high dimensional data. The main 

benefit of the proposed work is that the approach need not have 

any distributed assumptions. The performance of the proposed 

work is evaluated with simulated datasets over the existing 

Modified Hidden Markov Model (MHMM), Hidden Semi 

Markov Model (HSMM) for outlier detection rate and 

detection accuracy When compared to other state-of-art, the 

proposed techniques based on RKHS produces more accuracy 

and less cost for computation. The performance of RKHS for 

Univariate and Mutivariate outlier detection is verified 

experimentally and compared with existing models MHMM 

and MSMM. The performance parameters detection rate and 

detection accuracy are obtained and came to the conclusion 

that RKHS produces accuracy approximately equal to the 

actual outlier detection accuracy. The proposed technique is 

feasible and produces good performance in outlier detection 

irrespective of data size and the number of dimensions used. 
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