
 

 
 
 

 
 

 
1. INTRODUCTION 

The finite or large amplitude acoustic oscillations can 
improve the power density and conversion efficiency of 
thermo-acoustic devices, and can produce a larger pressure 
ratio for some acoustics devices. Therefore, there are many 
applications for the finite or large amplitude acoustic 
oscillations in practical thermo-acoustics and acoustics 
devices. However, there are many nonlinear dissipations 
accompanied by large amplitude oscillation, which is a 
critical issue in the application of thermo-acoustics. Hence, it 
is very important to recognize the acoustic field 
characteristics and the nonlinear dissipative mechanism in the 
resonator. 

Currently, there are many investigations on the nonlinear 
acoustic oscillations in the resonator, many of which are 
based on the one-dimensional model [1]-[6]. There is an 
urgent need for a two-dimensional model of large amplitude 
acoustic oscillation. Vanhille etc. presented a two-
dimensional model [7] for the cylinder resonator, they 
presented a finite volume scheme based on this model to 
simulate the nonlinear oscillations and analyze the pressure 
distribution in the resonator [8]. Additionally, Vanhille etc. 
[9]-[10] has proposed a numerical model for the nonlinear 
stand wave by expanding the state equation to the second 
order. This model includes the continuity equation, the 
momentum equations and the energy equation. In the model, 
the momentum equations have no limits to the nonlinearly. 

However, the continuity equation is only suitable in the case 
of finite amplitude and the energy equation only comprises 
the viscosity without the heat conduction. Under the 
consideration of irrotationality, Cervenka etc. [11] 
investigated the nonlinear two-dimensional standing wave in 
the resonator. Alexeev etc. [12] investigated the nonlinear gas 
oscillations and acoustic field in the resonator by solving the 
Navier-Stokes equations though using the finite difference 
method and verified the simulation results by experiments. 
Their results showed that the temperature distribution is 
related to the nonlinearity of flow with periodic shocks and to 
the turbulence intensity along the tube. Tang etc. [13] solved 
the Navier-Stokes equations by the KFVS (Kinetic Flux 
Vector Splitting) method to simulate the nonlinear 
oscillations in the two-dimensional resonator. But they did 
not present the two-dimensional flow field. Wang etc. [14] 
presented a lattice Boltzmann model for the two-dimensional 
oscillations in the resonator. By taking the periodic boundary 
condition, they simulated a few acoustic fields driven by five 
different frequencies related to the resonant frequency. 
However, their two-dimensional model only showed some 
one-dimensional characteristics. Ning etc. [15] developed a 
two-dimension model for the axial symmetry resonator. They 
resolved the model by the finite volume method and obtained 
the pressure distribution without the flow field. Aganin et al 
[16] made a comparison of solutions of the gas oscillation in 
a closed tube for two ideal gas models, the entropy 
conservation model and the total energy model, with finite 
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ABSTRACT  
 
The two-dimensional nonlinear acoustic oscillations in the resonator of four different driving amplitudes are 
simulated by a gas-kinetic scheme. The shock in the resonator, the effects of the driving amplitude on the 
acoustic field and flow and the distribution of harmonics are investigated based on the simulaton results. 
Moreover, this work discusses the reasons for the nonlinear effects such as annular effect and velocity reverse. 
It is pointed out that the waveforms of the acoustics variables increasingly distort with the driving-amplitude 
increasing. And it is found that the acoustic field and the flow under the large-amplitude are quite different 
from those under the finite-amplitude. Moreover, it has been shown that the shock greatly affects the pressure, 
temperature and the axial velocity and has no effect on the radial velocity. All of this shows that the large-
amplitude has a large effect on the nonlinearity in the resonator. 
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difference method. They found that one can obtain steady 
solutions rapidly by making use of the entropy conservation 
model for high-amplitude gas oscillation. However, the 
influence of entropy changes in the course of development of 
longitudinal gas oscillations in the tube is considered in their 
studies only in one dimension. 

The gas-kinetic BGK scheme (GKS-BGK) [17] has some 
advantages over high-dimensional and large-Mach 
compressible fluid and nonlinear simulation, for the Navier-
Stokes equations can be exactly recovered from the BGK 
model due to the connection between the viscosity coefficient 
and the relaxation time. The results in Refs. [18], [19] and 
[20] showed that the GKS has competitive accuracy and 
efficiency in simulating the two-dimensional acoustic 
oscillations. In particular, ref. [20] showed that the GKS has 
the capability to simulate the nonlinear effects in the 
resonator, such as large-amplitude oscillations, eddies, 
acoustics streaming, etc. On the foundation of ref. [20], this 
work investigated the characteristics of the nonlinear 
acoustics flow field in the resonators driven by the four 
different amplitudes varying from finite-amplitude to large-
amplitude, and placed an emphasis on analyzing the 
mechanism and effects of these nonlinear phenomena, and 
numerically analyzed some nonlinear dissipations in the 
resonator. The effect of large-amplitude on the nonlinearity in 
the resonator is investigated in particular. All of these are 
beneficial to the optimal design of resonators.  

2. GAS-KINETIC BGK SCHEME 

The present gas-kinetic BGK (GKS-BGK) scheme is based 
on the two-dimensional BGK-Boltzmann equation 

 

     t x yf uf vf g f                                                       (1) 

 

where f is the gas distribution function and g  is the 

equilibrium state approached by f. Here, f and g are functions 

of time t, space  ,x y , particle velocities  ,u v  and the 

internal variable  , and   is the particle collision time. 

Usually, the equilibrium state g is assumed as a Maxwellian 

distribution 
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where   is the density, U and V are the macroscopic 

velocity in the x- and y-direictions respectively, and 

  1 2RT  is the function of temperature T . The internal 

variable 
2  is equal to 

2 2 2 2

1 2 K       , where the 

total number of degrees of freedom    5 3 1 1K       

for the 2D gas flow and  is the ratio of the principal specific 

heat. Since mass, momentum, and energy are conserved 
during particle collisions, f and g satisfy the conservation 
constraint 
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Taking moments ψ  in Eq. (1) and integrating it with respect 

to d  in phase space, dS  in a numerical cell ,i jS , and dt  in 

a time step 1,   
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1

,

n

i jW  and ,

n

i jW  are the cell average macroscopic 

conservative quantities over the numerical cell ,i jS  with 

boundary ,i j , and area 
,i jS at time 1nt and nt , 

respectively. The macroscopic values W  and the flux F  can 

be computed from the gas distribution f as follows: 
 

 , , , ,   
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where    2 21 2     e p U V .  

Eqs. (5) and (6) imply that it is crucial for the GKS-BGK 
to get the distribution function f at the cell interface. The 
above numerical scheme is second-order [18]. Interested 
readers can refer to refs. [17] and [18] for more details about 
GKS. 

3. PHYSICAL MODEL 

Fig.1 shows the physical object of this study. It is a gas-
filled cylindrical tube closed at one end, and driven by a 
piston at the other end. The adiabatic and non-slip boundary 
conditions are imposed on the wall except for at the driving 
end. The driving frequency is set at f = 666HZ, corresponding 

to the wave length = 51.6cm under the ambient temperature 
298K. The length of the resonator L is set at half of the wave 

length, that is L= /2 = 25.8 cm. The diameter of the 
resonator is H = 0.15L = 3.87cm. The velocity of the piston is 

set at u0 = sinl t  , where l is the amplitude of the 

displacement of the piston, = 2fis the angular frequency 

and l is the amplitude of the velocity of the piston. 
 

 
 

Figure 1. Schematic description of the resonator driven by 
the piston 

 
In the simulation, the full compressible two-dimensional 

Navier-Stokes equation is chosen to model the acoustic field 
and the flow field which is produced by the interaction of the 
acoustic wave and the wall. The computation region L H is 
uniformly divided into 400 200 grids. Initially, the density, 
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pressure and temperature are all uniformly distributed. 
Moreover, the initial density, pressure and kinetic viscosity 

are set at 0 = 1.29 kg/m3, p0 = 1.1033  105 Pa and 

v 1.56  10-5 m2/s, respectively. In the computation, the 

four different amplitudes of the piston displacement are 
chosen to cover finite-amplitude and large-amplitude cases. 
In this choice, the order of the non-dimensional displacement 
of the oscillation varies from 10-4 to 10-3 and the order of the 
Mach number varies from 10-4 to 10-2. 

Table 1. Four Computation Cases 

 

 
l 

(µm) 
l/L 0/Ma l c  /l L   

Case 1 60 2.33×10-4 7.30×10-4 0.027 
Case 2 120 4.65×10-4 1.46×10-3 0.038 
Case 3 510 1.97×10-3 6.20×10-3 0.079 
Case 4 1040 4.03×10-3 1.27×10-2 0.113 

4. NUMERICAL RESULTS AND DISCUSSION  

Firstly, the numerical convergence with the grid number 
increasing is examined on three kinds of grids, 128  16, 
256 32 and 512 64, which are numerically tested for 20 
periods. Fig. 2 shows the convergence with grid number, 
where it can be seen that these results with different grids are 
almost the same except for a slight difference near the valley 
of the curves. Therefore, the grid of 256 32 is sufficient for 
the problems under consideration and also provides good 
resolution of the discepancies. Hence the grid 256  32 is 
used in the following computation. 

Fig.3 gives a comparison of the pressure oscillation form, 
which is calculated at the closed end (x/L=1.0) for resonant 
frequency, with the results from Wang et al.’s numerical 
results [14], Aganin et al.’s numerical results of model A [16] 
, Chester’s theoretical results [6] and the experimental data of 
Saenger and Hudson [20]. Fig. 3(a) shows a good agreement 
between our numerical results with previous numerical results 
and theory results. The plot also shows that the pressure 
waveform in our study is more asymmetric with regard to the 
static pressure than Chester’s results. This is because the 
viscosity and heat conduction were taken into account in our 
study, energy transfer to second even higher harmonics with 
nonlinearity. Moreover, the numerical pressure waveform in 
our study is similar with that in the experiment results of 
Saenger and Hudson [20]. The good agreement confirms the 
accuracy of the method and relevant code. 

In the following computations, the verified kinetic scheme 
was used for simulation of two-dimension high-amplitude 
acoustic oscillation in the resonator. 

 

 
 

 

 

 
Figure 2. Mesh refinement study of the time dependency (a) 

density; (b) pressure; (c) temperature; (d) longitudinal 
velocity at x/L=0.998 and y/D=0.484 with the adiabatic 

boundary condition for resonant frequency 

 
(a) 

 

 
(b) 

 

Figure 3. (a) Comparison of the numerical results in this 
study (——) with Wang et al.’s results [14](- - - -), 

Aganin et al.’s results [16] (. . . .), and Chester’s results 
[6] (……). (b) The experimental results of Saenger and 

Hudson[20].  
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Figs. 4-7 show the distributions of relative pressure, 
relative temperature, axial velocity and radial velocity in the 
resonator driven by four different amplitudes at the non-
dimensional moment tc0 /2L = 80, respectively. In the figures, 
the x-direction is the flow direction, the y-direction is the 
cross section direction, the z-direction is the magnitude of the 
quantity.  Figs.4-7 have several implications: 1) With an 
increase in the driving amplitude, the amplitudes of the 
oscillation wave of the pressure, temperature, axial velocity 
and radial velocity all become larger, the wave form of these 
quantities become more complicated, the phases are changed, 
and the position of the shock wave is also changed. However, 
the positions of the shock wave for pressure, temperature and 
velocity are in agreement with each other for the same driving 
amplitude. 2) Generally, with an increase in the driving 
amplitude, the temperature and the axial velocity transform 
from the quasi one-dimension to the two-dimensions (see 
Figs.5-6) and the radial velocity wave transforms from 
regular to irregular (see Fig.7). Moreover, the ratio |vmax / 
umax| of the magnitude of radial velocity to that of axial 
velocity is greatly affected by the driving amplitude. The 
ration is 0.35% ~ 10-3 for l = 60µm while it is 3.6% ~ 10-2 for 
l = 1040µm, which implies that the radial velocity might be 
neglected for the finite amplitude compared to the axial 
velocity while it is comparable with the axial velocity for the 
large amplitude. However, Fig.4 implies that the pressure is 
only the function of x, which conforms to the usual 
assumption dp/dy = 0. 3) Fig.5 shows that the temperature in 
the vicinity (y/H ≈ 0 and 1) of the wall is higher than the 
temperature in the center region whether at the wave front or 
after the wave in the cases of large-amplitude. That is, there is 
a circulatory pattern in large-amplitude cases whether at the 
wave front or after the wave. However, the temperature 
circulatory pattern occurs only at the wave front in finite-
amplitude cases, for the effect disappears after the shock 
wave. 4) Similarly, one finds from Fig.6 (c) and (d) that there 
are velocity circulatory patterns in large-amplitude cases, 
whether at the wave front or after the wave, since the 
magnitude of the axial velocity in the vicinity of the wall is 
larger than that at the center region. Additionally, the velocity 
is changed dramatically at the position where the shock wave 
occurs in large-amplitude cases. The velocity in the center 
region is changed from negative maximum to zero, while the 
velocity in the vicinity of the wall is changed from negative 
maximum to positive velocity. That is, the gradient of the 
velocity in the vicinity of the wall is greater than that at the 
center. Moreover, there is reverse velocity after the shock 
wave in the vicinity of the wall. All of these phenomena are 
not evident in the cases of finite-amplitude (see Figs. 6 (a) 
and 6 (b)). 5) The temperature circulatory pattern and reverse 
velocity become more and more evident with an increase in 
the driving amplitude, which implies that the one- or quasi-
one-dimensional model is not suitable to model the 
nonlinearity in the flow, heat exchange and acoustic 
transmission in the large-amplitude resonator. 6) The shock 
wave has a great effect on the pressure, temperature and axial 
velocity, but it has little affect on the radial velocity. Figs. 
(4)-(6) show a great gradient of pressure, temperature and 
axial velocity at the shock wave position. Fig. (7) implies 
there is no shock wave in the radial velocity. 

(a)  

(b)  

(c)  

(d)  

 

Figure 4. Instantaneous pressure distributions for four different 
driving amplitudes at tc0 /2L = 80 with the condition of 

adiabatic boundary for resonant frequency.(a) l=60µm; (b) 
l=120µm; (c) l=510µm; (d) l=1040µm 
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(a)  

(b)  

(c)  

(d)  

 

Figure 5. Instantaneous temperature distributions for four 
different driving amplitudes at tc0 /2L = 80 with the condition 

of adiabatic boundary for resonant frequency. (a) l=60µm; 
(b) l=120µm; (c) l=510µm; (d) l=1040µm 

(a)  

(b)  

(c)  

(d)  

 

Figure 6. Instantaneous axial velocity u distributions for four 
different driving amplitudes at tc0 /2L = 80 with the condition 

of adiabatic boundary for resonant frequency. (a) l=60µm; 
(b) l=120µm; (c) l=510µm; (d) l=1040µm 
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(a)  

(b)   

(c)  

(d)  

 

Figure 7. Instantaneous radial velocity u distributions for 
four different driving amplitudes at tc0 /2L = 80 with the 
condition of adiabatic boundary for resonant frequency. 
(a)l=60µm; (b) l=120µm; (c) l=510µm; (d) l=1040µm 

 
Figs. 4-7 show that the nonlinearity has a greater effect on 

the acoustic  field  in  the  resonator  with  an  increase  in  the  
 
 

driving amplitude. In particular, the distributions of the 
pressure, temperature and velocity become more complex in 
large amplitude cases (l=510µm and 1040µm), which are 
completely different from the finite amplitude cases (l=60µm 
and 120µm). Then, the distribution of the first-order through 
the third-order harmonic were investigated at the closed end 
to analyze the reason for these nonlinear phenomena. 

Table 2 lists the relative amplitude of the some orders of 
harmonic in the pressure wave at the closed end of the 
resonator driven by four different amplitudes. Fig.8 shows the 
Fourier transform of the pressure signal at the closed end of 
the resonator for four different cases, where pa is the acoustic 
pressure; that is, pa = p - p0. Fig.4 shows that the amplitudes 
of all harmonics increase with an increase in the driving 
amplitude and that the ratio of the second-order harmonic to 
the fundamental wave varies a little when the driving 
amplitude l ≤ 510μm, which shows that the nonlinear 
dissipation increases with an increase in the driving 
amplitude. However, for the driving amplitude l = 1040 μm, 
there is not an evident increase in the fundamental wave 
compared with the case of l = 510μm, and there are decreases 
for the amplitude of the second and third order harmonics. 
However, it is not the fact that there more nonlinear 
dissipation for smaller amplitude l = 510μm. The reasons for 
the decrease can be seen in Figs.8(c) and 8(d). The 
amplitudes of the second- and third-order harmonics for the 
driving amplitude l = 1040μm are smaller than those for l = 
510μmm, but the bandwidth of the former is larger than that 
of the latter, which shows the qualifying factor is lower for l = 
1040 μm. In fact, Fig.8 shows that the bandwidth increases 
with the driving amplitude, which implies that the qualifying 
factor becomes larger and larger and the nonlinear dissipation 
increases more and more with an increase in the driving 
amplitude.  

Table 2.  Harmonics at the closed end of resonator 
driven by four different amplitudes 

 

Case 1 0p p  2 0p p  3 0p p  2 1p p  3 1p p  

l = 60μm 0.0292 0.0102 0.0069 34.93% 23.63% 

l = 120μm 0.0458 0.0149 0.0102 32.53% 22.27% 

l = 510μm 0.1057 0.0358 0.0181 33.87% 17.12% 

l =1040μm 0.1058 0.0258 0.0135 24.39% 12.76% 

 

 
            (a) 
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    (b) 

 
(c) 

 
     (d) 

 

Figure 8. FFT of the pressure signals under four different 
driving-amplitudes 

 

5. CONCLUSION 

In this paper, a gas-kinetic scheme is used to simulate the 
flow field in a resonator driven by four different driving 
amplitudes covering finite and large amplitudes. Through the 
simulation results, the effects of driving amplitude on the 
acoustic field are investigated. Moreover, the reasons for 
some nonlinear effects are analyzed. Some significant facts 
have been revealed. 1) With an increase in the driving 
amplitude, the waveforms of all acoustics variables are more 
greatly distorted. When the driving amplitude varies from 
finite amplitude to large amplitude, the temperature and the 
axial velocity transform from quasi-one-dimension to two-
dimensions and the radial velocity transforms from regular to 
irregular. Moreover, the ratio of radial velocity to axial 

velocity is negligible for finite amplitude driving, while it is 
significantly larger in the case of large amplitude. This all 
indicates that it is necessary to use a multidimensional model 
to depict the large amplitude oscillation in the resonator. 2) 
All nonlinear effects on the acoustic field in the resonator 
become more and more significant with an increase in driving 
amplitude. The acoustic field under a large amplitude is 
completely different from that under finite amplitude. In the 
case of large amplitude, there are annular effects in velocity 
and temperature profiles both before and after shock waves 
are observed. Moreover, the reverse velocity phenomena are 
observedin the region after shock waves in the vicinities of 
the upper and lower solid walls. While in the case of finite 
amplitude, no annular effect or reverse velocity phenomenon 
is observed in the velocity field, and annular effects in the 
temperature profile are only observed in the region before 
shock wave. 3) The shock wave has a great effect on 
pressure, temperature and axial velocity, and has little effect 
on radial velocity. 4) The nonlinear dissipations increase with 
an increase in driving amplitude. The qualifying factors of the 
pressure wave become smaller with an increase in driving 
amplitude.  
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NOMENCLATURE 

 
f gas distribution function 

g equilibrium state 
(x,y) Space coordinate 
(u,v) particle velocities 
(U, V) macroscopic velocity 
T temperature 
K total number of degrees of freedom 
W macroscopic value 
S area 
p pressure 
e energy  
F flux 
l driving amplitude 
L the length of the resonator 
H width of the resonator 

 

Greek symbols 

 

 internal variable 

 particle collision time 

 density 

 wave length 

 ratio of the principal specific heat 

 frequency 

  

Subscripts 

 

x,y,t partial diffential 
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