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 The human brain is the body's most complicated organ. Constant blood flow is essential for 

the sustained functioning of the brain. A blocked blood vessel's interruption of blood supply 

prevents oxygen and nutrients to the brain tissues. This results in a life-threatening brain 

disease called Ischemic Stroke. Computed Tomography (CT) images are widely used in the 

diagnosis of Ischemic Stroke because of their faster acquisition and compatibility with most 

life support devices. CT acquired from the patients who arrived with stroke symptoms is 

Primary CT (PCT). After some hours CT taken for the same patient is Secondary CT (SCT). 

Stroke lesions may not be visible in PCT, whereas visible in SCT. Learning the features 

automatically using a Convolutional Neural Network (CNN) is essential to classify normal 

and abnormal CT slices. These networks are capable of learning the global features 

effectively for image classification. Though this CNN approach works, achieving desired 

accuracy was challenging. Different architectures considered for this CNN experimentation 

are VGG1, VGG2, VGG3, VGG16, InceptionV3, and ResNet50. This novel work provides 

a detailed explanation of the three experiments conducted using PCT and SCT slices. Three 

experiments are conducted using SCT and PCT slices. The pretrained VGG16, ResNet50, 

and InceptionV3 networks with the ImageNet database are applied as a first approach. Both 

SCT and PCT slices are used for testing alone. It resulted in 49.22%, 47.076% and 49.36% 

classification accuracy. In the second approach, different models were trained for 

classification from PCT and SCT slices. This includes the networks like VGG1, VGG2, 

VGG3, VGG16, VGG16 with dropout, ResNet, ResNet50 with lambda regularization, 

InceptionV3, and InceptionV3 with lambda regularization. The accuracies achieved are 

68%, 69.4%, 72%, 78.2%, 79.1%, 77%, 77.8%, 79.6% and 80.1%. The accuracy was 

improved with dropout and lambda regularization. The networks with high accuracy are 

selected and an ensemble model is developed as a third approach. ResNet50, VGG16, and 

InceptionV3 are combined to form an ensemble network. This ensemble network yielded an 

accuracy of 81.98% when SCT and PCT slices are used for both training and testing. And 

produced 74% accuracy when PCT slices alone were used. Also produced 93.76% accuracy 

when SCT slices alone were used.  
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1. INTRODUCTION 

 

Stroke is the leading cause of death and disability in the 

developing world, impacting one in every six people and 

resulting in an estimated three to six million Stroke cases per 

year. The most significant and dangerous cerebrovascular 

condition is a Cerebral Vascular Accident (CVA), which is 

one of the leading causes of global death, next to heart attack 

[1]. Stroke survivors are more likely to have sudden problems, 

with Stroke being the leading cause of adult epilepsy. It can be 

classified as either an Ischemic (blockage of insufficient blood 

flow) or a Hemorrhagic (bleeding) Stroke (blood vessel break). 

Ischemic Stroke accounts for 80-85% of all Strokes. A 

thrombotic or embolic blockage of a cerebral artery causes an 

acute Ischemic Stroke. Deep ischemia is caused by occlusion 

of the proximal cerebral artery, which results in a collapse of 

cellular energetics. In a few minutes, necrotic cell death occurs. 

A partial area of Ischemia, called the penumbra, surrounds the 

infarct core, where neurons will die within hours. Patients who 

would benefit the most from treatment could be identified by 

accurately identifying this "tissue at risk". The extent of 

damage in a massive Ischemic Stroke will worsen during the 

next few days. In the worst-case scenario, the mass effect 

combined with tissue injury causes a rise in intracranial 

pressure and a loss of cerebral blood flow. 

Recently, Stroke detection using devices such as Computed 

Tomography (CT) and Magnetic Resonance Imaging (MRI) 

has enabled a skilled radiologist to determine whether or not a 

patient has suffered a Stroke. On non-Contrast Computed 

Tomography (NCCT) scans, measuring the volume of infarcts 

gives a quantitative assessment of infarcted brain tissue caused 

by an Ischemic Stroke. The volume of a follow-up infarct 

measured 24 hours after onset is a good predictor of functional 

prognosis. Multiple randomized controlled trials have 

proposed infarct volume as a surrogate goal for traditional 

patient outcome scales. A more exact prediction of the patient 

outcome can be produced by integrating infarct volume and 

infarct location. A manual delineation by medical experts is 
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the gold standard for infarct segmentation. Manual 

demarcation, on the other hand, has various drawbacks, 

including the fact that it is time-consuming, subjective, prone 

to errors, and costly. For image classification and 

segmentation, Convolutional Neural Networks (CNNs) have 

outperformed several existing image analysis approaches. 

CNNs have performed well in a variety of medical imaging 

areas, including the segmentation of ischemic stroke lesions in 

brain CT images. The utility of CNNs for automatic 

segmentation of infarcted brain tissue in follow-up NCCT 

scans from patients with an acute ischemic stroke was 

investigated in this work. 

When a patient reaches the hospital with ischemic lesion 

symptoms, the initially recommended modality is CT. This is 

termed Primary CT (PCT). Based on the observation in PCT, 

the doctor will decide whether it is an Ischemic lesion or a 

hemorrhagic lesion. In most cases, even if the lesion region is 

present, it will not be visible in the scanned image slices. After 

four hours, a Secondary CT (SCT) is recommended and within 

this period stroke lesion becomes visible in the slice. The 

period between the PCT and SCT is very crucial. 

Any delay makes the patient’s life at risk. Though the PCT 

looks normal for a human eye, intensity variations will be 

present in the stroke lesion region. By advancing image 

processing algorithms if this intensity variation could be 

captured in PCT, it will help the medical fraternity on a larger 

scale. Classifying the PCT image slices and segmenting the IS 

lesion from PCT becomes essential for analysis. This research 

work focuses on the classification of PCT and SCT slices. 

 

 

2. BACKGROUND 

 

Three-dimensional CNN system was proposed to identify 

Ischemic Stroke from CT angiography source images (CTA-

SI) [2]. Stroke symptoms can be diagnosed in a short period 

using deep learning algorithms [3]. 

A multi-scale CNN (U-Net) and a convolutional auto- 

encoder are utilized to forecast ischemic stroke lesion tissues 

[4, 5]. 10-point CT-scan score can be used to identify patients 

with acute Ischemic Stroke [6]. The purpose of this study is to 

develop an automated Alberta Stroke Programme Early CT 

Score (ASPECTS) scoring system that analyses CT images 

using binary classification and a three-dimensional CNN to 

enhance decision-making. 

CT scans are used to demonstrate a CNN method for 

automatically classifying strokes [7]. CT Perfusion (CTP) is 

employed to triage early-stage Ischemic Stroke patients [8]. 

An automated early Ischemic Stroke detection method is 

developed using a CNN deep learning algorithm [9, 10]. After 

obtaining the CT slices of the brain, the system will do picture 

pre-processing to eliminate the improbable area that is not the 

likely Stroke area. Deep learning system is proposed for 

learning and categorization Ischemic Stroke [11]. 

An excellent pre-processing technique for Ischemic Stroke 

is performed using non-contrast CT data from the Middle 

Cerebral Artery (MCA) region. Furthermore, the adaptive 

transfer learning method was proposed in this study, which 

improves the transfer learning module to address the problem 

of limited data when training neural networks. When it comes 

to diagnosing Strokes, the proposed method outperformed the 

current system by 18.72 percent. Artificial Intelligence (AI) 

can help in infarct or hemorrhage detection, segmentation, 

classification, major vascular occlusion detection, ASPECTS 

grading, and prognostication, among other aspects of the 

Stroke therapy paradigm [12, 13]. 

The purpose of this research is to introduce AI 

methodologies and existing public and commercial platforms 

in Stroke imaging, as well as to summarize the literature on 

current AI-driven applications for acute Stroke triage, 

surveillance, and prediction. The use of CT imaging for 

patients with stroke symptoms is a crucial step in the triaging 

and diagnostic process [14, 15]. It is described how to use an 

automated deep learning algorithm to segment acute stroke 

lesion cores from CT and CT perfusion images. This method 

is compared to other cutting-edge methods using a blind 

testing set evaluation on the challenge website, which 

maintains a current leaderboard for fair and direct method 

comparisons. 

A tool is proposed that earns a competitive performance 

rating among the top- performing methods on the Ischemic 

Stroke Lesion Segmentation Challenge 2018 (ISLES18) 

testing leaderboard, with an average Dice similarity 

coefficient of 49% [16, 17]. Without the need for time-

consuming MRI, this approach can provide a clinical 

assessment of lesion core size and location. As a public 

resource, the described technology is made available to the 

scientific community. The appearance of the contralateral 

anatomy, as well as the atlas-encoded spatial location, are 

combined using CNN architecture. Contextual information’s 

are used to identify Stroke signs [18, 19]. Using widely 

available NCCT and CT angiography (CTA) data, deep 

learning can be employed to identify lesions [20]. 

A multi-scale 3D CNN with NCCT, CTA, and CTA (8 s 

delay after CTA) images as inputs was used to create the 

predictive model. CNN model is developed using image fusion 

and CNN algorithms [21]. The CT image dataset is partitioned 

into 20% testing and 80% training sets in the first experiment, 

and the image dataset is cross-validated 10 times in the second 

trial. 

CT imaging is employed to diagnose ischemia in the 

Posterior Fossa (PF), which is a conventional method for 

diagnosing Ischemia [22]. Machine learning's practical 

performance is being put to the test with the advent of deep 

learning applications in healthcare. This is the first study to 

look at the use of deep transfer learning in brain CT images in 

the posterior area for automated Ischemia classification. The 

testing results demonstrate that ResNet50 is capable of 

reaching the maximum accuracy performance when compared 

to other proposed models. Overall, this automated 

classification is a useful and time-saving technique for 

improving medical diagnosis. 

Random forest algorithm is used to substitute Neural 

Network (NN) in CNN to provide an update in the 

identification of Ischemic Stroke based on patient CT scans 

[23]. As a result, while classifying data, the fully connected 

layer on CNN is completely replaced by random forests 

following feature extraction. CNN optimized via Particle 

Swarm Optimization is a novel research technique [24]. This 

is done to overcome the problem of stroke detection in CT 

scans. 

Significant need to swiftly and correctly analyze aging data 

can be done in Stroke because of the multiple potential AI 

applications [25]. AI could be beneficial to neuroradiologists. 

More standardized imaging data sets and more detailed AI 

experiments are needed to establish and validate the usefulness 

of AI in stroke imaging. Deep learning algorithms have a 

significant impact on stroke diagnosis, treatment, and 
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prediction [26, 27]. This study also discusses the current 

limitations and future development prospects of deep learning 

technology. 

Deep learning models with fine-tuning outperform standard 

thresholding methods in terms of predicting tissue at risk and 

ischemic core. 

Developing a computer-aided automated method to aid in 

locating acute lesions is necessary. A broad review on stroke 

along with detection modalities and methods to develop a 

computer-aided approach to detect acute lesions. A computer- 

aided diagnosis system is to be developed to help radiologists 

to diagnose brain stroke for treatment plans at a much faster 

pace. 

 

 

3. DATA ACQUISITION 

 

PCT and SCT Ischemic Stroke datasets were collected from 

Global Health City, Chennai, and Sri Ramachandra Institute 

of Higher Education and Research, Chennai. The collected 

datasets were in the video stream. Those video streams are 

then converted into image sequences using video to image 

converter software. A total of 1120 Normal CT (NCT) slices, 

2400 SCT slices and 960 PCT slices were obtained and used 

for this research work. The lesion regions were manually 

marked by the radiologists. This is used as ground truth. 

Sample PCT slices are shown in Figure 1. Also, Figure 2 

shows sample SCT slices. 

 

 
 

Figure 1. PCT slices 

 

 
 

Figure 2. Corresponding SCT slices 

 

 

4. DATA AUGMENTATION 

 

Data augmentation is required to increase the sample size. 

It is done in the ratio of 1:2. 2400 SCT, 960 PCT slices and 

1120 NCT slices are subjected to augmentation. Hence, 4800 

SCT, 1920 PCT and 2240 NCT slices are generated as a result 

of data augmentation. When the model is exposed to a high 

number of data samples, the risks of overfitting the training 

data are greatly reduced. Zoom factor (12%), shearing (10%), 

rotation (30 degrees), horizontal flipping (40%), vertical 

flipping (40%) and shifting (15%), are the geometric 

transformations applied for augmenting the dataset. Machine 

learning algorithms need a sample dataset to train the model 

when they are created. The model, however, may begin to 

learn the irrelevant information within the dataset if it trains 

on sample data for an excessively long time or if the model is 

overly complex. The model becomes "overfitted" and unable 

to generalize successfully. A model won't be able to carry out 

the classification or prediction tasks that it was designed for if 

it can't generalize successfully to new data. To overcome such 

issues, dropout, regularization techniques and ensemble 

learning methods are used. The most popular ensemble 

techniques are boosting and bagging. Following the generation 

of several data samples, these models are individually trained, 

and depending on the task like, classification or regression, the 

average or majority of those predictions result in a more 

accurate estimate. This is frequently employed to lower 

variance in a noisy dataset. 

 

 

5. CONVOLUTIONAL NEURAL NETWORKS (CNN) 

 

 
 

Figure 3. Basic convolutional neural network 
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CNN can be considered as one of the special cases of Feed-

Forward Neural Networks (FNN). The neurons of each layer 

in the conventional neural network are one-dimensional. But 

in CNN, these layers have three dimensions namely height, 

width, and depth. Basic CNN architecture in Figure 3 shows a 

convolutional layer, pooling layer, and fully connected layer. 

Feature learning is done in the convolution blocks and 

classification is done in the fully connected and softmax layer. 

Convolution is the concept of sliding a filter over the input. 

It represents an understanding of features within an image. To 

extract these features filters are used. Several filters in the 

network are kernels. It is a process of transforming an image 

by applying a kernel over each pixel. Downsampling is done 

by a pooling layer to reduce the size of the feature maps. The 

pooling layers apply the max of mean, max-pooling or average 

pooling to downsample the feature map. To preserve the edges 

of the images, zero is padded to the edges of the images. A 

fully connected layer predicts the image class using the 

information obtained in earlier epochs. This will enable the 

machine to learn from the extracted features and create a 

generalized model. The network architecture was built by 

removing the final classification layer and the transfer learned 

for our CT classification.  

 

 

6. EXPERIMENTS PERFORMED 

 

Several experiments have been carried out to increase the 

network's performance by adjusting the parameters used. The 

method followed for hyper parameter adjustment was grid 

search. Grid search is a process that searches exhaustively 

through a manually specified subset of the hyper parameter 

space of the targeted algorithm. This helped us arrive in an 

optimum subspace of hyper parameters. To classify the normal 

and abnormal CT slices, three experiments are carried out. 

CNN-based deep learning networks are used to perform the 

classification. Experiments 1 and 2 are conducted with 

pretrained architectures. In experiment 1 transfer learning is 

applied. In experiment 2, the pretrained networks are trained 

with PCT and SCT slices. In experiment 3, ensemble 

architecture is developed and the accuracy is improved. 

 

 

7. EXPERIMENT 1: TRANSFER LEARNING BASED 

ON NORMAL AND ABNORMAL CT SLICE 

CLASSIFICATION (PRE-TRAINED NETWORKS) 

 

The pre-trained networks VGG16, ResNet50, and 

InceptionV3 are chosen for the first experiment. These 

networks are trained with the ImageNet dataset and the 

weights are frozen. The ImageNet is a vast visual database 

created for visual object recognition that comprises over 

fourteen million images organized into 20,000 categories, of 

generic images. The knowledge gained from the source dataset 

(generic images) is transferred to the target dataset (PCT and 

SCT slices) using transfer learning. Through the transfer 

learning approach, the knowledge gained by the ImageNet 

dataset is leveraged to classify the slices with the lesion. 

Except for the output layer, the target model duplicates and 

fine-tunes all of the source model parameters using the target 

dataset. The target model’s output layer, on the other hand, is 

trained from scratch. When fine-tuning parameters, a lower 

learning rate is employed, but when training the output layer 

from scratch, a higher learning rate is used. A learning rate of 

0.001, and a weight decay factor of 0.01 with a momentum 

value of 0.9 is applied. The initial layers of all the CNN models 

are pretrained on the ImageNet dataset and only the final layer 

is fine-tuned for the purpose of this domain shift. The SCT and 

PCT slices are submitted to the pretrained networks for 

classification as normal or abnormal. The initial layers of the 

model are learning the features from the ImageNet dataset and 

learning carried out only by the final layer is not sufficient to 

perform the classification. To overcome this challenge all the 

initial layers of the model are unfrozen and training is carried 

out with PCT and SCT slices from scratch. A rise in accuracy 

is observed as soon as the domain shift is addressed. The 

classification accuracy produced by VGG16, ResNet50, and 

InceptionV3 is 49.22%, 47.076%, and 49.36%. The average 

accuracy is observed to be around 48% which is due to the 

domain shift in the training and testing images.  

 

 

8. EXPERIMENT 2: NORMAL AND ABNORMAL PCT, 

SCT SLICE CLASSIFICATION (NETWORKS 

TRAINED WITH PCT AND SCT SLICES FROM THE 

FIRST PRINCIPLE) 

 

In this experiment, VGG1, VGG2, VGG3, VGG16, 

ResNet50, InceptionV3 architectures are trained with PCT and 

SCT slices. To improve accuracy dropout regularization and 

lambda regularization are applied for VGG16, ResNet50 and 

InceptionV3.  

 

8.1 VGG architecture 

 

VGG stands for Visual Geometry Group and is a multilayer 

deep CNN architecture. The term "deep" refers to the number 

of layers in VGG. VGG1, VGG2, VGG3, and VGG16 are 1, 

2, 3, and 16-layer convolutional layers, respectively. VGG 

architecture is the foundation for cutting-edge object 

recognition models [28]. The input CT image is resized to the 

size of the networks. Instead of a convolution layer with a large 

kernel size, VGG groups multiple convolution layers with 

smaller kernel sizes. More layers in VGG allowed the model 

to better understand the features within an image. The 

convolutional layers are generally composed of 3×3 filters. 

The Maximum Pooling (Max-Pool) layer follows the 

convolution layer, not necessarily all convolution layer has a 

max-pool layer. A stack of convolutional layers with a narrow 

receptive field is used to process the image. In CNN, the 

Rectified Linear Unit (ReLU) is one of the most commonly 

utilized activation functions. If the input value is less than zero, 

the output of a rectified linear unit is '0'. Otherwise, it displays 

the raw input as the output, i.e., if the input value is larger than 

zero, it suggests that the output is equal to the input value. All 

hidden layers are equipped with the ReLU activation function. 

A learning rate of 0.001, and a weight decay factor of 0.01 with 

a momentum value of 0.9 is applied. The network is converged 

in 40 epochs. Figure 4 shows the VGG16 architecture. 

Classification Accuracy (CA) is calculated using the 

number of correct predictions and the total number of 

predictions made. This value is multiplied by 100 to present it 

in percentage. An optimization function's goal is to maximize 

or minimize an error function, which is determined by the 

model's internal learning parameters such as bias and network 

weights. 

Adaptive Moment Estimation (Adam) optimization is one 

of the optimization functions investigated in this study. A loss 
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function determines the "quality" of a neural network's 

performance in terms of classification output. For training the 

network, cross-entropy is the loss function used. The 

difference between two probability distributions is measured 

by cross-entropy. The target distribution will look closer to the 

actual distribution if the cross-entropy values are minimized. 

To figure out the classification accuracy and cross-entropy 

loss, the PCT and SCT slices are employed for training, testing, 

and validation. This VGG1, VGG2, VGG3, and VGG16 

produced a CA of 68%, 69.4%, 72%, and 78.2%. Figure 5 

shows the results of VGG16. 

The dropout technique is applied to the VGG16 network to 

improve classification accuracy. It is a training method in 

which neurons are rejected at random. They mysteriously 

"vanish." This means that their contribution to the activation 

of downstream neurons is removed temporally on the forward 

pass, and no weight updates are applied to the cell on the 

backward trip. Likelihood of dropping out for each layer 

introduced in a dense network. Each neuron has a chance of 

getting skipped over throughout each iteration. Overfitting is 

a type of modeling error that arises when a function is too 

closely related to a certain set of data. This regularization 

technique prevents complex co-adaptations on training data, 

hence reduces overfitting. VGG16 network is applied with 

dropout regularization and this produced an improved of 

79.1%. The output obtained by applying the dropout technique 

is presented in Figure 6. 

 

 
 

Figure 4. VGG16 architecture 

 
 

Figure 5. VGG16 accuracy plot 

 

 
 

Figure 6. VGG16 with dropout regularization accuracy plot 

 

8.2 ResNet50 

 

 
 

Figure 7. ResNet50 architecture 

 

Residual Neural Network (ResNet) was introduced in 2015. 

It also addressed the problem of disappearing gradients in very 
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deep neural networks. It is a variant of ResNet with 48 

Convolution layers, 1 MaxPool layer, and 1 Average Pool 

layer. ResNet50 is a deep neural network that may be used for 

a range of computer vision tasks like object detection and 

image segmentation. Residual nets with up to 152 layers of 

depth - 8 times deeper than VGG nets but with lower 

complexity. Each 2-layer block in the 34-layer net is replaced 

with a 3-layer bottleneck block resulting in a 50-layer ResNet. 

Instead of using a complicated adaptive learning technique, 

plain Stochastic Gradient Descent (SGD) is used. This is done 

in conjunction with an acceptable initialization function that 

preserves the training modifications in preprocessing the input, 

which divides the input into patches before feeding it into the 

network. In this network, no need to fire all neurons for every 

epoch. Once learnt, not trying to learn again, instead focuses 

on learning newer features. This greatly reduces the training 

time and improves accuracy. The degradation problem raised 

by the VGG network is solved by residual learning. Figure 7 

shows the ResNet50 architecture. Figure 8 shows the accuracy 

plot of ResNet50.  

 

 
 

Figure 8. ResNet50 accuracy plot 

 

 
 

Figure 9. ResNet50 with Lambda regularization accuracy 

plot 

 

Once training is carried out using the PCT and SCT slices, 

a CA of 77% is achieved. Lambda regularization is a strategy 

for improving model generalization by making minor changes 

to the learning procedure. As a result, the model's performance 

on previously unseen data improves as well. Using the 

regularizers, we may apply regularization to any layer directly. 

To improve accuracy, lambda regularization is applied and this 

resulted in 77.8% CA. Figure 9 presents the responses 

obtained using ResNet50 with lambda regularization. 

 

8.3 InceptionV3 

 

InceptionV3 is a CNN design from the Inception family that 

transports label information down the network using label 

smoothing, factorized 7 x 7 convolutions, and an auxiliary 

classifier. Batch normalization is used frequently throughout 

the model and is applied to activation inputs. In addition to 

digging deeper, the researchers devised a revolutionary 

technique called the Inception module [29]. Multiple feature 

extraction, adaptable filter size and extracting features at 

varied scales are the advantage of InceptionV3. This network 

avoids representational bottlenecks. It means it reduces the 

input dimensions of the next layer. It has multiple deep layers 

of convolutions which may result in overfitting. To avoid it, 

multiple filters of different sizes are used. Hence this 

architecture uses parallel layers, instead of deep layers, thus 

making the network wider. Figure 10 shows the InceptionV3 

architecture. The size of various layers is shown in Table 1. 

Figure 11 presents the networks outputs.  

Once training, testing and validation are carried out using 

the PCT and SCT slices, CA is calculated as 79.6%. Also, after 

applying the lambda regularization technique to this 

InceptionV3 network, CA is improved to 80.1%. Figure 12 

shows the output obtained using the InceptionV3 network with 

lambda regularization. 

 

 
 

Figure 10. InceptionV3 architecture 

 

 
 

Figure 11. InceptionV3 accuracy plot 
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Table 1. Various layer sizes of InceptionV3 architecture 

 
S. No Type Patch size/stride 

1 Convolution layer 3×3/2 

2 Convolution layer 3×3/1 

3 Convolution padded 3×3/1 

4 Pooling layer 3×3/2 

5 Convolution layer 3×3/1 

6 Convolution layer 3×3/2 

7 Convolution layer 3×3/1 

8 Inception model1 Module1 

9 Inception model2 Module2 

10 Inception model3 Module3 

11 Pooling layer 8×8 

12 Linear logits 

13 Softmax classifier 

 

Once training, testing and validation are carried out using 

the PCT and SCT slices, CA is calculated as 79.6%. Also, after 

applying the lambda regularization technique to this 

InceptionV3 network, CA is improved to 80.1%. Figure 12 

shows the output obtained using the InceptionV3 network with 

lambda regularization.  

 

 
 

Figure 12. InceptionV3 with lambda regularization accuracy 

plot 

 

Precision is about what percentage of all the optimistic 

predictions is genuinely positive. Its value ranges from 0 to 1. 

The recall is about what proportion of the total positive is 

anticipated to be positive. The harmonic mean of precision and 

recall is the F1 score. It considers both false positives and false 

negatives. As a result, it works well with an unbalanced dataset. 

The parameters recall, precision and the F1 score obtained for 

the models are presented in Table 2. 

 

Table 2. Parameters of the models 

 
S.No Models Recall Precision F1 score 

1 VGG1 0.51 0.53 0.51980769 

2 VGG2 0.57 0.55 0.55982143 

3 VGG3 0.58 0.6 0.58983051 

4 ResNet50 0.61 0.6 0.60495868 

5 VGG16 0.65 0.61 0.62936508 

6 InceptionV3 0.67 0.61 0.63859375 

 

 

9. EXPERIMENT 3: ENSEMBLE NETWORK 

ARCHITECTURE 

 

A neural network ensemble is a learning paradigm that 

solves a problem by combining multiple neural networks. 

Ensemble learning combines predictions from many neural 

network models to reduce prediction variation and 

generalization errors [30]. It is a machine-learning technique 

that mixes numerous base models to create a single best-

predictive model. This is done because ensembles perform 

better in terms of generalization than a single network. Each 

model is allowed to generate a prediction and the final 

prediction being the average of the individual prediction.  

The convolution layer, rectified unit layer, pooling layer, 

and connected layer are the CNNs basic layers. The pixels are 

grouped in a CNN technique, which is subsequently processed 

by filters. Depending on the complexity of the training data, 

the number of filters can be adjusted. The pooling layer then 

does regression or reduces the input parameters. This process 

is repeated over and over on the same data in an ensemble 

approach to produce a more dependable decision. 

The traditional hyper parameters of the network was kept 

the same but final layer was altered using the learning rate of 

0.001, and a weight decay factor of 0.01 with a momentum 

value of 0.9. 

Here in this research, the trained models with the highest 

accuracy as VGG16 with dropout regularization, ResNet50 

and InceptionV3 with lambda regularization, are concatenated 

to form an Ensemble architecture which is shown in Figure 13.  

A concatenation ensemble takes many inputs of varying 

dimensions and concatenates them on a single axis. 

Concatenation operations are the polar opposite of averaging 

ensemble activities. The average is computed by passing the 

pooled outputs of the networks through dense layers with a set 

number of neurons to equalize them. Weighted ensembles are 

a type of averaging operation in which the tensor outputs are 

multiplied by a weight and then blended linearly. 

For sampling data from the training set, there are two main 

approaches. 

1. Bootstrap AGGregating, or BAGGing: It is called 

BAGGing because it combines Bootstrapping and 

Aggregation into a single ensemble model. It takes 

replacement samples from the training set at random. It 

separates the original training set into multiple training sets, 

each of which is used to train a component neural network 

separately. For every single data sample, several bootstrapped 

subsamples are generated.  

2. Boosting: This approach trains machine learning models 

sequentially, rather than concurrently, as in traditional 

ensemble methods. Adaptive boosting (AdaBoost) is the 

boosting algorithm that is used for classification and 

regression [31]. 

When a machine learning model performs well on training 

data but not so well on real-world samples, this is known as 

overfitting. Ensemble learning can be used to overcome this 

problem. Machine learning ensembles are made up of several 

decision trees known as random forests [32]. 

Explainability is an issue with ensemble learning. It is 

simple to trace a single machine learning model, such as a 

decision tree. Understanding the rationale behind each 

decision gets significantly more difficult when hundreds of 

models contribute to an outcome. 

Since VGG16 with dropout regularization, ResNet50 with 

lambda regularization and InceptionV3 with lambda 

regularization produced CA of 79.1%, 77.8%, and 80.1%, 

these networks are selected to make ensemble architecture. 

This architecture is designed in such a way that VGG16, 

ResNet50, and InceptionV3 are connected to the decision-

making model. This decision-making model is a voting 

mechanism.  

Following are the steps followed in the ensemble CNN 

model for classification. 
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Figure 13. Proposed Ensemble CNN model 

 

1. The objective behind the Ensemble model is to classify 

the PCT slices. An Ensemble network is a collection of CNN, 

each classifies according to the input. The input slices given to 

the ensemble networks are given in Eq. (1).  

 

Input CT slice =[PCT, SCT, NCT] (1) 

 

Each network produces the membership probabilities (pb1, 

pb2,….., pbn), where pb1+pb2+……+pbn=1 and n is the 

number of networks used. Each CNNs probability is joined 

and given to the meta learner. This meta learner with its voting 

mechanism decides to generate the output. 

2. In the proposed ensemble, VGG16, ResNet50 and 

InceptionV3 are the considered CNN’s given in Eq. (2). All 

these networks do their work in parallel mode and give the 

result.  

 

Networks used= [VGG16, ResNet50, InceptionV3] (2) 

 

3. Each of these CNN has a number of convolutional blocks 

with a convolution layer and pooling layer. A various number 

of filters with variable sizes are used in the convolution layer. 

Once the convolution operation is over, ReLU function is 

applied to it. At last dropout rate is included as an optional 

factor taking values from 0 to 1. A fully connected layer with 

a variable number of units is included which is ended with a 

softmax function. From this last unit, the final membership 

probability is computed. 

4. Three cases are considered for training, testing and 

validation using SCT, PCT and NCT. Those three dataset 

combinations are given in Eq. (3). 

 

Dataset combinations = [(PCT and NCT), (PCT, 

SCT, and NCT), (SCT and NCT)] 
(3) 

 

5. Networks in the Ensemble CNN uses this dataset 

combination and produces its output to the meta learner. 

Tunable parameters are fine-tuned to attain the maximum 

classification accuracy, thereby reducing the errors. 4800 SCT, 

1920 PCT and 2240 NCT slices are the datasets used in this 

work. The training phase is done using the 80% and validation 

using the 20% dataset. Once training is over, the network is 

tested and validated in the way given in Eq. (4). 

 

Dataset=[80% training, 20% validation] (4) 

 

6. When PCT and NCT datasets are used, 1536 PCT and 

1792 NCT slices are meant for training. 384 PCT and 448 

NCT slices are meant for validation. Ensemble network using 

these datasets is given in Eq. (5). Figure 14 shows the 

ensemble networks accuracy plot when PCT slices are used. 

 

[Ensemble Architecture](PCT,NCT)=[Training, Testing 

and Validation](PCT,NCT) 
(5) 

 
 

Figure 14. Accuracy plot of Ensemble network using PCT 

 

7. When PCT, SCT and NCT datasets are used, 1536 PCT, 

3840 SCT and 1792 NCT slices are meant for training. For 

validation, 384 PCT, 960 SCT and 448 NCT slices are used. 

Ensemble architecture using these datasets is given in 

equations from 6. Figure 15 shows the ensemble networks 

accuracy plot when SCT and PCT slices are used. 

 

[Ensemble architecture] (PCT,SCT,NCT)=[Training, 

Testing and Validation](PCT,SCT,NCT) 
(6) 

 

 
 

Figure 15. Results of Ensemble network using SCT and PCT 

 

8. When SCT and NCT datasets are used, 3840 SCT and 

1792 NCT slices are meant for training. 960 SCT and 448 

NCT slices are meant for validation. Ensemble architecture 

using these datasets is given in Eq. (7). Figure 16 shows the 

ensemble networks accuracy plot when SCT slices are used. 

 

[Ensemble architecture] s(SCT,NCT) =[Training, Testing 

and Validation](SCT,NCT) 
(7) 

 

Once training is over, testing and validation of the datasets 

are done by the Ensemble network to classify the input slice as 

PCT, SCT or NCT. 

9. The network outputs are connected to the meta learner 

which is a decision-making model given in Eq. (8). This 

decision-making model is a voting mechanism. 
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Figure 16. Accuracy plot of Ensemble network using SCT 

 

Meta learner[Input]=[ (VGG16)Output, (ResNet50)Output, 

(InceptionV3)Output] 
(8) 

 

The decision-making model is a technique that monitors the 

benefits of VGG16, ResNet50, and InceptionV3. Meta learner 

picks the prediction with the highest number of votes. The 

working mechanism of the meta learner conforms to the 

following rules: 

• If any two or all the three networks in the Ensemble 

architecture classify the input image as a lesion image, 

then the meta learner decides the given image as an 

abnormal image. 

• If any two networks or all three networks in the Ensemble 

architecture, classify the input image as a lesion-free 

image, then the meta learner decides the given image as a 

normal image. 

10. In the above-explained way the classification is done 

for the given input shown in Eq. (9). 

 

Output=Classification(Any two or all the three networks decisions) (9) 

 

11. The classification accuracy obtained using an Ensemble 

network is 74%, 81.98% and 93.76% when PCT, a 

combination of PCT, SCT and SCT alone are used 

respectively and compared with the other authors’ work. 

Hence, this proposed Ensemble method accurately 

classifies the normal and abnormal CT images. This deep 

learning approach classifies the SCT and PCT slices as 

abnormal CT slices. The model selector is the cause of this 

gain since it improves network performance by precisely 

selecting the network that can deliver the best inference for a 

particular data instance. Table 3 shows the proposed Ensemble 

architecture classification accuracy, which is compared with 

various authors’ work. 

 

Table 3. Compared classification accuracy 

 

S.No Source 
Classification accuracy in 

percentage 

1 
Anjali Gautam et al 

(2021) 
92.22 

2 Shuo Zhang et al. (2022) 60.20 

3 
Glori Stephani Saranih 

et al. (2020) 
90.666 

4 Proposed method 

Using SCT slices alone is 

93.76. 

Using SCT and PCT slices is 

81.98. 

Using PCT slices alone is 74. 

 

Only in this research work, CT taken after the immediate 

arrival of the patient and within the golden period used for 

classification. 

10. DISCUSSION 

 

In this CNN-based research work, as a first approach, three 

networks are validated using the transfer learning approach, 

when trained using the ImageNet dataset. In the second 

approach, VGG, ResNet50, and InceptionV3 are the networks 

trained and tested with PCT and SCT slices for classification. 

In the third approach, Ensemble architecture is designed to do 

classification. This deep learning Ensemble approach does 

classification using SCT and PCT slices. This network also 

does classification when PCT slices alone are used. This CNN-

based Ensemble network classifies the abnormal slices in both 

SCT and PCT slices. 
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