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In carrying out reversible image steganography, the Generative Adversarial Networks 

(GANs-based) models have proven to be the most suitable deep learning models for image 

steganography. Image steganography is a steganography system that hides secret data in an 

image cover medium without arousing suspicion, and it is defined by the ability to 

reconstruct the cover medium with no visible distortion after the steganography system has 

been decoded by extracting the hidden data. In this study, we try achieve the encoding phase 

in image steganography, where two GAN-base models (CycleGAN and DCGAN) were 

proposed. Empirical analysis was done to determine a better model for the encoding of 

image steganography. The Peak Signal-to-Noise Ratio (PSNR), the Structural Similarity 

Index Metric (SSIM), and bit per pixel (bpp) were used as the metrics for the analysis. The 

outcome of DCGAN yielded (SSIM=0.48; PSNR=19.86; bpp=24.79) and the outcome of 

using CycleGAN yielded (SSIM=0.97; PSNR=41.45; bpp=24.97). These values concluded 

that the CycleGAN was preferable over the DCGAN. Hence, the CycleGAN was adopted 

as the encoding model. 
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1. INTRODUCTION

Data concealing, also known as information hiding, is a 

common information security approach used in covert 

communication, digital copyright protection, and other 

situations [1]. Following the study [2, 3], if we choose to 

categorise data concealing based on how retrievable it is, we 

can split it into two types: irreversible data hiding (IDH) and 

reversible data hiding (RDH). Traditional data concealing 

methods fall under the first category, whereas the second 

category is a unique approach used mostly in the medical, legal, 

and military domains [4, 5]. 

In any case, every type of image steganography will always 

use a cover image to conceal secret information [6]. Also, the 

types of secret information that may be concealed vary: text, 

images, audio files, and video files. In a survey of image 

format steganography done in the study [7], it is identified that 

the payload capacity required for effective steganography has 

an impact on certain types of hidden information, and text and 

image format secret information are the most prevalent types 

of secret information hidden using image steganography [8]. 

Traditional approaches, such as spatial and transform domain 

techniques, have been used for a long time to hide secret 

information [9], mainly text in images, but when images are 

hidden in another image known as the cover image, these 

methods might appear sophisticated, thereby making the stego 

image distorted, and this raises a red flag [9]. 

In the survey and analysis of various steganographic 

techniques [10], Least Significant Bit (LSB) was identified as 

the simplest of all spatial domain techniques used in 

steganography. Also, the study identified Discrete Fourier 

Transformation technique (DFT), Discrete Cosine 

Transformation technique (DCT) and, Discrete Wavelet 

Transformation (DWT) as the type of transform domain 

techniques. These techniques are referred to as traditional 

steganography techniques [11-14], and are characterized by 

poor payload capacity. That is, the amount of secret 

information (in bit size) that can be hidden is relatively small. 

In order to enhance the payload capacity and reduce the 

complexity in the traditional methods, deep learning methods 

was first used in the steganalysis (the detection of hidden 

information from the steganography system), by suing 

Convolutional Neural Network (CNN) [15, 16]. Also, Baluja 

[17], implemented the first deep learning technique to 

prototype the LSB technique. The study a deep 

learning approach that compresses and distributes the secret 

image's representation across all of the available bits in the 

cover image. This paved way for exploring steganography 

using deep learning tools.  

In regardless of the techniques used, image steganography 

has always been faced with challenges relating to payload 

capacity, security and robustness. Some approaches like the 

steganoGAN [18], encoder-decoder: DCGAN [19], 

HidingGAN [20] and many more have been adopted to solve 

these inadequacies, but ended in trade-off between the payload 

capacity and the security of image steganography systems. 

Zhang et al. [21] suggested that these in adequacies could be 

solved when an appropriate cover is selected and used for a 

targeted secret image. He went further to implement cover 

selection model that would aid the selection of appropriate 

cover images for targeted secret images. 

This article is an excerpt from a full thesis in which a hybrid 

deep learning model was presented to improve the 

performance of existing reversible image steganography 

methods. Therefore, it focuses on the encoding phase of the 

reversible image steganography. We proposed two deep 

learning models (DCGAN and CycleGAN) from the 

characterization of the existing models built using Generative 
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Adversarial Network (GAN-base) models. 

 

 

2. LITERATURE REVIEW 

 

A novel image Steganography Without Embedding (SWE) 

was proposed using Deep Convolutional Generative 

Adversarial Networks (DCGAN) [22]. The study used the 

generator from the Generative Adversarial Network (GAN) to 

generate the cover image; and the secret message was mapped 

into the noise vector of the generated cover image. The 

experimental result shows advantages of highly accurate 

information extraction and a strong ability of the 

steganography system to resist attacks because of the CNN. It 

was discovered that the study only focused on securing the 

steganography system, but the payload capacity was not 

encouraging, and the steganography was irreversible. In 

overcoming the gaps in SWE method, Tang et al. [23] 

presented a steganographic model with Adversarial 

Embedding (ADV-EMB). ADV-EMB model achieved the 

goal of hiding a stego message while at the same time fooling 

a Convolutional Neural Network (CNN) based steganalyzer. It 

achieved better security performance against CNN’s 

steganalyzer by increasing its missed detection rate, but still 

leaves stego images with minute traces of distortions and was 

not reversible. Dan et al. [24] considered the idea of reversible 

steganography as a good tool that will enhance a 

steganography system. In their study, an image steganography 

system was implemented with the aim of having a good 

reversibility steganography. By using a U-Net structured 

Convolutional Neural Network [24], realized that both the 

cover and the secret images can be concatenated into a 6-

channels tensor as an input to the hiding network thereby 

making reversibility possible. The result of the study shows 

that GAN and CNN are good deep learning tools for a 

reversible steganography, but the study did not take into 

consideration the payload capacity as GANs are not known to 

improve the embedding capacity of steganography system. 

This was also confirmed by Zhang et al. [25] that image 

steganography with GANs is not capable of developing image 

steganography systems with good payload capacity, except an 

appropriate cover image can be intentionally selected before 

the encoding process. 

SteganoGAN was a tool developed by Duan et al. [26], to 

improve on the capacity using GANs which optimizes the 

perception quality of the stego-images, but the security of the 

system tested poor in the face of a steganalyzer. To improve 

the security in SteganoGAN, Ray et al. [27] made use of 

SegNet structure (a fully convolutional neural networks for 

image segmentation) to achieve a high-capacity reversible 

image steganography. The outcome of their study yielded 

good payload because a cover selection process was done. 

Also, a Convolutional Neural Network (CNN) with a Deep 

Supervision-based Edge Detector (DSED) was used by 

Kadhim et al. [28], and the experimental outcome yielded a 

good payload capacity due to the edge detector model used for 

cover selection. This idea was borrowed from Byrnes et al. 

[29], where it was suggested that classification methods could 

be used in making quality cover selection for image 

steganography. But the study yielded poor security. Liu et al. 

[30] gave a suggestive idea that Cover-Dependent Data Hiding 

with a cover preparation network (DDH with P), Cover-

Dependent Data Hiding without a cover preparation network 

(DDH without P), and Universal Deep Hiding (UDH) are three 

meta-architectures that could be useful in solving 

steganography problems of capacity and security by choosing 

appropriate Hybrid techniques. The choice of their model was 

informed based on the results of the studies from Chen et al. 

[31, 32]. Chen et al. [31] adopted Cycle-consistence 

Generative Adversarial Network (CycleGAN) as the DDH 

with P for the preparation and selection of cover image, and 

deep convolutional generative adversarial network (DCGAN) 

as the UDH for the encoding phase. The outcome of this study 

actually gave a positive pull towards achieving the basic 

features of a good steganography, but was not able to achieve 

good payload capacity. Petzka et al. [32] was able to achieve 

good payload capacity by using a non-linear Support Vector 

Machine (SVM) to select appropriate cover image and three 

convolutional layers with different kernels and Gaussian noise 

for the security of the system. The outcome was so much 

encouraging but the study was carried out with grey colored 

images. 
 

 

3. METHODOLOGY 

 

The encoding phase is the concealing network that creates 

the stego-images or carrier images. To achieve this phase, this 

study proposes the Cycle-Consistent Generative Adversarial 

Network (CycleGAN). The CycleGAN was suggested since it 

can train flawlessly without requiring samples of the translated 

image. Additionally, it includes a wide range of training 

options, ensuring a model that fits correctly. Also, the 

CycleGAN structure can prevent model overfitting and help to 

reduce consistent loss in the image bits. The encoding model 

receives cover images and the corresponding secret images as 

input, as shown in Figure 1. 

 

 
 

Figure 1. CycleGAN/DCGAN encoder model 

 

The cover image selection model (DNN/SVM model) is 

passed alongside with the secret information into the 

CycleGAN/DCGAN’s model generator G for the encoding 

process. After a successful encoding, the stego image is 

discriminated with the cover image using the encoding 

model’s discriminator (D). This continues until the 

discriminator fails to discriminate between the original cover 

image and the stego image. The stego image is then sent as 

output from the encoding phase. To justify the choice of 

CycleGAN model for the encoding model, this study also 

considered the training of Deep Convolutional Generative 

Adversarial Network (DCGAN). The model with a better 

payload and security was adopted. The general GAN’s loss 

equation described in Eq. (1) and (2) [33, 34] was used to 

optimize the losses in the encoder’s network. 

 

𝐿𝑜𝑠𝑠 = 𝑀𝑖𝑛(𝐺)𝑀𝑎𝑥(𝐷)[log(𝐷(𝑥))

+ log(1 − 𝐷(𝐺(𝑧)))] 
(1) 
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where, Eq. (1) was used by considering a single data point. To 

consider the entire data set, Eq. (1) is transformed to Eq. (2): 

 
𝑀𝑖𝑛(𝐺)𝑀𝑎𝑥(𝐷)𝑉(𝐷, 𝐺)

= 𝑀𝑖𝑛(𝐺)𝑀𝑎𝑥(𝐷) (𝐸𝑥~𝑃𝑑𝑎𝑡𝑎(𝑥)[𝑙𝑜𝑔(𝐷(𝑥))]

+ 𝐸𝑧~𝑃𝑑𝑎𝑡𝑎(𝑧)[log(1 − 𝐷(𝐺(𝑧)))]) 
(2) 

 

The stego image was analysed to obtain the payload 

capacity and the security of the steganography system. 

 

3.1 Evaluation metrics 

 

Because the Generative Adversarial Networks (GANs) was 

used in this study as the fundamental encoding blocks, the 

models were evaluated using image quality metrics (also 

known as the denoising techniques), as GANs do not have 

objective evaluation functions as supposedly stated in the 

paper [34]. The proposed image quality metrics are as follows: 

 

3.1.1 Peak signal-to-noise ratio (PSNR) 

This metric is for improving the perceptual quality in stego-

images (C’). This metric was used in this study to compare the 

quality of the stego-image (C’) to its matching cover image (C) 

by measuring the peak signal-to-noise ratio of two images, (C’) 

and (C). The greater the PSNR in decibel (dB), the higher the 

visual quality. It is calculated using the following Equation: 

 

𝑃𝑆𝑁𝑅(𝐶′,𝐶) = 10𝑙𝑜𝑔10 (
𝑀𝑎𝑥2𝐶

𝑀𝑆𝐸
) (3) 

 

Taking the square root of the Eq. (3), 

 

𝑃𝑆𝑁𝑅(𝐶′,𝐶) = 20𝑙𝑜𝑔10 (
𝑀𝑎𝑥𝐶

√𝑀𝑆𝐸
) (4) 

 
= 20𝑙𝑜𝑔10(𝑀𝑎𝑥2𝐶) − 20𝑙𝑜𝑔10(𝑀𝑆𝐸𝐶′,𝐶) (5) 

 

𝑀𝑆𝐸(𝐶′,𝐶) =
1

𝑚𝑛
∑∑(𝐶(𝑖, 𝑗) − 𝐶′(𝑖, 𝑗))2

𝑛−1

𝑗=0

𝑚−1

𝑖=0

 (6) 

 

where, MSE is the Mean Squared Error, and it is given by, 

C=the matrix data of our cover image; C’=the matrix data of 

our stego-image; m=the numbers of rows of pixels of the 

images and i represents the index of that row; n=the numbers 

of columns of pixels of the images and j represents the index 

of that column; maxc=the maximum signal value that exists in 

the cover image. 

The PSNR values of the HDLM was used to ascertain the 

level of the system’s security. These values were compared 

with the PSNR values of the existing models. 

 

3.1.2 Structural similarity index (SSIM) 

SSIM is for regularizing parameter selection in image 

restoration with inverse gradient. This metric is proposed in 

this study, in case there is an undefined value of PSNR, where 

the MSE = 0, and this makes human perception not important. 

As such, SSIM is necessary, since it aids the Human Vision 

System (HVS). The SSI calculates the degree of similarity 

between two images. It is regarded as one of the most often 

used quality metrics, and it is connected to the single-scale 

measurement, which performs best when used at an 

appropriate scale. The best denoising approach is indicated by 

the highest SSIM. 

SSIM was used to compare corresponding pixels and their 

neighborhoods in the cover and the stego-images, denoted by 

C and C’, using three quantities: luminance (I), contrast (C), 

and structure (S). The equation is given thus: 

 

𝐼(𝐶, 𝐶′) =
2µ𝐶µ𝐶′ + 𝑘1
µ𝐶
2µ𝐶′

2 + 𝑘1
 (7) 

 

𝐶(𝐶, 𝐶′) =
2𝜎𝐶𝜎𝐶′ + 𝑘2
𝜎𝐶
2𝜎𝐶′

2 + 𝑘2
 (8) 

 

𝑆(𝐶, 𝐶′) =
𝜎𝐶𝐶′ + 𝑘3
𝜎𝐶𝜎𝐶′ + 𝑘3

 (9) 

 

where, the variables µ𝐶 , µ𝐶′ , σC and σC' are the mean and 

standard deviations of the pixel intensity in a small image 

patch centered on C or C’. The variable σCC' represents the 

sample correlation coefficient between matching pixels in 

patches centered on C and C’. k1, k2, and k3 are minor values 

that were included for numerical stability. 

To derive the SSIM equation, Eqns. (7-9) were combined to 

produce Eq. (10): 

 
𝑆𝑆𝐼𝑀(𝑐, 𝑐′) = [𝑙(𝑐, 𝑐′)𝛼]. [𝐶(𝑐, 𝑐′)𝛽]. [𝑆(𝑐, 𝑐′)𝛾] (10) 

 

where, α, β and γ are the positive constants that must be greater 

than zero (α, β, γ>0). 

 

3.1.3 Payload capacity 

In other to calculate the size of concealable secret message 

and maximize the embedding capacity of the steganography 

system, this study employed the bit per pixel (BPP) method as 

shown in Eq. (11): 

 

𝐵𝑃𝑃 =
𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑠𝑒𝑐𝑟𝑒𝑡𝑏𝑖𝑡𝑠𝑒𝑚𝑏𝑒𝑑𝑒𝑑

𝑇𝑜𝑡𝑎𝑙𝑝𝑖𝑥𝑒𝑙𝑜𝑛𝑡ℎ𝑒𝑐𝑜𝑣𝑒𝑟𝑖𝑚𝑎𝑔𝑒
 (11) 

 

Traditional state-of-the-art steganography techniques has a 

maximum of 4.4bpp embedding capacity [25]. This study is 

expected to have a higher embedding capacity based on the 

proposed cover selection model. 

 

3.2 Dataset 

 

This study used image dataset from the Microsoft Common 

Objects in Context (COCO) dataset. Microsoft COCO dataset 

is the benchmark for assessing the performance of deep 

learning computer vision models. It consists of 328,000 

images, 883,331 object annotations, 80 classes, and image 

ratio of 512×512. This study used the 2017 version of 

Microsoft Common Objects in Context (COCO) unlabeled 

dataset of over 250, 000 images. 

 

 

4. ENCODING MODEL 

 

The stego-image was created using the encoding model 

phase. In encoding the secret image into an appropriate cover 

image, this study used two deep learning models: Cycle-

Consistent Generative Adversarial Network (CycleGAN) and 

Deep Convolutional Generative Adversarial Network 

(DCGAN). This was done in order to assure a more accurate 

encoding model. The reason for using these two models was 

based on their frequent use as the common Generative 

Adversarial Networks (GANs) best used for image translation 

and generation. CycleGAN and DCGAN were adapted in this 
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study to function as image steganography encoders by 

stacking the cover image with the secret message so that the 

cover image covers the secret message after an acceptable 

number of epoch training. When the cover image entirely 

overlaps the hidden message, the maximum training epoch is 

attained, and a stego-image comparable to the original cover 

image is created. 

 

4.1 Training the CycleGAN 

 

This study implemented the cycleGAN encoder model by 

importing the generator and discriminator used in the pix2pix 

pretrained model. This was achieved by installing the 

tensorflow_examples package. This is because the cycleGAN 

encoder model architecture is similar to pix2pix model. Also, 

there is no paired data to train on in CycleGAN, hence there is 

no assurance that the input translated secret image and targeted 

stego-image are meaningful before training as shown in Figure 

2. 

 

 
 

Figure 2. The output from the Encoder’s untrained model 

showing no meaningful outcome 

 

Therefore, there was the need to perform some image 

augmentation techniques by applying random image jittering 

and image mirroring on the training dataset. This was 

necessary to avoid overfitting or underfitting of the model. 

Figure 3 shows a sample of the cover and secret images after 

applying random jittering and mirroring. Random image 

jittering was done by upscaling the images to 286×286×3 from 

64×64×3, then resizing to 256×256×3. While image mirroring 

was done by randomly flipping the images horizontally from 

left to right. This was necessary so to ensure quality stego-

image and also to maintain tolerable training time. After that, 

the image training dataset was normalized using [-1, 1]. This 

was done to ensure that the model trains faster and ensure 

similar pixel distribution. 
 

 
 

Figure 3. Augmented cover and secret images with jitter 
 

There are two generators and two discriminators in 

cycleGAN. In training our cycleGAN encoder model, one 

generator and one discriminator were used. This is because at 

this point, we do not consider using cycleGAN as a decoder. 

It is therefore necessary to use one generator to generate the 

stego-image and one discriminator to determine a fully trained 

encoder model. 

A modified resnet-based generator was employed, and the 

instance normalisation approach was used for the feature 

normalisation. 

The cycle consistency loss given in Eq. (12), was used to 

calculate the generator and the discriminator losses of the 

cycleGAN model. 
 

𝑐𝑦𝑐𝑙𝑒𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦𝑙𝑜𝑠𝑠 = λLcyc(G, F) (12) 

 

where, λ=lamda constant which was set to be=10; G=generator 

loss; F=discriminator loss. 

Adam optimizer as the optimization function for reducing 

the model loss and improve the training rate of the model. The 

training batch size was set to 1 with a learning rate of 0.0002. 

The activation function used was LeakyRelu because it is 

faster to compute and makes provision for a small negative 

slope value, unlike the Relu function. The model was set to 

train for 210 epochs. Table 1 shows the summary of the 

cycleGAN training hyper-parameters. 
 

Table 1. CycleGAN training hyper-parameters 
 

SN Hyper-Parameters Values 

1. batch_ size 160 

2 Activation function LeakyRelu 

3. Learning_rate 0.0002 

4. epoch 185 

5. loss_function Cycle consistency loss 

6 Lamda (λ) 10 

7. Model optimizer Adam(2e-4, beta_1=0.5) 
 

4.2 Training the DCGAN 
 

DCGAN was used in like manner as the cycleGAN. These 

two models are used for image-to-image translation, and as a 

result was adopted in this study to serve as an alternative 

encoder model. Using the same dataset, the DCGAN encoder 

model takes similar parameters as that of the cycleGAN, but 

with differing values. The DCGAN uses a U-Net-based 

generator architecture unlike the cycleGAN which uses the 

renet-based generator. Also, in implementing the DCGAN 

encoder model, three (3) convolutional-2D layers were used, 

and the model features were normalized using the batch 

normalization method. Relu and Tanh were used as the 

activation function at different layers of the DCGAN encoder 

model. Table 2 summarizes the hyper-parameters settings of 

the DCGAN encoder model. 

 

Table 2. DCGAN training hyper-parameters 

 
SN Hyper-Parameters Values 

1. batch_ size 255 

2 Activation function LeakyRelu/Relu/Tanh 

3. Learning_rate 0.002 

4. Epoch 210 

5 Lamda (λ) 100 

5. loss_function L1-loss 

6. Model optimizer Adam (2e-4, beta_1=0.5) 

 

4.3 The encoder model algorithm 

 

In order to carry out the encoding process using the 

proposed encoding model, a pair of images (the secret and the 
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appropriate cover images) from the cover selection model 

selection were used as input to the encoder’s model. To embed 

the secret image in the cover image, just the luminance portion 

of the image was used by first converting the image to grey 

scale and then extracting the luminance characteristic of the 

image. The secret image was converted into its bit equivalence. 

This was achieved by using Eq. (13): 

 

[
𝑌
𝐶𝑏
𝐶𝑟

] = [
0.226 0.421 0.073
−0.128 −0.181 0.221
0.221 −0.246 −0.054

][
𝑅
𝐺
𝐵
] + [

64
286
286

] (13) 

 

where, Y represents the luminance feature of the cover image, 

Cb and Cr represent the blue and red pixel colors respectively. 

It was discovered that the bit representation of the secret image 

was very close to the values of the redundant bits in the 

luminance region (Y) of the cover image. To compensate for 

this inadequacy, the redundant bits for the luminance feature 

was multiplied with a constant numeric value. Then, the secret 

image bits were embedded into the Y region of the cover 

image, leaving theCb and Cr untampered. This helped to 

increase the invisibility property of the stego-image. Although, 

Cb and Cr bits were adjusted during the training of the encoder 

model, but at a very insignificant value. 

 

Algorithm 

Input: SecretImage, CoverImage 

Output: StegoImage 

Convert SecretImage => Secretbits 

Transform CoverImage => Y, 𝐶𝑏, and 𝐶𝑟 =>TCoverImage 

Scale up Y bits => Y*Numericconstant 

Embedingfunction(SecretImage, TCoverImage) => StegoImage 

GANdescriminator(StegoImage, CoverImage):  

for i  1 to max(noEpoch) do: 

if(StegoImage  != CoverImage) Then 

repeat => GANdescriminator(StegoImage, CoverImage):  

Else 

return output as StegoImage 

 

4.4 Encoder evaluation criteria 

 

The CycleGAN and DCGAN encoder models have been 

developed at this stage, and the models are used for generating 

stego-images. In other to measure the payload capacity of the 

steganography model, Eq. (14) was used. The security of the 

steganography model was measure using Eqns. (15) and (16) 

and the security is measured in Decibel (dB) using PSNR. The 

higher the value of PSNR, the better the security of the system. 

Also, SSIM can be used to measure the security of the 

steganography encoding model. The higher the value of SSIM, 

the better the security of the steganography model. 

The payload capacity is measure in bit per pixel. 

 

𝐵𝑃𝑃 =
𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑠𝑒𝑐𝑟𝑒𝑡𝑏𝑖𝑡𝑠𝑒𝑚𝑏𝑒𝑑𝑒𝑑

𝑇𝑜𝑡𝑎𝑙𝑝𝑖𝑥𝑒𝑙𝑜𝑛𝑡ℎ𝑒𝑐𝑜𝑣𝑒𝑟𝑖𝑚𝑎𝑔𝑒
 (14) 

 
𝑃𝑆𝑁𝑅 = 20𝑙𝑜𝑔10(𝑀𝑎𝑥2𝐶) − 20𝑙𝑜𝑔10(𝑀𝑆𝐸𝐶′,𝐶) (15) 

 

𝑆𝑆𝐼𝑀(𝑐, 𝑐′) = [𝑙(𝑐, 𝑐′)𝛼]. [𝐶(𝑐, 𝑐′)𝛽]. [𝑆(𝑐, 𝑐′)𝛾] (16) 

 

where, BPP=Bit Per Pixel, PSNR=Peak Signal-to-Noise Ratio; 

SSIM=Structural Similarity Index Metric. 

PSNR and SSIM were the metrics used to measure the 

imperceptibility assessment of the stego-image when 

compared with the original cover image, which measures the 

security of the steganography encoding model. These metrics 

were discussed in details in chapter three. The SSIM metric 

was used in case the Mean Squared Error value used in the 

PSNR metric is equal to zero or less than zero. That is, SSIM 

becomes relevant when MSE≤0; and the PSNR becomes 

irrelevant when MSE≤0. 

 

 

5. RESULT AND DISCUSSION 

 

Tkinter was used to build an interactive user interface for 

the Hybrid Deep Learning Steganography encoder model. 

Tkinter is a Python class library for machine learning that 

provides a graphical user interface. Figure 4 shows the 

encoding phase user interface, which was developed by using 

the Tkinter python class library. The interface provides two 

browser buttons. The first browser button enables the selection 

of cover image from the cover image directory; the second 

browse button enables the selection of secret image that the 

user will like to encode. The interface displays both the cover 

and the secret image to be encoded. 

 

 
 

Figure 4. The HDML encoder phase interface 

 

The user interface also contains an event driven button, 

which commands the encoding process once it is clicked. 

Before the encoding process, the user makes choice of the 

encoding model to use. This study allows a user to choose 

between the cycleGAN encoder model or the DCGAN 

encoder model. Once a model is selected, the encode button is 

clicked for the encoding process to begin. Each encoding 

model presents a stego-image with different evaluation metric 

values. Although, the two models have good security features, 

but the cycleGAN encoding model tends to have better metrics 

values as shown in Figure 5 than the DCGAN encoding model 

in Figure 6. These results are as tabulated in Table 3. 

Table 3 compares the cycleGAN and DCGAN encoding 

models based on the values of these metrics, which later 

influences the selection of our proposed cycleGAN model. 

Table 3 shows that cycleGAN and DCGAN are good image 

steganography encoding model. Although, one appears to 

outperform the other. The proposed cycleGAN encoding 
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model has a better PSNR value with a better payload capacity 

and structural similarity index measure value. 

 

 
 

Figure 5. CycleGAN Encoder output metrics 

 

 
 

Figure 6. DCGAN Encoder output metrics 

 

Table 3. Encoding models comparison using BPP, PSNR and 

SSIM 

 
Encoder Model BPP PSNR (Db) SSIM 

DCGAN 24.79 19.86 0.48 

CycleGAN 24.97 41.45 0.97 

 

 

6. CONCLUSIONS 

 

We have been able to show that CycleGAN and DCGAN 

are bothe GAN-based encoding models for image 

steganography. This study shows that the cycleGAN obtained 

a better metric value for the payload capacity, PSNR, and 

SSIM than the DCGAN. The cycleGAN was adopted as the 

encoding model used in developing the hybrid deep learning 

model for reversibke image steganography. As stated earlier, 

this study is an excerpt from a PhD thesis. We hope to 

complete this study and be able to benchmark the proposed 

hybrid deep learning model against state-of-the-art models. 
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