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Identifying the histological phenotype of non-small cell lung cancer (NSCLC) is of crucial 

importance to its treatment and prognosis. The radiomics-based prediction model has the 

potential to non-invasively extract the tumor phenotype characteristics. However, the 

existing research ignores the stability of extracted features, which restricts the performance 

and robustness of the constructed model. While most of themethods in the literature use 

classification accuracy to solve theproblemofradiomics featuresstability, in this paper we 

propose the use ofSOM (Self-organizing Mapping) and K-means to evaluate the stability of 

different feature subsets. The subset with good clustering performance is selected as the 

optimal feature subset.When the optimal feature subset is used for modeling, compared with 

other feature subsets, the higher AUC(Area Under Curve) and lower SD(Standard 

Deviation) on the three classifiers show that the feature subset had excellent classification 

performance and good stability, and can distinguish NSCLC subtypes more accurately and 

robustly. 
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1. INTRODUCTION

In many countries, lung cancer is the main cause of cancer-

related death. In particular, lung cancer is the most common 

cancer type in China, which induces over 430,000 deaths 

annually [1]. Typically, non-small cell lung cancer (NSCLC) 

accounts for approximately 85% of lung cancer [2]. The rate 

of cancer proliferation and diffusion of NSCLC are relatively 

slow, and the early symptoms are not obvious. The vast 

majority of NSCLC patients are in the middle and late when 

they are diagnosed [3], and lost the opportunity of surgical 

treatment. Neoadjuvant chemotherapy (NACT) is the 

preferred choice for patients with inoperable stage III / IV 

NSCLC, but different NSCLC subtypes have different 

sensitivity to NACT drugs. For instance, Antifolate 

Pemetrexed-based chemotherapy is only effective on lung 

adenocarcinoma (ADC), while Bevacizumab is recommended 

for squamous cell carcinoma of lung (SCC) [4-6]. Therefore, 

determining the NSCLC histological subtypes contributes to 

formulating the correct treatment strategies and avoids the 

chemotherapy-related side effects [7]. At present, pathological 

diagnosis is the gold standard to distinguish SCC and ADC [8], 

but it requires invasive biopsy, while aspiration biopsy may 

bring the risk of massive bleeding in patients with advanced 

lung cancer. Therefore, it is urgently needed to develop a non-

invasive method to accurately classify lung cancer subtypes, 

thus providing the more appropriate diagnosis and treatment 

strategy for the patients, which is of great significance to 

maximally prolong the survival of patients.  

Radiomics analysis is an emerging quantitative analysis 

method, which can automatically, efficiently and repeatedly 

extract the mass, objective and indiscernible tumor features 

from medical images (such as CT, MRI and PET), and mine 

the potential relationships between quantitative image features 

and pathophysiological features. Radiomics analysis can be 

used to predict diverse clinical outcomes, such as survival, 

distant metastasis (DM) and molecular feature classification 

[9-13]. Some studies focus on the radiomics-based 

identification of NSCLC histological subtypes. Wu et al. [14] 

constructed two study cohorts (training and validation cohort) 

involving altogether 350 patients, and 440 radiomics features 

based on CT images were extracted from each sample. Han et 

al. [15] retrospectively studied 129 NSCLC patients and 

extracted 485 features from the artificially labeled tumor 

region. They constructed the radiomics-based model by the 

logistic regression, and the AUC of the model was 0.893 (95% 

CI: 0.789 to 0.996). Chaunzwa et al. [16] retrospectively 

studied 157 patients with NSCLC to classify ADC or SCC. 

They used a VGG-16 neural network to extract deep features 

from CT images and classify them with fully connected layers, 

and its AUC were high (0.751). Although these studies have 

achieved favorable achievements, the research on the 

classification of NSCLC subtypes mainly focuses on the 

performance of the classifier, and there is less research on the 

stability of feature selection. When the training data changes 

slightly, the difference of the optimal feature subset changes 

greatly, and the prediction accuracy of the classification model 

is greatly biased. These have reduced stability of the models 

and restricted its clinical application. Therefore, it is necessary 

to explore methods improving feature stability to enhance 

robustness of the model. 

This study collected CT and clinical data from Yiyang 

Central Hospital and extracted radiomics features from the CT 

image data. Several feature subsets were selected by LASSO. 
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The SOM and K-means were used to evaluate the 

classification performance of each feature subset, and the 

feature subset with good performance was selected as the 

optimal subset. In order to verify the results generated by SOM 

and K-means, logistic regression (LR), support vector machine 

(SVM) and random forest (RF) classification models were 

constructed to evaluate the performance of feature subset. 

2. MATERIAL AND METHODS

The workflow of this study was shown as Figure 1, 

including such steps as CT image acquisition and 

segmentation, feature extraction, model analysis. 

2.1 Collecting and preprocessing of data 

Altogether 163 ADC and SCC patients, who admitted and 

treated in Yiyang Central Hospital from January 2016 to 

December 2020, were collected. The inclusion criteria were as 

follows, (1) CT images before treatment can be obtained; (2) 

the postoperative pathology verified ADC or SCC. After 

excluding 15 cases who received surgery in other hospitals and 

10 cases without pathological results, 138 cases were finally 

enrolled for analysis. Then the enrolled patients were sorted 

according to the time of diagnosis and randomly split as 

training set (n=110) and validation set (n=28) at a ratio of 8:2. 

Among all the enrolled patients, there were 83 ADC cases and 

55 SCC cases, with the age of 44-83 (median, 65) years. 

Meanwhile, there were 104 male and 34 female cases. The 

patient characteristics are displayed in Table 1.  

Table 1. Summary of patient characteristics 

ADC SCC 

age 

range(median) 44~83(65) 45~82(66) 

mean + std 64.3+8.7 65.2+8.2 

gender 

male 50 54 

female 33 1 

Pulmonary CT examinations were performed using four CT 

scanners, with the tube voltage of 120 kVp, tube current of 220 

mAs, and interlayer thickness of 4-5 mm. The CT images of 

each patient were analyzed by an experienced radiologist (with 

8 years of experience) by using the medical imaging 

interactive package (3DSlicer) (20210226 edition; 

https://download.slicer.org//), and validated by another 

experienced radiologist (with 15 years of experience). Any 

different interpretations between them were dissolved by 

group discussion to finally reach consensus.  

2.2 Extracting and selecting of feature 

Using the pyradiomics software (Version 2.1.2, 

https://github.com/Radiomics/pyradiomics.git), A large 

number of radiomics features were extracted from the region 

of interest (ROI) to quantify the NSCLC images, including the 

tumor intensity, shape, size, texture and wavelet features [17, 

18]. Nonetheless, too many features will increase the 

computational expenses, and the redundancy of features will 

reduce the classification accuracy. Moreover, the feature 

number in this study was greater than the sample number, 

which increased the probability of overfitting. Therefore, 

feature selection is of crucial importance. LASSO was the 

most commonly used techniques for feature selection in 

radiomics [19-23]. Here LASSO regression was used to select 

the radiomics features closely related to subtypes. It constructs 

a penalty function to compress the regression coefficient, 

which can reduce the coefficients of corresponding features to 

zero. Since each coefficient is associated with a feature, so 

feature selection is achieved by retaining features with non-

zero coefficients [24]. LASSO increases a L1 regular term on 

the traditional linear regression model, and its target loss 

function becomes: 

𝐽(𝜔) = 𝑚𝑖𝑛 {
1

2𝑁
‖𝑋𝑇𝜔 − 𝑦‖2

2 + 𝛼‖𝜔‖} (1) 

where, N is the sample number, X is the sample, y is the label 

of the sample, ||ω|| is the L1 norm, α stands for the constant 

coefficient that controls the penalty degree of spare estimation, 

and the optimal α can be selected depending on cross 

validation and information criteria. Model selection based on 

information criteria depends on the model hypothesis, and the 

model sample size should be appropriately estimated. As a 

result, when the feature number is far greater than the sample 

size, the feature selection effect of this method will 

significantly decrease. As for high-dimensional feature data 

with correlations among variables, cross validation can not 

only achieve a high computational efficiency, but also has a 

better effect.  

Figure 1. Workflow of this study 
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2.3 Features evaluation 

When the training sets were changed, the feature subset 

selected by the same feature selection algorithm was different. 

To be brief, there was more than one feature subset. In this 

paper, two unsupervised methods were used to evaluate the 

feature stability. They can rely on the sample feature 

information to explore and reveal the potential structure and 

distribution law of the data set itself, that was, the samples with 

similar features were gathered into a group, and the samples in 

different groups had highly different characteristics. If there 

was a stable feature subset, there would be good clustering 

performance. 

SOM network is an unsupervised algorithm proposed by 

Kohonen, which can reveal the complicated non-linearity 

hidden in the high-dimensional data, and display the 

relationships between samples in the low-dimensional space 

in a visual manner while maintaining the original spacial 

topological relation [25]. Suppose the input layer X=(x1, x2, xn) 

is an N-dimensional vector, the output layer is a two-

dimensional network with M nodes, and Wijis the weight 

between the ith input neuron node and the jth output neuron 

node. The training steps of the algorithm are as follows: 

Step 1: Initialization: Randomly initializes node parameters. 

The number of parameters in each node is the same as the input 

dimension; 

Step 2: Randomly select sample X and calculate the 

distance between X and the output node, denoted by d(x, w); 

d(x,w)=√∑(xi-wij)
2

n

i=1

(2) 

Step 3: The node with the smallest distance was selected as 

the winner node; 

Step 4: Calculate the node update amplitude according to 

the neighborhood function h(i, j), the node close to the winning 

neuron has a large weight wij update; 

ℎ(𝑖, 𝑗) = 𝑒
−

(𝑐𝑥−𝑖)2

2𝛿2 𝑒
−

(𝑐𝑦−𝑗)
2

2𝛿2 (3) 

where, (cx, cy) is the winner node; 

Step 5: Update the weights of nodes in the neighborhood; 

wij(t+1)=wij(t)+α(t)h(i,j)[x(t)-wij(t)] (4) 

α(t)=α(t0)/(1+t / maxstep ) (5) 

where, α(t) is the initial learning rate, maxstep is the maximum 

number of iterations, and t is the current times of iterations; 

Step 6: Repeat the above steps until the set number of 

iterations is met. 

After several iterations, the optimal SOM model is finally 

established. The model can map the test samples to the two-

dimensional plane, so that the same classification of data is 

gathered, different classification of data is separated, and the 

topology of the data set remains unchanged. The feature subset 

with good clustering result shows that it can distinguish 

different classification samples well. 

K-means adopts distance as the evaluation criterion of

similarity, that is, the closer the distance between two objects 

is, the greater the similarity will be. This algorithm considers 

that clusters are composed of objects that are close to each 

other, so the ultimate goal is to obtain compact and 

independent clusters. The algorithm flow is as follows: 

Step 1: Two points are selected as cluster centers of initial 

aggregation; 

Step 2: The Euclidean distance is used to calculate the 

distance from each sample point to the two cluster cores, find 

the cluster center nearest to the point, and assign it to the 

corresponding cluster; 

Step 3: After samples points are grouped into clusters, the 

M samples are divided into 2 clusters. Then the center of 

gravity of each cluster is recalculated as the new "cluster 

center"; 

Step 4: Repeat steps 2-3 until the set number of iterations is 

met. 

K-means algorithm is simple and efficient. The clustering

results can also be used to evaluate the stability of feature 

subsets. Compared with SOM network, k-means only updates 

the parameters of this cluster after finding the most similar 

cluster for each input data, while SOM updates all nodes in the 

neighborhood, so K-means is more affected by noise. When 

the number of features is greater than 2, it is not suitable for 

visualization. 

2.4 Constructing of classifiers 

In order to verify the results generated by SOM and k-means. 

Three classification algorithms were adopted here, including 

logistic regression (LR), support vector machine (SVM) and 

random forest (RF), to classify SCC and ADC in NSCLC. LR 

is a classical machine learning algorithm, which is usually 

used in the binary classification task and model view estimated 

probability p (y=1 | x), namely, the probability at y=1 under 

the given data x. The advantages of LR include the rapid 

training speed and the suitability of using discrete variables 

and continuous variables as the inputs. Nonetheless, its 

disadvantage is that it cannot achieve satisfactory 

classification effect for complicated data as a linear model. 

However, the LR model attains favorable effects on numerous 

datasets, which can be easily realized and can be used as a 

basic modeling method [26, 27]. SVM is another extensively 

utilized classification algorithm, which attempts to calculate 

the decision-making boundary to separate data. This decision 

boundary, also called the hyperplane, is orientated in such a 

way that it is as far away as possible from the closest data 

points (support vectors) from each class [28]. The RF classifier 

utilizes the bootstrap resampling method to extract multiple 

samples from the original samples, constructs a decision-

making tree for each bootstrap sample, and finally combines 

all the decision-making trees to obtain the final classification 

result [29, 30].  

3. RESULTS

3.1 The extracted and selected features 

Altogether 857 features were extracted from the tumor 

region of each sample. When LASSO was used in feature 

selection, different feature subsets can be obtained by 

randomly selecting training sets from the data set for many 

times. For each random training set, in order to obtain the 

feature subset with the best classification performance, the 

grid search was adopted for determining the optimal hyper-

parameters values. 
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In Figure 2, the LASSO was adopted to select 9 radiomics 

features with non-zero coefficients from the 857 radiomics 

features to form a feature subset, which was represented by 

FS_A. The vertical line in Figure 2(A) represents the alpha 

value selected after 10-fold cross-validation. Figure 2(B) 

indicates the feature importance. 

Where F1, F2...F9 represent different features, respectively, 

as shown in Table 2. 

(A)                                               (B) 

Figure 2. Feature subsets were selected by LASSO 

Table 2. Feature importance and weight of FS_A 

Id Feature name Weight 

F1 wavelet-HHLfirstorderMinimum -0.11

F2 

F3 

F4 

F5 

F6 

F7 

wavelet-HLLfirstorderTotalEnergy 

 wavelet_LHLfirstorderEnergy 

wavelet-LLLfirstorderMedian 

originalshapeSphericity 

wavelet-LLHglrlmLongRunLowGrayLevelEmphasis 

wavelet-HHHgldmLargeDependenceLowGrayLevelEmphasis 

-0.08

-0.07

-0.06

-0.06

0.04

0.05

F8 

F9 

wavelet-LLLglcmContrast 

wavelet-HHHglrlmRunVariance 

0.07

0.08

Table 3. Feature importance and weight of FS_B 

Id Feature name Weight 

F1 wavelet-LHHfirstorderEnergy -0.07

F2 

F3 

F4 

F5 

F6 

F7 

wavelet-LLLfirstorderMedian 

wavelet-HLLfirstorderTotalEnergy 

wavelet-HLLngtdmStrength 

wavelet-HHHgldmLargeDependenceLowGrayLevelEmphasis 

wavelet-LLLglcmContrast 

wavelet-LLHglrlmLongRunLowGrayLevelEmphasis 

-0.03

-0.01

0.01

0.03

0.05

0.05

Figure 3. Visualize samples of different features subset using the SOM network. (A) Visualize samples of FS_A, (B) Visualize 

samples of FS_B 
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The training set is changed randomly for many times, and 

different feature subset was obtained by LASSO. While 

feature weights were not taken into account, only one feature 

subset was different from the previous FS_A, which was 

represented by FS_B. A group of weights was randomly 

selected in FS_B, and the importance and weight of its features 

were shown in Table 3, Where F1, F2...F7 represent different 

features, respectively. 

3.2 Evaluate features subsets 

As you can see from the previous section, different training 

sets can select different subsets of features when using LASSO. 

Two unsupervised algorithms are used to evaluate the stability 

of feature subsets. 

In Figure 3(A), SCC and ADC samples were concentrated 

in different regions, and there were less mixed samples. 

Compared with Figure 3(A), there were more mixed samples 

in Figure 3(B). 

Table 4. AUC in unsupervised learning 

Feature subset SOM K-means

FS_A 0.77 0.65 

FS_B 0.58 0.57 

The accuracy of SOM and K-means was used to evaluate 

the clustering performance of FS_A and FS_B, as shown in 

Table 4. The AUC of FS_A was better than FS_B. It can be 

suggested that FS_A exhibited higher discrimination than 

FS_B and that FS_A is considered as the best feature subset. 

Secondly, k-means was affected by noise data, and the 

clustering performance was slightly worse. 

3.3 The prediction model using the machine learning 

algorithm 

As mentioned in the previous section, FS_A was the optimal 

feature subset. The following three machine learning methods 

were used to verify it. For each method, the optimal hyper-

parameter was selected by grid search and 10-fold cross 

validation. According to the previously selected feature 

subsets, three classifiers were used to modeling and analyzing, 

respectively. In addition, the AUC was used to evaluate 

classification of the model, and SD of AUC was employed to 

evaluate stability of the model. Among 10 different training 

sets, the classification performance and stability of FS_A and 

FS_B in LR, RF and SVM models was shown as Table 5.  

It can be seen from table 5 that the training set was changed, 

and the prediction model based on FS_A has high AUC and 

low SD. When modeling with the first training set, the 

performance of the models was shown as Figure 4. I, II and III 

represent respectively the AUC values in the models by LR, 

RF, SVM. 

The red line represents ROC, and the shadow stands for the 

corresponding 95% CI. A smaller shadow area suggests the 

less AUC fluctuation and the more stable prediction model. It 

was observed that the AUC of the RF model was the highest 

among all models. As shown in Figure 4, FS_A had a larger 

AUC and a smaller shadow area than the corresponding FS_B. 

The results of three models show that the model based on 

FS_A had good classification performance and stability. 

3.4 Discussion 

SCC and ADC are two types of most common NSCLC, 

which share similar clinical manifestations, but their treatment 

strategies and prognostic outcomes are greatly different. 

Therefore, accurate subtype discrimination is the essential step 

to formulate the reasonable and effective treatment strategies 

and to prolong patient lifespan. The radiomics model was 

constructed based on lung CT images, which was used to 

identify SCC and ADC in NSCLC by a non-invasive, accurate 

and reliable manner. The curse of dimensionality is a huge 

challenge in the radiomics analysis, so feature selection is an 

essential step. LASSO is the most commonly used feature 

selection technology, which is very suitable for dimensionality 

reduction of radiomics [31, 32]. Therefore, LASSO is selected 

as the feature dimension reduction method in this paper. 

At present, LASSO can select the distinguishing features for 

the classification of NSCLC subtypes based on radiomics by 

adjusting parameters, but ignore the problem of feature 

stability. This stability is ignored, this will reduce model 

robustness and limit the clinical application of the model. 

When LASSO is used for feature selection, different feature 

subsets can be obtained from different training sets. How to 

distinguish feature subsets with excellent classification 

performance and good stability from feature selection results 

is a great challenge. The method to evaluate the stability of 

feature subsets are usually changed datasets or bootstrap 

sampling methods, which are relatively simple but time-

consuming and laborious. SOM and K-means are both 

unsupervised clustering methods, which can reveal the 

inherent nature and rules of data through learning unlabeled 

training samples. As observed from Figure 3, Compared to 

FS_B, FS_A can clearly distinguish ADC from SCC in SOM 

network. In Table 4, FS_A had better clustering performance 

compared with FS_B using k-means method. It shows that 

FS_A has good classification performance. In order to verify 

the results produced by SOM and K-means, three classifiers 

are used to construct the prediction model with LR, SVM and 

RF. The experimental results show that all classifiers 

constructed based on FS_A have high accuracy (Shown as 

Figure 4). Relate the results of Table 4, the classification 

accuracy of the SOM network on FS_A and FS_B is closer to 

the results of the three classifiers compared with k-means. It 

demonstrates that SOM clustering effect is close to the real 

sample distribution. It was discovered that the FS_A achieved 

superior stability to FS_B (Shown as Table 5). The results 

show that the feature subset evaluated excellent by 

unsupervised clustering not only has good classification, but 

also has strong stability. Therefore, the unsupervised 

clustering can be used as one of the methods to select the 

optimal feature subset, especially SOM network. 

Certain limitations should be noted in this study. First, the 

ROIs were partitioned manually by the radiologists, while the 

advanced deep learning-based automatic partitioning 

algorithm was not used, which might lead to subjective error 

[33]. Moreover, data in this paper were derived from the same 

hospital and the scanning parameters were the same [34]. In 

this regard, larger and multi-center cohorts should be recruited 

for verification in the future.  
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Table 5. AUC and SD of different feature subsets 

Training 

set 

FS_A FS_B 

AUC SD AUC SD 

LR RF SVM LR RF SVM LR RF SVM LR RF SVM 
1 0.910 0.995 0.920 0.286 0.005 0.249 0.788 0.979 0.864 0.746 0.040 0.456 

2 0.912 0.981 0.917 0.286 0.035 0.261 0.794 0.975 0.857 0.725 0.058 0.489 

3 0.906 0.982 0.913 0.311 0.040 0.279 0.788 0.987 0.841 0.746 0.022 0.556 

4 0.913 0.989 0.917 0.292 0.018 0.273 0.785 0.989 0.869 0.756 0.018 0.456 

5 0.912 0.978 0.920 0.292 0.052 0.243 0.785 0.984 0.888 0.746 0.029 0.359 

6 0.913 0.993 0.931 0.292 0.009 0.215 0.794 0.977 0.861 0.725 0.006 0.464 

7 0.911 0.987 0.921 0.292 0.022 0.238 0.790 0.982 0.851 0.735 0.040 0.513 

8 0.904 0.988 0.919 0.311 0.022 0.243 0.790 0.980 0.851 0.735 0.050 0.505 

9 0.910 0.995 0.923 0.292 0.005 0.232 0.788 0.989 0.882 0.746 0.018 0.388 

10 0.904 0.977 0.918 0.311 0.047 0.243 0.789 0.982 0.855 0.735 0.033 0.505 

A               B 

I 

II 

III 

FS_A FS_B 

Figure 4. AUC and corresponding 95% CI of three classifiers based on FS_A or FS_B 

4. CONCLUSIONS

To sum up, the unsupervised clustering methods was used 

to evaluate the stability of feature subset, and the most stable 

feature subset was regarded as the optimal subset. Using the 

optimal feature subset to construct subtype classification 

model with good robustness and high accuracy can help to 

guide the clinical decision-making of physicians and realize 

the individualized diagnosis and treatment for patients.  
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