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Photovoltaic panels are subject to thermomechanical stresses during their production and 

subsequent life stages. These conditions give rise to cracks and other defects in panels that 

can affect power output. Cell cracking is one of the most important causes of power loss in 

photovoltaic panels. Therefore, photovoltaic panels and cells need to be monitored to 

achieve the maximum output during production and further downstream. 

Electroluminescent imaging is a powerful and established technique consisting of many 

electrically connected solar cells arranged on a grid, and it is employed in order for assessing 

the quality of photovoltaic panels. In this study, the detection of photovoltaic panel defects 

in electroluminescent images was examined through image processing methods. PV panels 

can consist of different numbers of cells. Performance evaluation is made on a cell-based 

and whole module basis. In PV panel production, unlike EL images taken in standard 

environments in the factory environment, EL images taken under field conditions require 

preprocessing before actually being processed. Features were extracted from the 

preprocessed EL images by exploiting Gabor filter. The obtained features were evaluated as 

cell-based and the stability of the cells was determined. The performance of the panel was 

calculated according to the power loss of the cells of the panel. When the calculated 

performance values were compared with the power values obtained by I-V measurement, 

the highest error was found to be 0.059, the lowest error was 0.004, and the average error 

was 0.0213. As a result, the highest success rate was 99.99%.  
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1. INTRODUCTION

Due to the increasing energy demand across globe, the 

installation of photovoltaic (PV) power plants has been 

increasing around the world in recent years. Solar energy is a 

free, inexhaustible and environmentally harmless resource. 

The efficiency of any power plant depends on its error-free 

operation. Reliability and power output are reduced due to 

failure of the PV systems. In PV plants, internal and external 

faults normally cause an increase in the temperature, which is 

easily detected by different methods [1]. The high 

temperatures occurring in the panels indicate that there is a 

malfunction in the electricity production of the cells in the 

panel. In addition, faults in fasteners can be detected by 

thermal cameras since they cause overheating. These high 

temperature differences can be detected from thermal images 

by means of image processing methods. PV modules are 

exposed to thermomechanical stresses during their 

manufacturing and subsequent life stages. These conditions 

cause cracks and other defects in modules, which can affect 

power output. Cell cracking is one of the major causes of 

power loss in PV modules. Therefore, PV modules and cells 

need to be monitored to achieve the maximum output during 

production and further downstream. In this regard, both 

maintenance and inspection of PV modules have been of great 

interest within the past decade. A wide range of techniques are 

utilized to detect defects in PV modules and evaluate their 

effects. Electrical measurements are a fundamental approach 

for silicon cell characterization [2]. With the significant 

increase in the number and size of PV installations, regular PV 

system inspection has become a challenge [3]. Automated 

systems are needed because of the difficulty of manually 

monitoring and detecting errors in large numbers of panels in 

very large areas. Panel error checks are a process that requires 

expertise and time for each panel. Electroluminescence (EL) 

and photoluminescence (PL) imaging are widely used to study 

the radiative recombination mechanisms that occur within a 

solar cell and provide prediction of other non-radiative 

recombination occurrences [4]. EL imaging is one of the 

approaches employed for the fault detection in PV modules, 

offering imaging with higher resolution while identifying 

microcracks. Microcracks and other defects appear as dark 

grey lines and/or regions in EL images. Visual inspection of 

EL images is time consuming and costly. Examining the EL 

image requires appropriate experience and work. In addition, 

visual inspection is only possible in a small number of 

productions. Large-scale, automated detection methods are 

very important. Besides, the increasing production volumes of 

PV modules and the increasing interest of people in the world 

for PV have made automatic PV inspection even more 

significant and compulsory [2]. Photographic research under 

EL forward bias has proven to be a powerful diagnostic tool 

for investigating not only material properties but also visually 

processing deficiencies in silicon (Si) solar cells [5]. EL 

images often help people qualitatively detect problems such as 

broken cells and shunts. When examining these images, dark 

areas are defined as “bad” and bright areas as “good”. It is 

difficult to really know what is in cells and to quantify its effect 

on I-V properties [6]. Visual inspection of solar modules with 

EL imaging allows easy identification of damage on solar 
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panels caused by environmental influences during the 

assembly process and previous material defects or material 

aging [7]. High resolution EL images captured in the infrared 

spectrum allow to visually and non-destructively examine the 

quality of PV modules. However, currently, such a visual 

inspection requires trained professionals to distinguish 

between different types of defects, which is time consuming 

and expensive. Therefore, automated segmentation of cells is 

an important step in automating the visual inspection 

workflow [7]. Cracks and breaks, undetectable to the human 

eye but visible on EL images, can be considered to be the 

common result of transport and misuse of solar panels [8]. The 

development of automatic feature detection in EL images of 

PV devices will lead to higher level of accuracy and speed for 

the cell and module characterization in the research, 

manufacturing, operation and maintenance sectors of the PV 

value chain [9]. The EL technique is usually applied indoors 

or outdoors only from dusk to dawn because the crystalline 

silicon luminescence signal is several times lower than the 

sunlight [10]. Various studies are carried out on the EL 

imaging camera. Akram et al. performed automatic detection 

of PV module defects in EL images [2]. dos Reis Benatto et 

al., in their study, focused on obtaining EL images quickly in 

daylight and presented a drone-based system that could 

acquire EL images at 120 frames per second [11]. In their 

study, Dhimish and Holmes presented the development of a 

new technique used to increase the detection of microcracks in 

solar cells [12]. In their study, Deitsch et al. proposed a robust 

automatic segmentation method for extracting individual solar 

cells from EL images of PV modules [7]. Lockridge et al., in 

their study, discussed the comparison of electroluminescent 

image capture methods and presented the result and 

advantages of superimposing an EL and an IR image [8]. 

Spataru et al. developed a method to detect microcracks in 

solar cells using two-dimensional matched filters, derived 

from the electroluminescence intensity profile of typical 

microcracks [13]. Guo et al., in their study, proposed a method 

to generate dark I-V curves for individual cells using EL 

images [6]. Mantel et al. proposed methods to automatically 

correct perspective distortion in EL images of PV panels [3]. 

Karimi et al. used statistical methods and machine learning 

algorithms to classify PVCell images in their study [9]. In their 

study, Planes et al. have addressed the need for imaging 

characterizations of EL and PL [4]. Fuyuki and Kitiyanan 

studied the photographic identification of crystalline silicon 

solar cells that use EL [5]. Natarajan et al., in their study, 

proposed an algorithm based on thermal image processing to 

extract the properties of operational PV cells [1]. Kaplani 

analysed the degradation effects observed in PV cells with 

severe EVA discoloration from long-running field-aged 

modules [14]. In their study, Bedrich et al. examined an image 

correction of a 4x9 cell module displayed based upon different 

perspective positions [15]. In the study of Bedrich et al., EL 

images and current-voltage (I–V) curves of nearly 2000 PV 

panels were analyzed. It was determined that the results of the 

flash test were in coherent with the performances estimated 

using QELA [16]. In their study, Lu et al. explores the thermal 

fault diagnosis of electrical equipment in substations based on 

image fusion [17]. Tang et al., in their study, presented a deep 

learning-based defect detection of PV modules using 

electroluminescence images [18]. Li et al. reviewed, a 

systematic study on the application of ANN and hybridized 

ANN models for PV fault detection [19]. Li et al. investigated 

the characteristics of PV panel semantic-segmentation from 

the computer vision point of view [20]. Parikh et al. used 

machine learning algorithms to classify detected defects by 

extracting statistical parameters from the histogram of these 

images, and approximately 46,000 EL cell images are 

extracted from photovoltaic modules with different defects 

[21]. Pierdicca et al. proposed solAIr, an artificial intelligence 

system based on deep learning for anomaly cells detection in 

photovoltaic images obtained from unmanned aerial vehicles 

equipped with a thermal infrared sensor [22].  

We can categorize the work done differently with respect to 

the type of image and the defect detection methods used. If we 

examine it in terms of image types; [3-8, 11, 13, 16, 17, 18, 21] 

studies detected errors from EL images. [1, 8, 9, 14, 15, 20, 22] 

studies used thermal and RGB images. In addition to being 

more difficult and costly to obtain EL images, it provides more 

effective results for detecting errors. However, since thermal 

and RGB images can be taken from the system installed in the 

field, they can be processed faster. Taking into account the 

employed methods; [1, 4, 5, 7, 11, 13, 15, 20, 21] studies used 

image processing methods, while [18-20, 22] studies tried to 

detect faulty panels via artificial intelligence algorithms. In 

image processing algorithms, the preprocessing is done by the 

programmer, while deep learning algorithms try to detect 

errors on the raw image. Artificial intelligence algorithms are 

more difficult in comparison with the image processing 

methods to explain the results obtained. Successful results 

were obtained in both applications. 

It has been seen that defect detection in PV panels is an area 

that has been studied extensively in recent years. As seen in 

previous studies, it was seen that statistical methods from EL 

images and automatic decision-making techniques were used 

in the status determination of PV panels. Statistical models act 

according to predefined fixed assumptions between dependent 

and independent variables and do not yield consistent results 

if these assumptions are violated. In this study, PV panels are 

divided into cells. By evaluating each cell, power loss value 

and performance efficiency were evaluated for the whole 

panel. Additionally, in this study, the effect of the deterioration 

in the PV panel for the energy efficiency was calculated in 

proportion to the deterioration. Since the deteriorations are 

evaluated on the basis of wafers, it can be decided whether the 

panels can be reused in the production. 

 

 

2. MATERIAL AND METHODS 

 

In our study, images of 10 (10x6) PV panels brought from 

the field after being utilized for a long time were used. The 

images were recorded in the Photovoltaic and Power 

Electronics Laboratory within the GAPYENEV Center of 

Harran University, with a Greateyes Lumisolar Outdoor Line-

Powered brand EL which can take pictures in 2048x2048 

pixels in 2 seconds (Figure 1b). In Figure 1a, there is the 

connection diagram of the system used for EL image 

acquisition. The PV panel is energized with the Variable 

Power Supply in the dark room, and the image of the panel is 

taken with the Electroluminescence camera and recorded on 

the assigned computer. High temperature occurs in faulty areas 

on the panel that is energized by Variable Power Supply. This 

situation is visualized by the EL camera. With the EL camera, 

problems such as the structure of the panels, whether there 

exist any cracks in the panels, the effects of transportation 

during the EPC installation, or the strain of the panels can be 

detected. Since PV panels were evaluated separately as whole 
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and cell, 60 cells on each panel and 600 cells in total were 

processed. Success parameters were calculated on a computer 

with a 2.8 GHz Intel Core i7 processor and 8 GB RAM. 

 

 
(a) 

 
(b) 

 

Figure 1. (a) EL imaging setup and dataset generation design 

(b) EL camera used in the study 

 

With the recorded image, the data set was created by taking 

into account the defects such as disproportionate panel 

efficiency losses, panel fractures, and micro-cracks, 

intercellular connection errors, and various damages in the PV 

panel, and it was estimated that the PV panel was intact, 

moderately defected or completely defected. The losses in the 

PV panels used in the study and examples of the intact cells 

are given in Figure 2. 

 

 
 

Figure 2. Examples of intact cells (a) and defected cells (b) 

used in the study 

 

The images of the PV panels were captured using the EL 

camera. The captured images were converted into a format to 

be processed on the computer. The flow chart of all these 

processes is presented in Figure 3. 

Initially EL images of the PV panels captured were loaded 

into the MATLAB program. Then, noise and image 

adjustments of the captured images were made and greyscale 

images to be used in the study were obtained. After that, 60 

cells were obtained by dividing each PV panel and the Gabor 

filtering method was applied to each cell separately and to all 

panels. With Gabor filtering, the cracks and distortions in the 

panel wafers will be emphasized and the parts that do not 

change will be suppressed. In this way, it will be possible to 

detect the errors in the image more accurately. The distortions 

caused by cracks or errors were obtained by applying OTSU 

algorithms to the images obtained as a result of Gabor. These 

distortions were evaluated as edge information. Finally, the 

edges were determined by the canny method, and an 

evaluation was made about whether the wafers and panels 

were intact or damaged. 

 

 
 

Figure 3. Flow chart of work 

 

 

3. APPLICATION AND RESULTS 

 

The determination of the intact or defects of PV panels from 

the data recorded in the Photovoltaic and Power Electronics 

laboratory within the GAPYENEV Center of Harran 

University was estimated using the image processing 

technique. One of the first and most important stages of image 

processing is noise removal and image editing. That’s why, 

clipping and thresholding methods are applied in noise 

removal. 10 PV panels, each consisting of 60 cells, imaged 

with an EL camera, were handled in 2 original different color 

bands and evaluated grayscale image bands. The images of the 

records are presented in Figure 4. 
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Figure 4. Original 3 color bands of EL images belonging PV 

panel 

 

The threshold value of the EL camera images of the PV 

panel was determined by the OTSU threshold algorithm, and 

the panel part on the image was separated from the rest of the 

image. OTSU algorithm calculated an adaptive threshold 

value according to the brightness values in the image. 

Therefore, different threshold values are used for each image. 

Then, it was edited using perspective correction methods and 

processing was continued on grayscale images. The images of 

the corrected PV panels are given in Figure 5. 

 

 
 

Figure 5. Perspective corrected PV panel 

 

In the following step, the horizontal and vertical features of 

each cell were determined from the corrected PV panel image, 

and 60 separate cells were extracted. By using the Gabor 

method, the orientation values for the cells were taken into 

consideration as 30°, 60°, 90°, 120°, and 150°, while values of 

0° and 180° were not so that the vertical lines would not be 

visible. In addition, wavelength values of 2, 3 and 4 were 

applied. When the whole PV panel was processed, the 

orientation values were taken as 30°, 60°, 120° and 150°; 0° 

and 180° were not included so that vertical lines would not be 

visible, and 90° was not included so that horizontal lines were 

not visible. As with cells, wavelength values were taken as 2, 

3 and 4. The extraction of the properties of PV panels and cells 

was done utilizing the Gabor method. Patterns with desired 

properties can be found by adjusting the Gabor core to the 

desired angle and wavelength. When the Gabor filter is applied 

to an image, the point in the image with the same frequency 

and direction as the filter is the strongest point. With this 

process, fractures and cracks in the angles and wavelengths 

determined in the image will be emphasized and the parts that 

do not comply with this structure will be suppressed. 

Especially unused 0°, 180°, and 90° angles were not used 

because they were found in intact cells. The general expression 

of the Gabor filter is shown in Eqns. (1)-(3). 

 

𝑔(𝑥, 𝑦; 𝜆, 𝜃, 𝜎) = 𝑒𝑥𝑝(−
𝑥′2 + 𝑦′2

𝜎2
 )𝑐𝑜𝑠 (2𝜋

𝑥′

𝜆
) (1) 

 

𝑥′ = 𝑥. 𝑐𝑜𝑠𝜃 + 𝑦. 𝑠𝑖𝑛𝜃 (2) 

 

𝑦′ =  −𝑥. 𝑠𝑖𝑛𝜃 + 𝑦𝑐𝑜𝑠𝜃 (3) 

 

The g given in the equation represents the Gabor core and 

this core power is controlled by the parameter. The 𝜃 used in 

the equations represents the angle of the look-up value, 𝜆 the 

wavelength of the look-up pattern and 𝜎 the standard deviation 

[23].  

In Figure 6, images of an example PV panel used in the 

study are given. The original image of the PV panel, an image 

created according to a different wavelength and orientation 

values with Gabor filter, and the images of the PV panel with 

edges subtracted are given in Figure 6a, 6b, and 6c, 

respectively. 

 

 
 

Figure 6. (a) Original image of the PV panel, (b) Gabor 

image of the PV panel and (c) edge image of the PV panel 

 

In addition, when each wafer is evaluated separately, the 

original image of an intact wafer, the combined image of the 

intact wafer with Gabor filter, and the images of the intact 

wafer with edges subtracted are given in Figure 7a, 7b, and 7c, 

respectively. 

 

 
 

Figure 7. (a) Original image of a normal cell of the PV 

panel, (b) combined image of a normal cell of the PV panel 

with Gabor applied, (c) edge image of a normal cell of the 

PV panel 

 

The same applications made for the intact wafer in Figure 7 

are made for the defected wafers. The original image of a 
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defective wafer is given in Figure 8a. In Figure 8b, the 

combined image of the defected wafer with Gabor applied, and 

the images of the defected wafer with edges subtracted are 

given in Figure 8c. 

 

 
 

Figure 8. (a) Original image of a defected cell of the PV 

panel, (b) combined image of a defected cell of the PV panel 

with Gabor applied, (c) edge image of a defected cell of the 

PV panel 

 

After the edge detection of the images, 1.5 was chosen as 

the most appropriate parameter value because when a value 

smaller than this value was selected, very thin lines to be 

neglected would appear, or when a higher value was given, 

some lines that might be meaningful for the evaluation would 

be missed. This value was determined based on the control 

groups (laboratory measurement results are known). When the 

separated cells were evaluated, a threshold value was 

determined for the normal cell, moderately defected cells were 

grouped at certain intervals, and above a certain value, it was 

considered as completely defected. The cells were evaluated 

in 5 categories normal, medium 1, medium 2, medium 3 and 

defected. Since 10 defective PV panels were used in the study, 

a total of 600 cells were studied and 180 of them were 

determined as normal, 200 as medium 1, 120 as medium 2, 70 

as medium 3 and 30 as defected. The calculated number of 

fractures in the image was used to determine the state of the 

wafers of PV panels. The wafers are marked as intact and 4 

different degrees of damage. While doing this grouping, if the 

threshold values obtained were below the value of 0.01, it was 

accepted as normal; and by adding 0.005 above this value, 

damage grouping was made. This value was determined based 

on the control groups and expert comments. Since 

conductivity is one of the factors that are effective in deciding 

whether the PV panels are normal or defective, an evaluation 

was made of the PV panel based on the condition of the cells. 

As mentioned above, since 10 PV panels used in the study 

were defective, the failure conditions were determined by 

various methods used and also compared in terms of efficiency. 

Since the cells on the 10x6 PV panel are connected in series 

with long sides attached, the failure of one of the cells affects 

the conductivity between the series of connected cells, thus 

making all the cells in that row ineffective. Thus, it is possible 

to comment on the efficiency of the PV panel depending on 

the defective cell in the serial connection on the panel. The 

results of normal and defected cells of 10 PV panels formed 

according to the determined threshold value are presented in 

Figure 9. 

Since PV panels consist of 10x6 cells, 10 of these cells are 

connected in series with each other and consist of 6 series in 

total. The relation of PV is given in Eq. (4). 

 

PV = SW1 +SW2 + SW3 + SW4 +SW5 + SW6 (4) 

 

The symbol indicated as SW in the equation represents cells 

connected in series. According to the error conditions in the 

series, it was possible to evaluate the efficiency of the panels. 

The relation used for yield is given in Eq. (5). 

 

Ƞ =  1 −
∑ 𝐷𝑆𝑊

6
 (5) 

 

 
 

Figure 9. Intact cell and defected cell results of PV panels 

 

In the symbols used in the equation, Ƞ denotes the efficiency 

of the panel and DSW denotes the number of defected serial 

cells. 

Comparisons of the evaluated PV panels were made with 

reference to laboratory results. These results were obtained by 

taking I-V measurements of the PV panel. Additionally, all 

these measurements were achieved at an irradiance of at least 

700 w/m2. The measured PM (W) value was standardized to 

1,000 w/m2 irradiation and 25℃ temperature environment and 

converted to the new standard PS (W) value and used. 

Efficiency and loss rates were calculated by comparing this 

value with the power values (PL (W)) on the labels of the PV 

panels. The efficiency obtained as a result of the measurement 

is given in Eq. (6). 

 

Ƞ𝑚 =  100 ∗
𝑃𝑆

𝑃𝐿

 (6) 
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In the symbols used in the equation, Ƞm is the measured 

efficiency of the panel, PS is the standardized power value as 

a result of the measurement, and PL d represents the label 

power value of the PV panel. 

The I-V and P-V graphs created as a result of the 

measurement clearly show the loss situations. In Figure 10, as 

an example, I-V and P-V graphs of PV-10 with low loss rate 

and PV-2 with high loss rate from PV panels used in the study 

are shown. 

Figure 10a shows I-V and P-V graphs of PV-2. The panels 

used are known to have a power of 390W. As can be seen, 

approximately 260W of power was obtained depending on the 

current and voltage values. In already carried out calculations, 

it has been revealed that there should be a power loss of at least 

35%. In Figure 10b, there are the I-V and P-V graphs of PV-

10a, which is an intact panel. In the calculations made for this 

panel, it has been determined that there may be a maximum 

power loss of 16%. According to the graph, it is seen that 

approximately 360W of power is obtained from this panel. 

The conditions of the cells are important for fault detection, 

but for efficiency, the number of defected arrays is more 

important than the number of defected cells detected because 

even if more than 1 cell defects in a series of connected cells, 

it affects the efficiency of the PV panel at the same rate since 

it affects the same array. In Table 1, PL (W) value, PS (W) 

value, and efficiencies obtained as a result of the measurement 

of PV panels are given. In addition, the yields of defected cells, 

defected arrays, and panels of 10 PV panels obtained in the 

study are presented. 

There are 3 defected cells in the first of 10 PV panels used 

in the study, and since 2 of them are in the same array and the 

other is in a separate one, the efficiency of the panel is 0.66. 

The second PV panel has 4 defective cells, and since 2 of them 

are in the same array and the other 2 are in the same array, the 

efficiency of this panel is 0.66. There are 2 defected cells in 

PV3, and since both of them are in separate arrays, the 

efficiency of the panel is 0.66. There are 3 defected cells in 

PV4, and since 2 of them are in the same array and the other 

is in a separate array, the efficiency of the panel is 0.66. There 

are 6 defected cells in the PV5, and since 3 of them are in the 

same array and the other three are in the same array, the 

efficiency of the panel is 0.66. There are 2 defected cells in 

PV6 and since they are both in the same array, the efficiency 

of the panel is 0.83. There are 5 defected cells in PV7 and since 

2 of them are in the same array and the remaining three are in 

the same array, the efficiency of the panel is 0.66. There are 2 

defected cells in PV8 and since they are both in the same array, 

the efficiency of the panel is 0.83. There are 2 defective cells 

in PV9 and since both of them are in the same array, the 

efficiency of the panel is 0.83. There is 1 defected cell in PV10 

and since only one array is affected, the efficiency of the panel 

is 0.83. As shown in the table, when the study results and 

laboratory results were compared for 10 different panels that 

were tested, the highest error was 0.059, the lowest error was 

0.004, and the average error was 0.0213. When the laboratory 

measurement results were compared with the study, it was 

observed that the yield results were compatible. 

 

 
 

Figure 10. (a) I-V and P-V graphics of the less efficient PV-

2 (Defected) panel (b) I-V and P-V graphics of the higher 

efficiency PV-10 (Intact) panel 

 

Table 1. Defected and efficiency results of PV panel 
 

Panel 

Name 

Defected Cell 

Number 

Defected Serial 

Number 

PV Panel 

Efficiency (Ƞ) 
PL(w) PS(W) 

Measured PV Panel 

Efficiency (Ƞm) 

Error Rate I 

(Ƞ- Ƞm) I 

PV1 3 2 0.666 395 266.3 0.674 0.008 

PV2 4 2 0.666 395 239.7 0.607 0.059 

PV3 2 2 0.666 395 260.3 0.659 0.007 

PV 4 3 2 0.666 395 255.6 0.647 0.019 

PV5 6 2 0.666 395 245.8 0.622 0.044 

PV6 2 1 0.833 395 325.4 0.824 0.009 

PV7 5 2 0.666 395 247.2 0.626 0.040 

PV8 2 1 0.833 395 327.8 0.829 0.004 

PV 9 2 1 0.833 395 330.5 0.837 0.004 

PV10 1 1 0.833 395 336.7 0.852 0.019 

Mean       0.0213 
 

Table 2. Comparison of the results with other work 
 

Authors Methods Used Success results 

Natarajan et al.  Machine learning methods (SVM), Thermal Images of PV Panels 97% 

Deitsch et al. Fully automatic segmentation method 97.54% 

Spataru et al. The micro-crack detection Over 90% 

Bedrich et al. Flash-test-measured and performance estimated using QELA 97-99% 

Akram et al. Convolutional neural network 93.02% 

Karimi et al. SVM and CNN 99% 

Proposed Method Gabor Filter Bank 99.99% 
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The methods used in computer-aided decision-making 

studies related to PV panels and the successful performances 

obtained are given in Table 2. 

When this study is compared with previous ones, training 

and test datasets are needed in studies using machine learning 

or deep learning algorithms. However, we have shown that 

results can be given on a single panel without the need for 

training. While predictions are made about the defected or 

intact panels in general, we studied that the panel efficiency 

value is calculated as well as the determination of the defected 

or intact of the panel. As a result, a 100% success rate was 

obtained by correctly predicting all faulty PV panels and PV 

cells in computer-aided decision-making related to PV panels. 

A 99.99% success rate has been achieved in estimating the 

efficiency of PV panels. 

 

 

4. CONCLUSION 

 

In this study, the normal or damaged status of PV panels 

from EL camera images with image processing methods, and 

the energy efficiency of the PV panel was determined. At the 

outset, the PV panel was divided into cells and the states of the 

cells were examined, and then the PV panel was evaluated as 

a whole and comments were made about its being normal or 

defective and its efficiency. Failure of one of the cells affects 

the conductivity between the cells connected in series, thus 

rendering all cells in a row ineffective. In addition, as is often 

seen on labels of PV panels, the efficiency of a panel is 85% 

and above. The effect of cracks on energy loss was also 

determined more sensitively by making a wafer-based 

evaluation. The calculated energy loss was in agreement with 

the I-V measurements. If the panel is to be used individually, 

even if some of these cells are defective, it can be used; or if 

the PV panel is to be used in a compact system, even if only 

one cell is broken, due to the incompatibility of electrical 

values, it will be effective in deciding that, the PV panel will 

be unusable. As a result, intact wafers and defective wafers 

were predicted with a 100% success rate, and the efficiency of 

the panel was predicted correctly with a 99% success rate. In 

summary, performance loss was determined by detecting 

micro-cracks in the panels. As for future work, a number of 

research directions are considered worth further research and 

development efforts. For example, studies on finger 

interruption, ribbon shift, and dark zone detection will be 

conducted to investigate the effect on panel performance. 
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