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The purpose of this study was to investigate estimation of the navigation accuracy of the high-

precision platform inertial navigation system (PINS) rapidly. However, the prediction 

accuracy often plunges deeply when the model is trained by numerous flight paths. The PP-

LSSVM approach was adopted to solve the problem with sparse solutions. The high-

dimensional input data were dimensionally reduced by the principal component analysis 

(PCA); The sparsity of the model was improved by the pruning algorithm, aiming to reduce 

the computing load and prediction time. Thus, the proposed model is denoted as the PP-

LSSVM. The results obtained in this study include the PP-LSSVM outperformed the LSSVM 

in prediction time by an order of magnitude, while satisfying the accuracy requirement. The 

results indicated that the research provides a suitable evaluation model for navigation accuracy 

of multi-path PINS. 
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1. INTRODUCTION

In recent years, China has made great progress on the 

theories and production techniques for platform inertial 

navigation system (PINS), laying the basis for the mass 

production of high-precision PINS [1]. The PINS enjoy high 

reliability and a long life. However, individual PINSs may 

differ in navigation accuracy, as they are produced with 

different techniques and designed to work in different 

environments. The users are generally concerned about the 

reliability and real-time navigation accuracy of an individual 

system, which are critical to the operation of weapon systems 

and ship navigation. Therefore, it is of great practical 

significance to evaluate the navigation accuracy of the PINS. 

There are many difficulties in the application of PINS. For 

example, the PINS of long-term storage should be calibrated 

on time, but it is very laborious to calibrate the numerous 

inertial navigation platforms. Meanwhile, the PINS of short-

term storage cannot be quickly assembled to the weapon 

system without real-time prediction and compensation of 

parameter accuracy [2]. In addition, it is difficult for decision-

makers to quickly select the PINS with a suitable accuracy 

range.  

Much research has been done to estimate the accuracy of 

strapdown inertial systems and integrated navigation systems. 

For example, Reference [3] employs secondary optimization 

to identify the error parameters in high-precision strapdown 

inertial system, and thus effectively improves the navigation 

accuracy of hypersonic aircrafts. Reference [4] proposes a 

parameter identification and reconstruction algorithm to 

identify the apparent motion from accelerometer measurement 

containing random noise and the results fulfill self-alignment 

in a swinging condition and the alignment accuracy can reach 

the theoretical values. Reference [5] develops a new specific 

force integration algorithm to eliminate approximation error of 

the traditional method, simulation test demonstrates the 

accuracy and good overall performance. Reference [6-7] 

designs a geomagnetic-assisted inertial navigation algorithm 

based on Bayesian estimation, which estimates the position 

accuracy by probability estimation. Reference [8] puts forward 

a method to enhance the accuracy of the inertial navigation 

system when the integrated navigation system is offline. 

Reference [9] analyzes the slow maneuvering accuracy of an 

integrated inertial navigation system. Unlike the above 

studies, Reference [10] combines the least squares support 

vector machine (LSSVM) and the navigation solution model 

to predict the PINS accuracy, but the combined model is 

limited in that it only considers a single flight path. 

The inertial navigation system is nonlinear and time-

varying. The navigation accuracy of the PINS depends on both 

the error of the inertial device, and the motion form of the 

carrier. If the motion form is complex, the system will have a 

high navigation error. Typical motion forms like turning, 

overloading and maneuvering have their unique error-

inducing features. Together, these motion forms constitute the 

flight path of the aircraft. The way to predict PINS navigation 

accuracy is to refer to both simple and complex paths, consider 

the similarities and differences between multiple paths, and 

extract the inter-path eigenvalues as the model inputs, paving 

the way for the accurate prediction of multiple paths. Since the 

volume of input data increases with the number of paths, it is 

necessary to identify the effective data that affect the final 

predicted results and eliminate the low-impact data based on 

system performance and inter-path features. Meanwhile, the 

growing data volume will suppress the computing speed and 

generalization ability of the LSSVM. Therefore, the LSSVM 

should be modified to enhance its generalization ability and 

reduce the computing load, such as to achieve rapid prediction 

without sacrificing the evaluation effect. Considering the 

above problems in rapid prediction of PINS accuracy, this 

paper proposes a dimensionality-reducing sparse LSSVM that 

can rapidly predict the accuracy of the PINS with multiple 

paths. 

This paper will be divided into the following parts to 
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introduce the navigation accuracy evaluation method for 

multi-path platform inertial navigation system. The first 

section analyses and summarizes the literature in related fields, 

and points out the unsolved problems. The second section 

designs PINS. The third section designs the extraction method 

of path features. The fourth section gives the evaluation 

method of navigation accuracy of multi-path platform inertial 

navigation system based on pruning LSSVM. The fifth section 

carries out simulation experiments, and finally, the sixth 

section summarizes and analyses the methods proposed in this 

paper. 

 

 

2. PINS DESIGN 

 

The wander-azimuth system was selected as the basis for 

our PINS design, as it overcomes the abnormality of the north-

pointing system at high latitudes. To obtain the PINS error, the 

fourth-order Runge-Kutta algorithm was introduced to solve 

the error model of the wander-azimuth system, which contains 

the differential equations of the attitude angle error, flight 

velocity error, and positioning error [11]. The differential 

equation of the positioning error of the wander-azimuth PINS 

can be expressed as: 

 

+ + −
=

+

+
−

+

− − +
=

+

− −
− +

++

=

−
=

2

2

sin cos (cos sin )

sin cos

( )

cos sin (sin cos )

cos sin cos sin

( )cos( ) cos

cos sin

w w w w

x y x y

e

w w

x y

e

w w w w

x y x y

e

w w w w

x y x y

ee

Z

w

x y

αδv αδv αv αv δα
δL

R h

αv αv
δh

R h

αδv αδv αv αv δα
δl

R h

αv αv αv αv
δh tgLδL

R h LR h L

δh δV

αV αV
δα




















+


−
−
 +




2

2

( )

cos sin

( )cos

w

e

w w

x y

e

tgLδh
R h

αV αV
δL

R h L

    (1) 

 

where, in, 𝑤  is the ideal platform coordinate system of the 

wander azimuth system; 𝛼  is the wander azimuth 

angle; 𝑣𝑥 , 𝑣𝑦 , 𝑣𝑧  are respectively the east velocity, north 

velocity and upward velocity, 𝛿𝑣𝑥 , 𝛿𝑣𝑦 , 𝛿𝑣𝑧  are respectively 

east velocity errors, north velocity errors and upward velocity 

errors; 𝑙 and 𝐿 are the longitude and the latitude respectively; 

𝛿𝐿 and 𝛿𝑙 are respectively longitude errors and latitude errors; 

ℎ is the height of the carrier; 𝛿ℎ is the height errors; 𝑅𝑒 is the 

earth radius. Through derivation, the cross-coupling 

relationships between 39 error sources and the final system 

error were determined. The error sources include the gyro, 

accelerometer. 

 

 

3. EXTRACTION OF PATH FEATURES 

 

3.1 Path features 

 

The navigation accuracy of the PINS is both disturbed by 

the error of the inertial device, and greatly affected by the 

flight path of the carrier. Both factors should be considered 

before setting up the error model of the PINS. Some of the 

error terms are related to the path and flight time. Thus, the 

navigation accuracy may vary from path to path. It is necessary 

to introduce feature quantities to minimize the effect of path 

difference. The gyro and accelerometer errors are mainly 

affected by the following path factors, namely, heading drift, 

turning time, centripetal acceleration, rotational angular 

velocity, turning radius and turning acceleration. 

Based on path difference, three types of feature quantities 

were created. The first type includes feature quantities related 

to the rotational angular velocity, such as the gyro mounting 

error MG. Each of the feature quantities was constructed in two 

steps: integrating the error parameters along the entire path, 

and computing the time average. The cumulative mean of each 

feature quantity in the first type can be expressed as:  

 

= 1 0

1
c

T

i
e dt
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where, c is a feature quantity in the first type; T is the flight 

time; ei=MG is the error parameter. 

The second type contains feature quantities related to 

acceleration [12], such as the term of the gyro related to the 

acceleration of gravity 𝑔𝑚
1 (𝑚 = 𝑥, 𝑦, 𝑧; 𝑛 = 𝑥, 𝑦, 𝑧), the scale 

factor of the accelerometer kA. Among them, the cumulative 

mean of each feature quantity in the second type can be 

expressed as: 
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where, 𝑃𝑖 = 𝑔𝑚
1 (𝑚 = 𝑥, 𝑦, 𝑧; 𝑛 = 𝑥, 𝑦, 𝑧), 𝑘𝐴 ; f is the 

acceleration acting on the gyro. The term of the gyro related to 

the acceleration of gravity 𝑃𝑖 = 𝑔𝑚
1 (𝑚 = 𝑎, 𝑏; 𝑛 = 𝑎, 𝑏) was 

cited to explain the construction of the feature quantities in the 

second type. 

Firstly, the acceleration of the gyro was multiplied by the 

drift error coefficient related to the acceleration of gravity g; 

next, the error parameters were integrated along the entire 

path, yielding the cumulative acceleration of the entire path; 

then, the time average of the integrated result was computed, 

resulting in the cumulative mean acceleration in the same 

interval. The third type involves three feature quantities related 

to the heading drift. Considering the effect of heading drift on 

the navigation system throughout the flight, these feature 

quantities were constructed as those in the first type. The four 

feature quantities were taken as the inputs to train the SVM, 

so the simulation data will be increased to as many as 60 

dimensions. 

 

3.2 Principal component analysis (PCA) 

 

The PINS is nonlinear and time-varying. The navigation 

accuracy of the system is subjected to varied, cross-coupled 

impacts from different error terms. If all main errors related to 

PINS navigation accuracy are adopted as the inputs to the 

prediction model, the simulation data are 60 dimensions. If 

predicted by the LSSVM, the high-dimensional data will have 

a serious negative impact on the computing time and the 

prediction effect. The high dimensionality is a signal of the 

presence of redundant or unrelated features in the sample, 
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which have little to do with the output values. However, it is 

not recommended to identify these features subjectively, as 

subjective selection may wrongly remove some important 

factors and lower the prediction accuracy. 

Considering the importance of input selection to PINS 

navigation accuracy, the PCA was adopted to reduce the data 

dimensionality [13], i.e. removing the redundant feature 

quantities with little impact on the outputs and retaining those 

directly affecting the position error, velocity error and attitude 

angle error in PINS outputs. The purpose is to provide the 

prediction model with proper inputs, and shorten the 

computing time for prediction. 

The PCA is a desirable input optimization method, capable 

of extracting nonlinear feature information, and removing 

redundant, unrelated features. Below is a mathematical 

explanation of this method. 

Let 𝑋 = {𝑥𝑚 ∈ 𝑅𝑞|𝑚 = 1,2, … , 𝑁} be the sample set. By 

the nonlinear function 𝜑: 𝑅𝑞 → 𝐹 , the sample xm can be 

mapped into the data φ(xm) in the high-dimensional feature 

space (F space). Then, the covariance matrix can be expressed 

as: 

 

=

=  T

1

1
( ) ( )

N
F

m m
m

C φ x φ x
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where, φ(xm), m=1,2,…, N has a zero-mean. Then, the kernel 

function matrix K can be defined, such that 

Kmg=K(xm,xg),m,g=1,2,…,N. The inner product operation of 

the F space can be converted into an input space operation, 

and K(xm,xg) is a kernel function that satisfies the Mercer’s 

condition. If the mean of φ(xm) is non-zero, the K can be 

transformed into a centralized matrix 𝐾 as follows: 

 

= − − +
N N N N

K K A K KA A KA
              (5) 

 

where, AN is a N-order matrix; am,g=1/N, m,g=1,2,…N. 

The features of 𝐾 can be decomposed as: 

 

=λβ βK
            (6) 

 

where, 𝜆 = [𝜆1, 𝜆2, … , 𝜆𝑁] are the eigenvalues of 𝐾 ; 𝛽 =
[𝛽1, 𝛽2, … , 𝛽𝑁] are the eigenvectors corresponding to the 

eigenvalues. Thus, the eigenvector of CF can be obtained as 

𝜐 = ∑ (
𝛽𝑚

√𝜆𝑚
) 𝛷(𝑥𝑚)𝑁

𝑖=𝑚 . Then, the r-th nonlinear principal 

component can be described as: 
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The cumulative contribution rate of each eigenvalue can be 

calculated as: 

 

= =
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where, m is the number of principal components. 

 

 

4. LSSVM BASED ON PRUNING AND PCA (PP-

LSSVM) 

 

4.1 LSSVM 

 

The basic idea of LSSVM was first proposed by Suykens, 

Vandewalle et al. [14]. By this algorithm, the square term is 

adopted as the optimization index, and the inequality 

constraint of the standard SVM is replaced with an equality 

constraint, turning the quadratic programming problem into a 

set of linear equations. In this way, the LSSVM achieves 

simple computation and rapid solving speed. Thus, this 

algorithm has been widely used in function estimation and 

approximation [15-17]. 

Let {(𝑥𝑖 , 𝑦𝑖)}𝑖=1
𝑁  be a dataset with N training samples, 𝑥𝑖 ∈

𝑅𝑛  be the inputs and 𝑦𝑖 ∈ R  be the outputs. Then, the 

nonlinear LSSVM for regression estimation can be expressed 

as: 
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where, φ(·) is a nonlinear function that maps the input space to 

the high-dimensional feature space; ω is the model 

complexity; 𝑒 = [𝑒1, … , 𝑒𝑛]𝑇  is the empirical error; 𝛾 ∈ 𝑅+is 

the regularization parameter. With the aid of dual optimization 

and Lagrange function, the constrained optimization problem 

can be converted into an unconstrainted optimization problem: 
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where, αi is the Lagrange multiplier. Solving the partial 

differential equations for each variable of equation (10), we 

have: 
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Eliminating ω and e, equation (11) can be rewritten as a 

matrix: 

 

−

     
     

+     

T

1

00 1
=

1

b

α yγK I
                    (12) 

 

where, 𝑦 = [𝑦1, … , 𝑦𝑛]𝑇;  𝛼 = [𝛼1, … , 𝛼𝑛]𝑇;  1 =
[11, … , 1𝑛]𝑇; I is the identity matrix; Kij=(xi)T(xi)=k(xi,xj); 

k(xi,xj) is the kernel function. The commonly used kernel 

functions include the Gaussian kernel function 𝑘(𝑥𝑖 , 𝑥𝑗) =
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exp (−‖𝑥𝑖 − 𝑥𝑗‖
2

/𝜌2)  and the polynomial kernel function 

𝑘(𝑥𝑖 , 𝑥𝑗) = (𝑥𝑖
𝑇 𝑥𝑗

𝜇
+ 1)

𝑑

. Solving the linear equation set in 

equation (12), the regression function can be obtained as:  
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= + +T

1

( ) ω ( ) = ( , )
l

i i
i

y x x b α x x bk
                (13) 

 

In equation (13), most to all of the components of α are not 

zero, indicating the lack of sparsity. Thus, equation (13) has 

numerous kernel functions. If used for generalization, this 

equation will cause a huge computing load. 

 

4.2 Pruning algorithm 

 

Under equality constraint, the LSSVM faces a lacking of 

sparsity. The excessive number of support vectors complicates 

the model structure and prolongs the prediction time. The 

application scope of the LSSVM is limited due to its poor 

generalization and slow prediction under large datasets. To 

overcome the limitation, the training should be accelerated to 

reduce the computing load, such that the algorithm is sparse 

enough for rapid training. Meanwhile, the generalization 

ability of the algorithm should be enhanced to promote the 

applicability. 

Suykens [18] et al. were the first to propose a pruning 

algorithm that increases the sparseness and computing speed 

of the LSSVM. In the modelling process, the training data are 

trimmed continuously by a certain pruning criterion, making 

the solutions sparse. To implement the pruning algorithm, the 

small support values in the support value map should be set to 

zero. The algorithm can obtain sparse solutions and enhance 

model generalization, without solving the inverse matrix of the 

Hessian matrix. 

In Suykens’ algorithm, the samples with a small |𝛼𝑖| are 

deleted, such that 𝑒𝑖 = 𝛼𝑖/𝛾. This is equivalent to creating an 

error-insensitive domain. However, the deletion does not 

necessarily minimize the input error. De Kruif [19] et al. 

developed a pruning algorithm that removes the sample with 

the least input error from the model. The algorithm was 

improved by Kuh to delete the sample with the minimum 

|𝛼𝑖 (𝛾−1 − (𝐴𝑖,𝑖
−1)

−1
)| [20]. The improved pruning algorithm 

offers another way to input error into the model after sample 

removal. 

According to Kuh’s pruning algorithm, the coefficient in 

formula (12), denoted as A, can be defined as: 
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Let P=A-1. Then, the input error after the sample training can 

be expressed as: 
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where, p(i,i) is the i-th diagonal element of P. If the absolute 

value of the input error |∆ei| is small, then the support vector 

corresponding to the error must have little impact on the 

model, and can be deleted first. Our pruning algorithm was 

trained in Figure 1. To be specific, Train the LSSVM based on 

the sample set and then calculate the kernel matrix K. 

Calculate matrix A according to equation (14). Compute the 

output error ∆ei induced by each support vector of the current 

model by equation (15): ∆ei (i=1,2,…,Nsυ). Sort the absolute 

values of the output errors in ascending order, and create a new 

support vector set SV containing the support vectors 

corresponding to the output errors; Delete the top 5 % of the 

support vectors from the SV, and retrain the model with the 

remaining support vectors. Go to Step (1) if the performance 

index does not decline; Otherwise, terminate the training and 

obtain the sparse LSSVM. 

 

Start

Train the LSSVM based on the sample set

Calculate the kernel matrix K

Calculate matrix A according to equation (14)

Compute the output error      according to equation (15)
i
e

Sort the absolute values of the output errors in ascending order

Delete the top 5% of the support vectors from the SV

Retrain the model with the remaining support vectors

Achive the performance index  

End

No

Yes

 
 

Figure 1. The flowchart of training pruning algorithm in 

LSSVM 

 

 

5. SIMULATION EXPERIMENT 

 

The model proposed in this paper applies to multi-path 

systems. Hence, 6 paths were created on a path generator for 

simulation experiment. These paths have the same flight time 

(50min), sampling frequency (10Hz), initial velocity (235 m/s) 

and initial position, but differ in initial heading angle, turning 

time and turning radius. The error parameters of the gyro and 

the accelerometer were calculated by the established PINS 

error model (Table 1), after the required error parameter values 

were produced through Monte-Carlo random sampling. 

 

Table 1. Error parameter setting 

 

 Error source value 

Gyroscope 

constant drift 0.01(°)/h 

scale factor error 110-5 

error parameter related to 

the accelerated velocity 

0.2°/h/g 

the square term of the 

specific force input 

0.05°/h/g2 

installment error  1’ 

accelerometer 

constant bias 50μg 

scale factor error 510-5 

installation error 1’ 
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The nonlinear differential error model was solved by the 

Runge-Kutta algorithm. The solving process of the navigation 

system was driven by the actual path data from the path 

generator. The results were saved for further analysis. The 10 

error items in the results were combined with the 49 terms into 

the experimental dataset. The 49 terms include the 41 error 

terms (e.g. the gyro error, the accelerometer error and the 

heading error) and the 8 feature quantities created from flight 

paths in Section 3. The dataset was denoted as the input dataset 

xi. As a unitary linear regression model, the LSSVM outputs a 

one-dimensional result. Therefore, one of the ten error terms 

in the results was taken as the output data of the sample set, 

such as longitude error, latitude error, velocity error, position 

error, etc. 

Here, the northbound position errors are treated as the 

outputs of the sample set and collectively referred to as the 

output dataset yi. Then, the dataset (xi,yi) was divided into a 

training dataset (xT,yT) and a test dataset (xC,yC). The former 

contains 80 % of the data in (xi,yi), while the latter covers the 

other 20 %. The error model was employed to solve the six 

paths, 200 times per path, yielding 1,200 sample points. 

Among them, 960 sample points were selected as the training 

data (xT,yT) and the remaining 240 sample points as the test 

data (xC,yC). 

After the training and test data were constructed, the input 

data had a staggering number of 49 dimensions. As a result, 

the dimensions of the input parameters were compressed 

effectively by the PCA, and the mean absolute percentage 

error (MAPE) between the predicted and actual values was 

computed. The MAPE reflects the effect of dimension 

compression on prediction accuracy. This index can be 

calculated as: 

 

=

=
1

ˆ( ) - ( ) 100
MAPE *

( )

n

i

y i y i

y i n
              (16) 

 

where, �̂�(𝑖) is the value predicted by the model; y(i) is the 

actual value; n  is the number of samples. As shown in Figure 

2, the MAPE basically remained in 0.1~0.4 when the input 

dimensions were compressed from 60 to 26, and gradually 

increased to 103 with further growth in the input dimensions. 

Thus, 26 is the most suitable number of dimensions of the 

input data. Using 26-dimensional input data, the model can 

make accurate predictions with low-dimensional inputs and 

require less computing load in the training process. 

 
 

Figure 2. Average absolute percentage error of input data 

based on PCA compression 

 

After being dimensionally-reduced, the input data of the 

LSSVM were trimmed by the above-mentioned pruning 

algorithm. Here, the pruning performance is evaluated by the 

root mean square error (RMSE): 

=

= 
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1

1
ˆRMSE ( ) - ( )

n

i

y i y i
n

          (17) 

 

 
 

Figure 3. Root mean square error of northbound position 

corresponding to different pruning rates 

 

   
(a)                                                                                                 (b) 

 

Figure 4. (a) The actual value and predicted value of the North position error of the test set based on least squares support vector 

machine; (b) The difference between the northward actual value and the predicted value of the test set based on the least squares 

support vector machine 
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Figure 3 shows that the RMSE of the corresponding 

northbound position changed slightly at the initial growth in 

pruning rate. However, this error started to soar after the rate 

surpassed 60 %. Therefore, the pruning rate was set to 60 % 

for the data training and testing of the LSSVM. Since it is 

modified by pruning and PCA, the proposed LSSVM is 

denoted as the PP-LSSVM. 

Figure 4(a) compares the northbound position error curve 

predicted by the LSSVM and the actual error curve, and Figure 

4(b) presents the curve of the differences between the 

northbound position errors predicted by the LSSVM and the 

actual errors. It can be seen from Figure 4(b) that the most 

differences concentrated at about 50m and only a few fell 

between 100 and 180m. Obviously, the prediction results 

cannot satisfy the requirements of high-precision inertial 

navigation systems running continuously for 50mins. 

 

 
(a) 

 
(b) 

 

Figure 5. (a) Comparisons between predicted and actual 

values of northward position error based on PRLSSVM test 

set; (b) Northbound position error difference based on 

PRLSSVM error test. 

 

Figure 5(a) compares the northbound position error curve 

predicted by the PP-LSSVM and the actual error curve, and 

Figure 5(b) presents the curve of the differences between the 

northbound position errors predicted by the PP-LSSVM and 

the actual errors. It is clear that all differences were within 1m. 

This outcome satisfies the application demand and the 

prediction requirements. 

Figures 6 displays the MAPE between the northbound 

position error predicted by the LSSVM and the actual error, 

and Figure 7 shows that between the northbound position error 

predicted by the PP-LSSVM and the actual error. It can be seen 

that the PP-LSSVM, with a smaller-than-one MAPE, is more 

suitable than the LSSVM for the accuracy prediction of multi-

path model. 

 

 
 

Figure 6. Absolute percentage error between actual and 

predicted values of northbound position error based on 

LSSVM test set 

 

 
 

Figure 7. Absolute percentage error between actual and 

predicted values of northbound position error based on 

LSSVM test set 

 

Table 2. The set of data results (1200 sample points for 

calculating six tracks) 

 

Algorithm Sample 

set 

Support 

vector 

number 

RMSE Prediction 

time (s) 

LSSVM 1200 1200 48.412 68.2 

PLSSVM 1200 1200 1.683 25.6 

PPLSSVM 1200 480 1.777 6.9 

 

As shown in Table 2, the LSSVM contained 1,200 support 

vectors, when trained by 1,200 sample points. In this case, this 

model consumed 68.2s to predict the northbound position, and 

the RMSE of the predicted positions stood at 48.412. After the 

input data were dimensionally reduced by the PCA, the 

LSSVM can be denoted as the P-LSSVM, with P standing for 

the PCA. For this model, the number of support vectors 

remained as 1,200, the prediction time was 25.6s and the 

RMSE was 1.683. Thus, the PCA dimensionality reduction 

can greatly enhance the prediction accuracy, and slightly 

improve the prediction time. As for the PP-LSSVM, the 

number of support vectors was reduced to 480 and the 

prediction time dropped to 6.9s, despite a slight increase in the 

RMSE. Overall, the PP-LSSVM outperformed the LSSVM in 

prediction time by an order of magnitude, thanks to the good 

solution sparsity and generalization ability of the PP-LSSVM. 

The excellent prediction time satisfy the prediction demand for 

multi-path PINS. 
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6. CONCLUSIONS 

 

This paper extracts the path features according to the 

heading effect of the multi-path PINS, and develops an 

improved LSSVM based on the PCA and the pruning 

algorithm (PP-LSSVM) for the prediction of PINS navigation 

accuracy. The PCA and pruning effectively reduced the 

computing load and enhanced the generalization ability of the 

prediction model, and ensured the sparsity of model solutions. 

The simulation experiment proved that the proposed PP-

LSSVM achieved high accuracy and consumed a short time in 

the accuracy prediction of multi-path PINS. The real-time, 

accurate prediction enables the rapid decision-making in the 

PINS. 
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