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 The accurate prediction of the short-term heat load trend of buildings helps to prevent 

energy waste. Combinatory prediction methods need to be studied, as the processing of 

real-time data series of heat supply and the accurate prediction of short-term trend are more 

and more demanded by different heating districts and independent buildings. Therefore, 

this study explores the application of optimal combinatory mathematics model in heat load 

trend prediction. Firstly, feature extraction was performed on the historical weather data at 

the locality of the building and the historical data on heat load, creating a short-term trend 

prediction dataset with days as the unit, and an ultra-short-term trend prediction dataset 

with hours as the unit. On this basis, a combinatory mathematics model was created for 

heat load trend prediction. Furthermore, the authors detailed the principles of the two 

methods, namely, extreme gradient boosting tree (EGBT) and support vector regression 

(SVR), and explains the combination pattern of the single models in the combinatory 

model. Then, the weights were optimized by the simulated annealing (SA) algorithm, and 

the steps of the combinatory model were presented. The proposed model was proved 

effective through experiments. 
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1. INTRODUCTION 

 

Heat load accounts for a large proportion of building energy 

consumption, making it imperative to save heating energy [1-

8]. The accurate prediction of the short-term heat load trend of 

buildings helps to avoid energy waste, and provides a 

promising way to precisely regulate building energy based on 

energy demand [9-13]. With the expansion of heating scale 

and the growing complexity of heating data, there is a growing 

demand for processing the real-time data series of heat supply 

and predicting the short-term trend accurately for different 

heating districts and independent buildings [14-20]. The single 

prediction model with specific mathematical assumptions and 

applicable conditions can hardly meet the strict mathematical 

preconditions and hypotheses concerning the load trend 

prediction of actual heat supply projects in the background of 

big data [21-24]. To realize refined planning and decision-

making of energy heat supply, the combinatory prediction 

method came into being, providing an effective way to elevate 

the accuracy of trend prediction. 

The accurate description and prediction of the heat load of 

buildings connected to the district heating (DH) network is 

crucial to the effective operation of these systems. Lumbreras 

et al. [25] proposed a new data-driven model to describe and 

predict the heating demand of buildings connected to the DH 

network. After analyzing the heat load curve, these authors put 

forward a model that combines supervised clustering and 

multiple regression. The model utilizes four climate variables, 

including outdoor ambient temperature, global solar radiation, 

wind speed, and wind direction, and gives consideration to the 

time factor and the data from smart meters. The model was 

designed for deployment in large building complexes and to 

predict heat load without considering the construction features 

or end use of the building. Gong et al. [26] developed an 

Informer-based DHS framework for heat load prediction. To 

measure the performance of Informer in heat load prediction, 

four prediction models, namely, the autoregressive integrated 

moving average model (AIMA), the multilayer perceptron 

(MLP), the recurrent neural network (RNN), and the long-

short-term memory network (LSTM), were established for 

comparison. Taking the historical heat load, outdoor 

temperature, relative humidity, wind speed and air quality 

index of a DHS in Tianjin as input features, the performance 

of the five prediction strategies was evaluated 

comprehensively. Zhang et al. [27] applied TimeGAN to the 

heating field for the first time to increase the data volume and 

improve the prediction accuracy of the model. The results 

show that, after using TimeGAN in the early stage of heating, 

the prediction error was reduced by 50%, while the coefficient 

of the variation of the root mean square error (CV-RMSE) 

could reach 0.0405. The prediction accuracy peaked when the 

synthetic data was three times the original data. Castellini et al. 

[28] proposed a method to generate simple and interpretable 

heat load prediction models, and applied this method to real 

datasets, providing new insights into this application area. 

Their method incorporates multi-equation multiple linear 

regression (MLR) and forward variable selection, and 

generates a sparse equation for each hour of each day of the 

week. Wang et al. [29] presented a layer transfer model and a 

combinatory transfer model for heat load prediction in district 

heating stations. Experimental protocols were developed to 

simulate cross-annual and cross-site scenarios, and the actual 

data were collected to serve the experiments. In the cross-site 

scenario, their model achieved good prediction performance, 

when the training data was insufficient. 

Scholars at home and abroad have tried to develop trend 
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prediction algorithms suitable for the heat load of buildings. 

The common algorithms fall into software simulation, 

statistical analysis, machine learning, and deep learning. The 

above methods face multiple common problems: the time 

sequence between data is considered insufficiently, the 

convergence is slow and unstable, the results are affected by 

too many parameters, and the model optimization takes a long 

time. Therefore, this study explores the application of optimal 

combinatory mathematics model in heat load trend prediction. 

Section 2 extracts the features from the historical weather data 

at the locality of the building and the historical data on heat 

load, creating a short-term trend prediction dataset with days 

as the unit, and an ultra-short-term trend prediction dataset 

with hours as the unit. On this basis, a combinatory 

mathematics model was created for heat load trend prediction. 

Furthermore, the authors detailed the principles of the two 

methods, namely, extreme gradient boosting tree (EGBT) and 

support vector regression (SVR), and explains the 

combination pattern of the single models in the combinatory 

model. Section 3 optimizes the weights by the simulated 

annealing (SA) algorithm, and illustrates the steps of the 

combinatory model. The proposed model was proved effective 

through experiments. 

 

 

2. SINGLE MODEL DESIGN 

 

 
 

Figure 1. Structure of heat supply control system 

 

 
 

Figure 2. Heat load regulation principle of the secondary 

network 

 

Figure 1 shows the structure of the heat supply control 

system. In the primary network of the system, the heating pipe 

network sends the hot water heated by the heating source to 

the heat exchange stations for heat energy exchange, and then 

returns the hot water after the heat energy exchange and 

cooling is completed to the heating source for reheating. In the 

secondary network, the heating pipe network sends the cold 

water from the heat load (building) to the heat exchange 

stations for heat exchange, and then sends the cold water after 

the heat exchange and temperature rise to the heat load. Figure 

2 shows the heat load regulation principle of the secondary 

network. According to the heat balance equation, the regulator 

needs to control the flow regulating valve based on the heating 

temperature threshold. The heating temperature threshold here 

is directly related to the heat load demand. The accurate 

prediction of the heat load trend is the premise for realizing the 

real-time and accurate control of the actual water supply 

temperature. 

Feature extraction is the decisive factor for the accuracy of 

heat load trend prediction model. The feature extraction for 

heat load prediction aims to extract valuable parameters for 

prediction from the historical heating data before making 

predictions, and import them to train the prediction model. 

This paper mainly extracts and processes features of the 

historical data on the weather and heat load of the locality of 

the building. 

The weather file contains many parameters, including the 

air temperature at 1.5 m above the ground, dew point 

temperature, ratio of water vapor pressure to saturated water 

vapor pressure, direct solar radiation, diffuse solar radiation, 

wind speed and direction at 11 m above the ground, 

atmospheric pressure, and the degree to which clouds obscure 

the view of the sky. The above parameters mainly affect the 

heat exchange between the building envelope and the indoor 

environment, and indirectly affect the heat load of the building. 

The internal disturbances affecting the heat load mainly 

include the operation of electrical equipment and indoor 

activities. Considering the thermal inertia transmitted by the 

above parameter changes, it is necessary to fully consider the 

heat load response with a certain delay. A raw dataset is 

constructed based on all of the above collectible variables. 

There are two target scales for building heat load trend 

prediction: the short-term (1-3 days in the future) or the ultra-

short-term (15 min-4 h in the future). This section further 

processes the original dataset, and divides it into a short-term 

trend prediction dataset with day as the unit and an ultra-short-

term trend prediction dataset with hour as the unit. 

Our combinatory mathematics model for heat load trend 

prediction synthetizes EGBT and SVR. The principles and 

combinatory pattern of the two methods are detailed below. 

Figure 3 shows the principle of EGBT. It is assumed that m 

trees are trained in EGBT. Then, the EGBT can be expressed 

as follows: 

 

( )
1

,
m

i l i l

l

b f a f F
=

=   (1) 

 

The base classifier of EGBT is a regression tree model, 

which is represented by a sub-function f of the function space 

F. Then, the entire set of regression trees can be represented 

by F. The objective function of EGBT can be defined as: 
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Figure 3. Principle of EGBT 

 

EGBT needs to obtain all decision trees through iterative 

operations, i.e., the l-1-th iteration results are further 

iteratively trained to generate the l-th decision tree. Let bi
(l) be 

the prediction result generated in the l-th time. Then, the 

iterative process can be expressed as: 
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(3) 

 

The objective function of the prediction error of the l-th 

iteration can be expressed as: 
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The secondary Taylor expansion of the loss function can be 

expressed as: 
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where, hi and gi can be respectively defined by: 
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By deleting the less influential constant, the objective 

function of the expanded L-th iteration can be given as: 

 

( ) ( ) ( ) ( )2

1

1

2

m
l

i l i i l i l

i

PQ h f a g f a f
=

 
= + + 

 
  (8) 

 

Formulas (7) and (8) show that hi and gi determine the value 

of the objective function of prediction error. Therefore, EGBT 

can set various loss functions according to the demand 

predicted by the actual heat supply project. Taking the squared 

loss function as an example, the following objective function 

can be obtained: 
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The SVR in the combinatory mathematics model can be 

expressed as: 

 

( ) ( )Tb A Q A = +  (10) 

 

where, A is the features of the original data input of the model; 

ς is the constant term; Q is the weight vector; b(A) is the 

prediction value; ζ(.) is the kernel method for mapping the 

original data A to the linear space ζ(A). 

The cost function of SVR needs to ensure that the decision 

boundary c=2/|q| is maximum, i.e., the cumulative prediction 

error and structural error are minimized simultaneously. Then, 

the cost function can be expressed as: 
 

2 2'

1

1

2 2

M

m mm
b b q


=

− +  (11) 

 

where, bm is the value predicted by the learning algorithm; b'm 

is the actual value of the data point; μ is the regularization 

parameter. 

To ensure that SVR has a sparse solution for building heat 

load trend prediction, this paper introduces a non-negative 

insensitive parameter ῶ to correct the quadratic error function 

|bm-b'm|2. If the difference between the prediction result bm and 

the prediction target b'm is smaller than ῶ, then the error is zero. 

The corrected error function can be given by: 
 

( )( )
( )

( )

0, '
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' ,

if b A b
WC b A b

b A b otherwise
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 (12) 

 

Let D be the reciprocal of the regularization parameter. By 

combining formulas (40) and (41), the decision boundary error 

function that requires minimum regularization can be obtained: 
 

( )
2'

1

1

2

M

m mm
D WC b b q=

− +  (13) 

 

This paper introduces slack variables to optimize the SVR, 

so that the model allows a few prediction results outside the 

decision boundary. Each parameter sample Am needs two slack 

variables Φm and Φ'm. If Φm>0 and Φ'
m=0, then Am corresponds 

to a point outside the model regression decision boundary; If 

Φm=0 and Φ'
m=0, then Am corresponds to a point inside that 

boundary. 
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For a sample without slack variables to fall within the 

decision boundary, b(Am)-ῶ≤b'm≤b(Am)+ῶ is the necessary 

condition: 

 

( )'

m m mb b A Φ ++  (14) 

 

( )' 'm m mb b A Φ −−  (15) 

 

Introducing positive slack variables Φm and Φ'm, the cost 

function of the SVR can be expressed as: 
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Let A be the input eigenvector extracted from the original 

dataset, which is constructed from the collectable variable data; 

b be the short-term or ultra-short-term heat load predicted for 

the building. Then, the heat load prediction model based on the 

improved SVR can be expressed as:  
 

( ) ( )Tb A Q A = +  (17) 

 

The above analysis shows that the selection of kernel 

function and penalty function D significantly affects the 

prediction performance of the model. Let ε be the width 

parameter of the function. This paper chooses the Gaussian 

function as the kernel function of the improved SVR: 
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The above formula shows that the kernel function is a 

monotonic function of the Euclidean distance from any sample 

ai to the center k(i) of a sample. The closer ai is to k(i), the closer 

the value of ζ(ai)i is to 1. The further ai is from k(i), the closer 

the value of ζ(ai)i is to 0. ε is used to control the range of radial 

effect of the kernel function. The larger the ε, the smaller the 

impact of the changing distance between ai and k(i) on the value 

of ζ(ai)i. Then, the smoothness of the function will be 

improved. 

 

 

3. CONSTRUCTION OF COMBINATORY MODEL 

 

This paper combines EGBT and SVR to extract the 

nonlinear features of the short-term trend prediction dataset 

and the ultra-short-term trend prediction dataset in a 

comprehensive manner. In this way, the strength of the two 

models was given full play, and the combinatory prediction 

model was optimized to predict the heat load trend. The 

combination protocol is to weigh and summarize the 

prediction results of the two models: 

 

( )1 21b g g = + +  (19) 

 

where, g1 and β are the prediction result and weight coefficient 

of EGBT, respectively; g2 and 1-β are the prediction result and 

weight coefficient of SVR, respectively; b is the heat load 

trend predicted by the optimal combinatory model. 

Since β and 1-β are difficult to assign, this paper optimizes 

the weights based on the SA algorithm, a global optimizer. A 

sufficiently slow annealing can promote the effective 

convergence of the heat load trend prediction to the global 

optimal solution. The flow of the SA is as follows: 

Step 1. Initialize the annealing temperature χl, and the initial 

solution a0. 

 

 
 

Figure 4. Prediction flow of heat load for the optimal combinatory model 
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Table 1. Performance of prediction models with different penalty coefficients and kernel function widths 

 
Kernel function width 

Penalty coefficient 2-11 2-10 2-9 2-8 2-7 2-6 2-5 2-4 2-3 2-2 

25 0.62 0.63 0.76 0.69 0.62 0.68 0.52 0.42 0.31 0.12 

26 0.66 0.74 79 0.75 0.79 0.65 0.67 0.58 0.45 0.36 

27 0.72 0.79 0.72 0.71 0.72 0.74 0.63 0.62 0.59 0.42 

28 0.74 0.72 0.77 0.73 0.74 0.70 0.75 0.69 0.51 0.55 

29 0.79 0.71 0.71 0.77 0.73 0.73 0.79 0.74 0.67 0.58 

210 0.75 0.70 0.74 0.74 0.71 0.78 0.71 0.72 0.78 0.62 

211 0.72 0.76 0.76 0.70 0.75 0.75 0.78 0.70 0.71 0.67 

212 0.74 0.72 0.78 0.72 0.78 0.71 0.75 0.78 0.74 0.79 

213 0.78 0.74 0.73 0.75 0.71 0.79 0.73 0.73 0.77 0.75 

214 0.76 0.78 0.71 0.78 0.75 0.77 0.71 0.79 0.75 0.71 

 

Step 2. Randomly select a new feasible solution a' in the 

neighborhood of solution a, and calculate the difference Δg= 

g(a')-g(a) between objective function values g(a') and g(a). 

When the probability satisfies min{1,S=exp(-

Δg/Rl)}>random[0,1], accept a'. 

Step 3. Repeat Step 2 at the temperature χl until reaching the 

equilibrium state. 

Step 4. Perform the annealing operation Rl+1=DRl,l←l+1, 

D∈(0,1). If the maximum iterative value is reached, or the 

error meets the condition, end the annealing operation; 

otherwise, return to Step 2. 

Figure 4 displays the prediction flow of the heat load by the 

optimal combinatory model. This model is executed in the 

following steps: 

Step 1. Preprocess and normalize the original dataset, and 

build a training set and a test set based on the short-term trend 

prediction dataset and the ultra-short-term trend prediction 

dataset by different ratios. 

Step 2. Establish EGBT and optimize SVR to obtain their 

predicted heat load trends g1 and g2. 

Step 3. Initialize the annealing temperature χl, set the initial 

solution a0, and define the lower bound of temperature, 

maximum number of iterations, and other parameters of the 

SA. 

Step 4. Set the objective function for the prediction error of 

the optimal combinatory model, i.e., the ratio of the prediction 

error and the actual heat load. 

Step 5. Calculate the initial value of the prediction error 

objective function based on a0. 

Step 6. Generate random disturbances in model execution, 

and compute the value of the prediction error objective 

function based on the new solution. If the error is smaller than 

zero, accept the new solution; if the error is greater than zero, 

calculate the probability according to the preset rule and 

threshold, and judge whether the poorer solution is acceptable. 

Step 7. If the prediction error stabilizes or the number of 

iterations reaches the maximum, terminate the iterations, and 

output the optimal β and 1-β; otherwise, return to Step 5. 

Step 8. Compute the heat load trend predicted by the optimal 

combinatory model according to the optimal β and 1-β. 

 

 

4. EXPERIMENTS AND RESULTS ANALYSIS 

 

As mentioned before, the original dataset was developed 

based on the historical weather data at the locality of the 

building and the historical data on heat load. The dataset was 

imported to the proposed heat load trend prediction model. 

The obtained training curve is displayed in Figure 5. It can be 

seen that, the training and test errors of EGBT gradually 

decreased with the growing number of iterations, and the loss 

tended to be stable after 50 iterations. 

To obtain the most ideal SVR prediction model, this paper 

determines the penalty coefficient and kernel function width 

through grid search. The value range of the penalty coefficient 

and kernel function width was determined as {31, 32, …, 237} 

and {2−10, 2−9, …, 2−2}, respectively. The original dataset was 

divided into ten parts, and used to train the ten prediction 

models. The idealness of the SVR prediction model was 

characterized by the mean prediction accuracy of all prediction 

models. Table 1 reports the performance of the prediction 

models with different penalty coefficients and kernel function 

widths. Eventually, the penalty coefficient and kernel function 

width of the SVR for real heat load prediction were determined 

as 223 and 2−6, respectively. The data on the weather and heat 

load of the locality of the building were collected for the future 

24 h and the past 6 h. Then, the data of the first 1 h and the 

past 6 h were extracted to import to the SVR to obtain the 

predicted heat load trend of the first 1 h. Next, the data of the 

second hour and the past 6 h were extracted to predict the heat 

load trend. The above steps were repeated to obtain the 

complete heat load prediction data of the coming 24 h. 

To verify the effectiveness of the combinatory model for 

heat load trend prediction, a single prediction model was 

selected as a comparison model. Table 2 compares the 

prediction results. It can be seen that the mean absolute 

percentage error (MAPE) of the combinatory model for the 

heat load was 0.88%, which was 3.2% and 1.67% lower than 

that of EGBT and SVR alone, respectively. The mean absolute 

error (MAE) of the combinatory model for the heat load was 

181.36 kW, and 171.24 kW lower than that of EGBT and SVR 

alone, respectively. The root mean square error (RMSE) of the 

combinatory model for the heat load was 191.47 kW, and 

152.97 kW lower than that of EGBT and SVR alone, 

respectively. It can be seen that the combinatory model 

predicted the trend of heat load well, which is largely in line 

with the actual situation of the project. In addition, the 

prediction effect of the combinatory model was much better 

than EGBT and SVR alone. This testifies the effectiveness and 

superiority of the combinatory model in heat load trend 

prediction. Statistical analysis was performed to extract the 

data for predicting heat load trend from the historical weather 

and heat load data of the locality of the target building from 

December 2nd to December 8th. Figure 6 shows the actual heat 

load, predicted heat load, and ideal heat load of the building in 

that period. Comparing the actual and predicted heat loads of 

the building, it can be seen that the heat load trend prediction 

of the model was rather good in most of the period. Thus, the 

model can effectively and reasonably predict the heat load, 

using the said historical data. 
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Figure 5. EGBT training curve 

 

Table 2. Comparison of heat load prediction errors of 

different models 

 

Date Model 
MAPE/

% 

MAE/ 

kW 

RMSE/ 

kW 

December 

2nd 

EGBT 2.68 258.14 294.58 

SVR 2.14 269.27 274.15 

Combinatory 

model 
1.62 115.35 163.27 

December 

3rd 

EGBT 2.58 169.82 248.61 

SVR 3.95 372.16 348.27 

Combinatory 

model 
1.62 142.57 196.05 

December 

4th 

EGBT 2.84 269.63 357.28 

SVR 3.67 358.37 311.62 

Combinatory 

model 
1.95 162.42 147.28 

December 

5th 

EGBT 2.38 174.28 162.95 

SVR 2.11 268.15 238.51 

Combinatory 

model 
0.85 52.47 85.62 

 

 
 

Figure 6. Predicted heat loads from December 2nd to 

December 8th 

 

 
 

Figure 7. Oscillations of prediction results of different 

models 

The above figure shows that the heat load of the building at 

night was higher during the study period, mainly because the 

model ignores less sunlight, low temperature, and less indoor 

activities at night. The neglection of these factors suppresses 

the prediction accuracy. In addition, the above experiments 

show that the proposed combinatory model does not need the 

details of the actual building to predict the heat load. It only 

needs the historical data on the local weather and the 

building’s heat load in the past 6h. This means the model has 

a strong generalization ability, and is feasible for predicting 

the heat load of the actual project. 

To further verify the effectiveness of the combinatory 

model, this paper selects four reference models for 

comparative experiments on prediction stability. The 

reference models include CNN+LSTM (reference model 1), 

LSSVM+ARIMA (reference model 2), and LSSVM+K 

nearest neighbors (Reference model 3), and our model without 

SA (reference model 4). Figure 7 compares the oscillation of 

the prediction results of different models. 

As shown in Figure 7, the prediction result of our model 

oscillates 5% less intensively than that of any reference model. 

The prediction stability was enhanced significantly, which 

fully demonstrates the superiority of EGBT and SVR 

combinatory model in heat load prediction. The proposed 

model was compared with the model without SA in terms of 

the prediction oscillation, aiming to prove that the 

combinatory weighting of SA stabilizes the prediction. The 

comparison shows that the SA can enhance the stability of the 

prediction by the combinatory model, and can be widely 

applied to optimize the combinatory prediction model for the 

heat load in actual projects. 

 

 

5. CONCLUSIONS 

 

This research explores the application of optimal 

combinatory mathematics model in heat load trend prediction. 

Firstly, feature extraction was performed on the historical 

weather data at the locality of the building and the historical 

data on heat load, creating a short-term trend prediction dataset 

with days as the unit, and an ultra-short-term trend prediction 

dataset with hours as the unit. On this basis, a combinatory 

mathematics model was created for heat load trend prediction. 

Furthermore, the authors detailed the principles of the two 

methods, EGBT and SVR, and explains the combination 

pattern of the single models in the combinatory model. Then, 

the weights were optimized by the SA, and the steps of the 

combinatory model were presented. Through experiments, the 

EGBT training curve was drawn, and the SVR prediction 

effects with different penalty coefficients and kernel function 

widths. The heat load of the target building in the coming 24 

h was obtained completely. Finally, four reference models 

were selected to comparatively test the prediction stability. 

The results show that the combinatory model is effective, and 

the combinatory weighting of the SA is effective. 
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