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Indoor scene recognition is complex due to the commonality shared between different 

spaces. Still, when it comes to robotics applications, the uncertainty increases due to 

illumination change, motion blur, interruption due to external light sources, and cluttered 

environments. Most existing fusion approaches do not consider the uncertainty, and others 

have a high computational cost that may not suit robots with limited resources. To mitigate 

these issues, this paper proposes a reliable indoor scene recognition approach for mobile 

robots with limited resources based on robust deep convolutional neural networks (CNNs) 

feature extractors and neuro-fuzzy inference to consider the uncertainty of the data. All CNN 

feature extractors are pre-trained on the Imagenet dataset and used in the manner of transfer 

learning. The performance of our fusion method has been assessed on a customized MIT-67 

dataset and for real-time processing on a Locobot robot. We also compare the proposed 

method with two standard fusion methods---Early Feature Fusion (EFF) and Weighted 

Average Late Fusion (WALF). The experimental results demonstrate that our method 

achieves competitive results with a precision of 94%, and it performs well on the Locobot 

robot with a speed of 3.1 frames per second. 
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1. INTRODUCTION

Household robots are used for semantic-rich applications in 

a user-centric environment. Robots have been utilized in 

various applications, ranging from room cleaning [1] to elderly 

care [2, 3]. For such applications [4], scene recognition is a 

prime requirement for robot navigation and localization tasks. 

Scene recognition is important for providing high-level 

semantic information about a scene: It provides information 

about the robot's current locality and improves the quality of 

Human-Robot interaction [5, 6]. Semantic cues such as the 

presence of a specific object class, the layout of the contour, 

and the topological connection of spaces can all be used to 

classify a space. However, these systems have a restricted 

precision range. There is a huge requirement for correct 

recognition between similar traits [5] of two different spaces. 

According to Yan et al. [7], understanding spatial relations of 

objects is critical in many robotic applications such as grasping, 

manipulation, and obstacle avoidance. On the other hand, 

Humans can simply reason about an object's spatial relations 

from a glimpse of a scene based on prior knowledge of spatial 

constraints. 

Several indoor scene recognition techniques including 

robots have been presented in recent years [5, 7-14]. RGB-D 

data is utilized to detect object orientation in many existing 

recognition methods, and it is incorporated with the definition 

of objects in the scene [15, 16]. The use of depth data always 

creates a dependence on a new hardware and depth sensor 

(infrared) suffers with distorted measurement due to rapid 

illuminance change and motion blur [17, 18]. Deep 

convolutional neural networks (CNNs) have been used for 

scene classification, achieving accuracy rates of 80.38 and 

68.24 for 3 and 15 classes, respectively [19, 20]. The study 

[21] found that CNNs are biased toward identifying textures

rather than shapes and that they perform badly when faced

with a variety of visual distortions. As shown in Figure 1,

indoor scene recognition involves several visual distortions

like illumination changes [22], cluttered scenes, and similar

traits [23] that impose a sort of uncertainty when classifying

indoor scenes by a CNN model. Hence, the biased nature of

CNNs and such sources of uncertainty significantly limit the

accuracy of the existing indoor scene recognition method.

Noticeable efforts have been made in the literature to 

enhance the performance of indoor scene recognition methods. 

For instance, Glavan and Talavera [5] have used multi-modal 

learning on video data gathered from social media and 

employed different fusion strategies to aggregate models 

trained on multi-modal data. However, these methods obtained 

a limited accuracy of 70%. A multi model-fusion approach 

based on adaptive discriminative metric learning has been 

presented in the study of Wang et al. [24] for indoor scene 

recognition. This fusion approach achieved an accuracy of 

88.43% on MIT-67 dataset. The studies [25-27] have applied 

different fusion approaches to deep CNNs features to 

recognize human activity in indoor scenes and to find semantic 

matching between two scenes. These fusion approaches adopt 

a weighted addition approach for fusing the features at 

different stages (i.e., joint fusion or late fusion). Although the 

weighted fusion approaches increase the probability score for 

detected classes, they fail to penalize the non-prior predictions, 
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which can give rise to uncertainty in predictions. 

 

 
 

Figure 1. Visual distortions in indoor scene recognition 

framework. (a) and (b) are taken from an indoor scene 

recognition dataset. (c) and (d) are captured by a Locobot 

robot in a laboratory at IIIT-Allahabad 

 

Indeed, most existing fusion approaches do not consider the 

uncertainty due to illumination changes, cluttered scenes, and 

similar traits. Besides, some models have a high computational 

cost that may not suit robots with limited resources. The main 

issue in most multi-model fusion approaches is the size of the 

network. The number of parameters will increase multi-fold 

by fusing multiple heavy networks, which creates a lag in 

applying on robot hardware due to the high computational cost. 

To address the issues discussed previously, in this paper we 

propose a reliable indoor scene recognition approach for 

mobile robots with limited resources based on multiple 

lightweight deep CNN feature extractors and neuro-fuzzy 

inference. Figure 2 presents a schematic diagram of the 

proposed indoor scene recognition approach. The proposed 

approach is implemented and tested on Locobot, a limited 

resource robot, to recognize indoor scenes in IIIT-Allahabad. 

Locobot robot has an Intel NUC computer with 8 GB RAM 

capacity. In this approach, we employ transfer learning and 

different lightweight deep CNN feature extractors such as 

VGG-16 [28], ResNet50 [29], and EfficientNet-B3 [30] to 

extract robust features from the images of the indoor scenes. 

These representative ConvNets focus on different aspects of 

accuracy, efficiency and scalability. Transfer learning allows 

us to employ deep CNNs trained on a large dataset (e.g., 

ImageNet [31]) to extract robust and descriptive features from 

the indoor scene recognition dataset. Each deep CNN feature 

extractor helps extract robust and powerful features against 

one or multiple kinds of visual distortions in indoor scene 

recognition images.  

In this paper, an efficient fusion mechanism is proposed to 

aggregate the individual feature extractors to consider the 

uncertainty of the data mentioned above. In particular, the 

predictions of the individual deep feature extractors are 

aggregated using the neuro-fuzzy inference technique and 

compared with weighted average fusion technique to obtain 

reliable scene recognition results. The proposed multi-model 

fusion approach provided an average indoor scene recognition 

rate of 3.1 frames per second, which is sufficient for the 

application of contour or space localization [32]. 

This study makes the following key contributions: 

• Proposing a reliable indoor scene recognition approach 

for mobile robots with limited resources based on robust 

deep CNN feature extractors and neuro-fuzzy inference to 

consider the uncertainty of the data; 

• Investigating the performance of various fusion 

mechanisms for indoor scene recognition approach; 

• Providing comparisons with state-of-the-art methods and 

achieving a superior indoor scene recognition precision of 

94%. 

• Achieving an average indoor scene recognition rate of 3.1 

frames per second in a limited resource robot---Locobot 

robot. 

 

 
 

Figure 2. The schematic diagram for indoor scene 

recognition using a Locobot robot. Images were captured in a 

laboratory at IIIT-Allahabad 

 

The remainder of this research is divided into four sections. 

The state-of-the-art approaches are discussed in Section 2. The 

proposed indoor scene recognition approach and fusion 

mechanisms are explained in Section 3. The experimental 

results are presented and discussed in Section 4. The study's 

findings and future work are presented in Section 5. 

 

 

2. RELATED WORK 

 

Several conventional image processing and machine 

learning techniques were proposed in the literature to handle 

scene recognition or classification problems. With the 

evidence of deep learning, using convolution networks is well 

seen in practice. This section presents and discusses several 

deep learning-based indoor scene classification techniques. 

These techniques include transfer learning methods, complex 

statistics-based classification models, and multi-model fusion 

methods. A detailed comparison of existing indoor scene 

classification techniques was presented in the study of Afif et 

al. [33], where the MIT-67 dataset was used to assess the 

performance of the compared models. Table 1 presents a 

summary of different techniques used for scene classification.  

The authors of Hanni et al. [34] claimed that the indoor 

scene recognition [35] could not achieve high accuracy by 

using traditional neural networks, and therefore they proposed 

to use deep transfer learning techniques to enhance the 

accuracy. They proposed to use a deep learning-based model 

that consists of 3 inception layers, a mix of 1×1, 3×3, and 5×5 

convolution layers, 3 max-pooling layers, and 10 mixed layers, 
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i.e., a model that fabricates a different neural network for each 

type of data provided to the neural network. The major 

operation of the input layer of this model is to resize the image 

to the optimum size for the pre-trained model. The mixed layer 

activity includes the extraction of various features for each 

type of image provided, and the max-pooling layer is used to 

realize the complex division of pixels into various segments. 

Following this, a pooling layer is used to retain the maximum 

pixel value. All the pixels in the input image were converted 

to small patches to obtain the maximum possible value of the 

pixel. A pre-trained Inceptionv3 [36] was used for 

classification.  

To evaluate this method, an RGB Depth (RGB-D) images 

dataset had 3 indoor scene classes (Bedroom, Kitchen, Study), 

where each class had 150-200 images. The second dataset used 

was NYUv2 [37], where 6 indoor scene classes (Bedroom, 

Bathroom, Furniture Store, Cafe, Living Room, Kitchen) were 

considered. It is important to note that the model was trained 

and tested for each dataset individually, resulting in limited 

accuracy of 86%. 

Besides, two problems, namely dataset bias in CNN and 

performing a combination of both scene and objects, were 

addressed by Herranz et al. [38]. Previously, the authors 

worked on a single Hybrid-CNN, which was trained on places 

and object classes of ImageNet simultaneously. However, it 

was observed that there was an induction of dataset bias when 

only one (Hybrid-CNN) model was used. Then, they proposed 

scale-specific CNN, which resulted in higher accuracy. The 

authors tested their model on three different datasets-15 scenes 

[39], MIT67 [40], and SUN397 [41]. Of these datasets, the 

SUN397 dataset was used as the target dataset for evaluating 

the dataset bias and achieved an accuracy of 85.81%. The 

study of Hanni et al. [42] focused on the scale ranges of the 

objects found in scenes and tuning CNNs to reduce indoor 

scene dataset bias. 

Various methods are discussed for the application of scene 

recognition methods for the localization of robots [43]. It 

discusses a real-time scene recognition scheme to use objects 

segmented in it as the natural landmarks and explores the 

suitability of configured representation for automatic scene 

recognition in robot navigation. It discusses the uncertainty 

issue associated with the problem of scene recognition 

problem. Wang et al. [43] obtained a limited indoor scene 

classification accuracy of 90.1% on 8 indoor classes. 

In an attempt to improve the indoor classification accuracy, 

various multi-model approaches were proposed [5, 24, 44], in 

which the input indoor scene image was fed into multiple CNN 

models, and a fusion technique (e.g., early or late fusion) was 

employed to produce the final prediction (i.e., indoor scene 

class). Miao et al. [45] proposed employing object information 

from the scene to enhance the prediction of the CNN model. 

In particular, they proposed an object-to-scene (OTS) module 

that extracts object features based on a segmentation network 

and an object feature aggregation module (OFAM). Afterward, 

the object relations are calculated, and the scene representation 

is constructed based on the proposed object attention module 

(OAM) and global relation aggregation module (GRAM). The 

study demonstrated that OTS successfully extracts object 

features and learns object relations from the segmentation 

network. They have tested it on 5 indoor classes (Bedroom, 

Corridor, Kitchen, Living Room, and Bathroom) of ICR5-23 

dataset and claim an accuracy of 91.098%. The main 

disadvantage of this method is that it is limited to static images, 

and they give a limited performance on a real robot.  

Three main issues [46] were discussed for scene recognition 

from a robot camera: 1) the indoor places include typical home 

objects, 2) a sequence of images instead of an isolated image 

is provided because the images are captured successively by a 

cleaning robot, and 3) the camera of the cleaning robot has a 

different view compared with those of cameras typically used 

by human beings. It points out an uncertain situation while 

applying CNN models to a real robot. Also, these models are 

heavy to be executed on limited-resource mobile robots.  

Neuro-fuzzy [35] is proposed as a potential solution in case 

of uncertainty. It adjusts the relevance of predictions from 

different sources using fuzzy rules. It converts the inputs 

(predictions from different sources) into fuzzy values and uses 

a neural network for rule training.  

In this paper, we propose an efficient fusion mechanism to 

aggregate the individual CNN feature extractors to consider 

the uncertainty of the data mentioned above. Specifically, we 

propose a neuro fuzzy-based fusion mechanism to fuzzify the 

predictions of robust CNN-based indoor scene classifiers. 

Besides, we compare the proposed fusion mechanism with 

early and late fusion methods. 

 

Table 1. A summary of different scene classification 

approaches 

 

Work Dataset 
Number 

of classes 
Methods 

Accuracy 

(%) 

[47] [39, 40] 4, 3 
EfficientNet-

B3 
95, 97 

[48] [39] 15 CNN + SVM 86 

[49] NA 4 Inception v3 73.3 

[50] [40, 41] 10, 15 

VGG-19 

hybrid +  

VGG-11 

P205+G P205 

85.97, 

70.69 

[51] [41] 19 RGB-D CNN 52.4 

[52] [37, 41] 10 
Key local 

feature 
55.9, 67.8 

[38] 
Custom 

Data 
3 

Multiple 

classifiers 
80.38 

[19] [39] 15 
Places- CNN 

features 
68.24 

[5] InstaIndoor 18 
Multi-model 

fusion 
70 

[42] [40] 10 
ADM 

learning 
88.43 

 

 

3. PROPOSED METHOD 

 

In this section, we first define the problem of uncertainty in 

indoor scene classification. Then, we present the proposed 

neuro-fuzzy based fusion technique in detail, followed by a 

description of the employed CNN feature extractors. 

Ultimately, we explain the implementation of the proposed 

methods on a robot. 

 

3.1 Problem definition 

 

In any CNN-based classification approach, a RGB image is 

classified corresponding to a label using the predicted 

probability 𝑍𝑖 = [𝑧1, 𝑧2, … 𝑧𝑛] by a CNN model 𝐶𝑁𝑁𝑖, where 

’𝑛’ is the number of class labels. 𝑍𝑖 should fulfill the following 

condition: 

 

∑ 𝑍𝑖 = 1𝑛
𝑖=1   (1) 
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Usually, a softmax function (P) is used to derive the final 

probability of class label using the prediction vector 𝑍𝑖. The 

standard softmax is defined as follows: 

 

𝑃(𝑍)𝑖 =
∈𝑧𝑖

∑ ∈
𝑧𝑗𝑛

𝑗=1

  (2) 

 

where, ′𝑛′ is the number of classes in multi-class classification. 

In case of fusion of ’𝑚’ CNN models, weighted average is 

commonly used to aggregate the predicted probabilities 

(𝑃𝑖1
, 𝑃𝑖2

, . . 𝑃𝑖𝑚
) into a consensus prediction. However, the 

weighted average does not acknowledge the disparity in 

prediction by all models. The variation in probabilities creates 

uncertainty for normal fusion mechanisms. 

To efficiently fuse the probabilities of the CNN models, we 

propose a neuro-fuzzy-based approach to aggregate them. The 

prediction probabilities of each model are first changed to the 

respective membership function (fuzzification) and then 

passed with a rule base to decide the final indoor scene class 

label. Notably, the fuzzy weights and rule base are trained in a 

supervised manner. 

 

 
 

Figure 3. Individual CNN feature extractors. VGG-16, 

Resnet-50, Efficientnet- B3 have variety in mechanism 

3.2 Individual deep CNNs feature extractors 

 

To extract indoor scene relevant features from input images, 

we employ three pre-trained deep convolution feature 

extractors, namely VGG-16 [28], ResNet50 [29], and 

EfficientNet-B3 [30]. All pre-trained models were trained on 

ImageNet dataset [53]. It should be noted that the use of 

different robust CNN feature extractors can generate multiple 

feature representations, which can reflect different “views” of 

the data, meaning that such representations make a complete 

characterization of the input scene image. In Figure 3, 

individual CNN extractors are shown. Below, we present a 

brief description for each CNN feature extractor. 

 

• VGG-16 is a deep CNN architecture that uses 13 

convolutional layers and 3 fully connected layers. It uses 

the same size kernel of 3 × 3 to the whole network to 

extract features at a large scale. It uses a pooling of 2 × 2 

with a stride of 2 for the entire network. The pre-trained 

VGG-16 model can be found at 

https://github.com/fchollet/deep-learning-

models/blob/master/vgg16.py. 

• ResNet50 uses skip connections as a unique concept to 

preserve the features extracted from previous network 

layers. It uses a 5 stage convolution process for feature 

extraction. The pre-trained ResNet50 model can be found 

at https://github.com/keras-team/keras-

applications/blob/master/keras_applications/resnet50.py. 

• EfficientNet-B3 is CNN architecture and scaling 

technique that uniformly scales all depth, width, and 

resolution dimensions utilizing a compound coefficient. It 

employs a stage-wise parallel network with varying sizes 

of convolution kernels, which makes it more efficient in 

extracting relevant features. The pre-trained EfficientNet-

B3 model can be found at 

https://github.com/qubvel/efficientnet. 

 

3.3 Proposed indoor scene recognition using neuro-fuzzy-

based fusion 

 

Figure 4 shows the proposed indoor scene recognition based 

on a neuro fuzzy network. The input indoor scene image is fed 

into a set of deep feature extractors 

(𝐶𝑁𝑁1, 𝐶𝑁𝑁2, . . . , 𝐶𝑁𝑁𝑛) to classify it as one of the 𝑛 indoor 

scene classes. Given𝐶𝑁𝑁𝑖 , the probabilities of each indoor 

scene class 𝑃𝑖 = [𝑝1, 𝑝2, . . . , 𝑝𝑛]  are computed. The indoor 

scene probability vectors generated by all CNNs are inputted 

to the proposed neuro-fuzzy fusion mechanism to fuse them 

and predict the final indoor scene class label. 

The fusion of output prediction vectors of different CNNs 

is a complex task due to each model's range and scale value 

variation. Each prediction vector 𝑃𝑖  is computed after making 

a specific feature extraction mechanism by a 𝐶𝑁𝑁𝑖 , which 

varies from one CNN to another due to the variation in the 

number of layers and way of processing. Most existing early 

and late fusion methods assume that the predictions from all 

CNN models have the same in nature or are identical, which is 

not practically correct. Considering this fact, we can conclude 

that handling uncertainty requires a more robust learning 

system that adapts to a complex environment and the fuzzy 

inference system, which disposes of a fuzzy inference system. 
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Figure 4. Schematic diagram of the proposed neuro-fuzzy based fusion mechanism 

 

 
 

Figure 5. The architecture of the proposed neuro-fuzzy based fusion model 

 

Here, we propose using a neuro-fuzzy system to find the 

best weights to fuse the predictions of different robust CNNs. 

As shown in Figure 5, the inputs to the neuro-fuzzy system are 

the predictions of the 𝑚 CNN models (i.e., 𝑃1, 𝑃2,...., 𝑃𝑚). The 

architecture of the proposed neuro-fuzzy model contains six 

layers, including the input layer, fuzzification, rules, hidden 

layer, fuzzy output and output. The output from CNN models 

is analyzed through a gaussian distribution and converted to 

respective fuzzy values using the Gaussian membership 

function. The reason for selecting gaussian distribution is 

because of its smooth nature and concise notation. It can be 

defined as follows: 

 

𝑓 [(𝑢𝑖𝑗)
2

] = −
[𝜇𝑖

2−𝑐𝑖𝑗]2

𝜎𝑖𝑗
2   (3) 

 

where, 𝑐𝑖𝑗  and 𝜎𝑖𝑗  are center and width of gaussian 

membership function. The error computation at output layer 

takes place using cross entropy loss and backpropagates the 

dewhere, 𝑐𝑖𝑗  and 𝜎𝑖𝑗  are center and width of gaussian 

membership function. The error computation at output layer 

takes place using cross entropy loss and backpropagates the 

derivative 𝛿𝑡, 

𝛿𝑡 = −
𝛿𝐷

𝛿𝑎
  (4) 

 

where, D is the difference (loss) between target and predicted 

values, and 𝑎 is the weights of the last layer of neuro fuzzy 

network. The loss (D) is calculated as follows: 

 

𝐷 = − ∑ 𝑦𝑖𝑙𝑜𝑔𝑦̂̇𝑁
𝑖=1   (5) 

 

In the training phase of the fusion model, a hybrid optimizer, 

grid partition algorithm [54] with Adaptive Neuro-Fuzzy 

Inference System (ANFIS), are used. The hybrid optimizer 

uses both the steepest descent algorithm and the least-squares 

algorithm to fit the data faster than the traditional back 

propagation optimizer, which uses a least-square algorithm. 

The number of epochs used for training the fusion model is 

150 (the model reaches an error range of 0.0005 before 100 

epochs). Figure 6 presents the setting for training the fusion 

model. As shown, the number of inputs is 30 (10-elements of 

class probability vectors produced by each of the 3 CNN 

models) and one output label. The number of input 

membership functions is 5 for each input. 
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Figure 6. The setting for training the fusion model 

 

3.4 Implementation of the proposed method 

 

Algorithm 1 presents the steps to implement the proposed 

indoor scene classification method. Given that the number of 

individual feature extractors is 3. The input scene image I is 

fed into the three CNN models CNN1 , CNN2 , and CNN3  to 

produce three class probability vectors P1, P2, and P3. Then the 

neuro-fuzzy fusion-based model is trained. 

In the neuro-fuzzy model, the class probability vectors are 

fuzzified using a Gaussian membership function as in 

Equation 3. The corresponding fuzzy values are then mapped 

against the final output using fuzzy rules, which are trained 

using a neural network. The output of the neural network is 

defuzzified to a crisp value as final output (in our case, scene 

label).  

 

3.5 Application on robot 

 

The validity of the proposed method is tested on a Locobot 

robot. The robot is configured with an Intel NUC - 

NUC8i3BEH computer [55]. This computer works with a ROS 

operating system and continuously integrates the information 

from different sensors. Locobot robot has a RAM capacity of 

8 GB, SSD capacity of 250 GB and is equipped with an 8th 

Generation Intel Core i3 8109U processor. Locobot robot has 

an Intel Realsense [56] camera for capturing the indoor 

environment images. We have discussed the specification of 

the robot environment in Table 2. The Robot Operating 

System is used as a middleware for running various sensors 

and processes. 

 

Table 2. Specification of robot hardware and software 

 
Parameter Value 

RAM 

Operating System  

Middleware  

Processor  

Process used simultaneously  

8 GB 

Ubuntu 18.04 

ROS Kinetic 

Intel Core 248 i3 8109U 

Odometer, ORB-SLAM 

 
The proposed model is built on the Tensorflow framework 

using Keras API. The model is trained on an external machine 

(GPU) and then the weights configuration is saved for the final 

model. A protobuf file is used for the deployment of the model 

on the robot computer. A docker configuration is created for 

the required configuration to run the model on any other 

machine. The docker’s compatibility in the ROS environment 

is a considerable issue while deployment.  

 

 

4. EXPERIMENTS AND RESULTS 

 

Here, we introduce the customized dataset we prepared for 

our application and evaluation metrics. Then, we analyze the 

performance of the individual CNN models with the indoor 

scene recognition, the performance of the proposed neuro-

fuzzy fusion method and compare it with two well-known 

fusion techniques. 

 
Algorithm 1 Algorithm for Proposed Late Fusion with Neuro 

Fuzzy Method 

Input: Preprocessed image I of size 224 × 224 × 3 

Output: Indoor scene class 

Step:1 Load pretrained 𝐶𝑁𝑁1,𝐶𝑁𝑁2,…, 𝐶𝑁𝑁𝑚 

Step:2 Compute the probability vectors for I: 𝑃1, 𝑃2,…., 𝑃𝑚. 

𝑃1  ←  𝐶𝑁𝑁1(𝐼) 
𝑃2  ←  𝐶𝑁𝑁2(𝐼) 

𝑃𝑚  ←  𝐶𝑁𝑁𝑚(𝐼) 
Step:3 Fuzzify 𝑃1, 𝑃2, 𝑃3. using Gaussian membership function 

(Eq. (3)) 

Step:4 Train a Neural network for fuzzy rules for classification 

Step:5 Defuzzify inference output to a crisp value 

Step:6 Calculate the loss (Eq. (5)) and backpropagate it 

 

4.1 Customized indoor scene classification dataset 

 

It should be noted that the indoor classes that LocoRobot 

will recognize in our environment are limited. To train the 

proposed indoor scene recognition model, we used the MIT-

67 dataset [22] to create a customized dataset. The original 

MIT-67 database contains 67 indoor categories and 15,620 

images of varying sizes. We selected 10 classes of 67 indoor 

categories: Kitchen, Living Room, Bedroom, Airport Inside, 

Casino, Warehouse, Bakery, Book Store, Toy Store, and 

Bathroom. The selection of classes is based on the 

commonness of the scenes and more probability to appear in 

the daily life of our environment. Our customized dataset has 

5,059 images representing the ten classes. We split the dataset 

as follows: 80% for training and 20% for testing. 

 

4.2 Evaluation metrics 

 

The performance of the proposed indoor scene recognition 

method is assessed in terms of Precision, Recall, and F1-score, 

which are formulated as follows: 

 

Precision =
TP

TP + FP
  (6) 

 

Recall =
TP

TP + FN
  (7) 

 

𝐹1𝑠𝑐𝑜𝑟𝑒 =
2 ∗ Precision ∗ Recall

Precision + Recall
  (8) 

 

where, TP, FP, TN and FN stand for True Positive, False 

Positive, True Negative, and False Negative, respectively. 
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4.3 Performance analysis 

 

First, we assess the performance of the individual CNN 

models for indoor scene classification. As shown in Table 3, 

the three CNN models obtain more than 80% precision. The 

EfficientNet-B3 model achieves the best recall and F1-score 

values (87%). EfficientNet-B3 competes in terms of 

performance thanks to the model scaling mechanism that 

prevents unwanted information loss, which helps in improving 

accuracy. Figure 7 presents the confusion matrix of VGG-16, 

ResNet-50 and EfficientNet- B3 to visualize their class-wise 

performance. As one can see, in the case of class 3, VGG-16 

and ResNet-50 wrongly classified 23 samples as class 7; in 

turn, EfficientNet-B3 produced a lower misclassification rate, 

where it wrongly classified 22 samples as class 7. Besides, in 

the case of class 7, VGG-16 mis-classified 15 samples as class 

3, ResNet-50 misclassified 17 samples as class 3, and 

EfficientNet-B3 misclassified 12 samples as class 3. The main 

confusion is in class 3 ’Airport Inside’ and class 7 ’Book Store’ 

because their images have the same kind of furnished setup 

and illumination level. It usually confuses the CNN network, 

and it behaves uncertainly. 

 

 
 

Figure 7. Plots of the confusion matrix of the individual 

CNN models. (a) VGG-16, (b) ResNet-50 and (c) 

EfficientNet-B3 

 

Table 3. Performance analysis of individual deep CNN for 

indoor scene recognition 

 
Model Precision Recall F1-Score 

VGG-16 81 79 80 

ResNet-50 85 83 84 

EfficientNet-B3 88 87 87 

 

Table 4 presents the classification results of the proposed 

neuro-fuzzy fusion method for indoor scene classification. It 

achieved a precision of 94%, a recall of 94%, and an F1-score 

of 93%. The proposed neuro-fuzzy fusion method 

significantly enhances the results of the individual CNN 

models tabulated in Table 3. As one can see, our method 

increments the precision, recall and F1-score rates by more 

than 5%. 

 

Table 4. Classification results for fusion models. Early 

fusion mechanism, late fusion with weighted average and 

neuro fuzzy (proposed model) 

 
Model Precision Recall F1-Score 

Early Fusion Method 90 89 90 

Weighted Average 92 91 91 

Neuro Fuzzy 94 93 93 

 

 
(a) 

 
(b) 

 

Figure 8. Plots of the confusion matrix of (a) the proposed 

neuro-fuzzy fusion, and (b) EFF method 

 

Furthermore, we compare the proposed neuro-fuzzy fusion 

method against two different fusion algorithms, namely early 

feature fusion (EFF) and weighted average-based late fusion 

(WALF). In EFF, the output feature spaces from VGG-16, 

ResNet-50 and EfficientNet-B3 are resized and reduced to 

identical size by using principal component Analysis (PCA). 

PCA also ensures the selection of most relevant features. The 

final feature vector size of 𝐹1, 𝐹2, and 𝐹3 from all three models 

is 256 × 1. Feature vectors (𝐹1, 𝐹2, and 𝐹3) are then fused into 

a final feature vector F using vector addition (F = F1 ⊕ F2 ⊕ 

F3). Finally, the fused feature vector (256 × 1) is used for 

indoor scene classification. In our experiments, a fully 

connected network is used for indoor scene classification. A 

softmax function is used to convert final vector output to a 

probability function. In the case of WALF, VGG-16, ResNet-

50 and EfficientNet-B3 are used for predicting class 

probability vector (P1, P2, P3), where the length of each vector 

equals the number of classes (10 × 1). The weighted-average 

technique is used to fuse the three class probability vectors into 
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one probability vector as follows 𝑊 =  𝑎1𝑃1̇ + 𝑎2𝑃2̇ + 𝑎3𝑃3̇, 

where 𝑎1, 𝑎2, 𝑎𝑛𝑑 𝑎3  are the weights of WALF with the 

constraint of 𝑎1 + 𝑎2 + 𝑎3 = 1  It should be noted that 

𝑎1, 𝑎2, 𝑎𝑛𝑑 𝑎3 were empirically set to 0.27, 0.25, and 0.48 for 

VGG-16, Resnet-50 and EfficientNet-B3, respectively. As 

presented in Table 4, the proposed neuro-fuzzy fusion method 

achieves a precision score 4% higher than EFF and 2% higher 

than WALF. EFF increments the precision score of the 

individual feature extractors with 2%. The WALF obtains 

classification results better than the early fusion method with 

increments of 2% on all evaluation metrics. EFF applies 

feature fusion after the convolution blocks and feature 

reduction; in turn, WALF employs the whole CNN network 

and fuses the probability vectors of all networks, which has 

undoubtedly increased the precision. Figure 8 shows the 

confusion matrix of the proposed neuro-fuzzy fusion method 

and EFF to visualize their class-wise performance. We can see 

in Figure 8(a), in the case of class 3, our method wrongly 

classified 17 samples as class 3, while EFF mis-classified 18 

samples (Figure 8(b)). The misclassification of class 6 to class 

2 is also decreased. Figure 9 shows the distribution of 

misclassification of all indoor scene classes with the proposed 

method and EFF. As shown in Figure 9 (b), the highest EFF 

class misclassification probability happens with the ‘bedroom’ 

class. The neuro-fuzzy fusion method could reduce such 

misclassification bias toward one class. The proposed fusion 

method employs neuro-fuzzy to fuse the indoor scene 

probability vectors, and to handle uncertainty of data that 

originates due to illumination changes, cluttered scenes, and 

similar traits. As we can see in Table 4 and Figures 9(a) and 

9(b), the proposed method outperforms the other fusion 

methods, which proves its application in handling data 

uncertainty. 
 

 
(a) 

 
(b) 

 

Figure 9. The distribution of mis-classification of all indoor 

scene classes. (a) the proposed neuro-fuzzy fusion, and (b) 

EFF method 

4.4 Performance on Locobot robot 

 

Here, we present the performance of the proposed neuro-

fuzzy fusion method on the Locobot robot in IIIT-Allahabad. 

The Robot works in a ROS environment and also uses multi-

sensor information. Figure 10 shows a Live feed indoor scene 

classification result from the Locobot robot. Table 5 shows the 

detection speed of the proposed method on Locobot robot. As 

demonstrated above, the precision of the proposed method is 

higher than 94%. As one can see, the proposed method 

achieved 3.1 FPS (frame per second), which is sufficient for 

our indoor scene classification application and comparable to 

the ones of EFF and WALF. 

 

 
 

Figure 10. Live feed indoor scene classification results from 

Locobot robot based on the proposed neuro-fuzzy fusion 

method 
 

Table 5. Performance on Locobot robot 
 

Method FPS 

EFF 3.4 

WALF 3.2 

Proposed 3.1 

 

4.5 Discussion 

 

It is worth noting that there are alternative scene recognition 

approaches using robots, for instance, the cloud-based 

approach, where the deep learning model is hosted in a cloud 

server, and the robot sends the indoor scene image to it to 

analyse it. Then, the indoor scene class label is sent to the robot. 

Such approaches generally face three significant issues: peed, 

connectivity, and isolation. The speed is a considerable 

concern in robotics because it requires real-time processing 

with zero latency. Still, cloud processing sometimes assigns a 

queue to a process real-time data association gets affected. 

Secondly, the connectivity issue happens due to a sudden 

loss of connection. In the case of real-time processing, it 

involves a lot, and it makes the robot an idle senseless machine. 

The connectivity issue is being solved in various ways, either 

by using a good 5G connection or Wi-Fi but in a limited scope. 

The point of isolation comes when one does not want to 

connect the robot with the internet due to security and personal 

reasons. This issue matters in the case of many household 

robots and creates hurdles for cloud usage in robotics in an 

ethical manner. 

 

 

5. CONCLUSION 

 

This paper has proposed an efficient indoor scene 

recognition method based on deep CNNs and a neuro-fuzzy 
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fusion technique for a mobile robot with limited resources so-

called LocoRobot. The proposed method has been compared 

with early feature fusion (EFF) and weighted average late 

fusion (WALF) methods to demonstrate its efficacy. The 

proposed method, EFF, and WALF have been tested on a 

Locobot robot in IIIT Allahabad. The proposed method has 

outperformed EFF and WALF with a precision of 94% with a 

speed of 3.1 FPS. It could reduce such misclassification bias 

toward particular classes, proving its application in handling 

data uncertainty from different sources like visual distortions 

in indoor images due to motion-related fluctuations, 

illumination changes, cluttered scenes, and similar traits. Such 

efficient indoor scene recognition effectively helps mobile 

robots with limited resources like LocoRobot to localize 

themselves in an unknown environment. In future work, we 

will optimize the individual CNN models and the proposed 

fusion method to further enhance the FPS rate with different 

mobile robots with limited resources. We will validate our 

method on more specific datasets for different use cases.  
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