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The main aim of this paper is to study the stochastic effect of water scarcity in the
society through our model. It has been shown that there is a unique global positive
solution to the proposed stochastic epidemic model with boundedness and permanence.
We have selected some effective Lyapunov functions to provide sufficient conditions
for investigating water scarcity persistence and extinction. The theoretical results of this
work have been verified based on numerical experiments.

1. INTRODUCTION

Water scarcity is described as a lack of available water or
the failure to access safe drinking water. In many parts of the
world, water is in short supply. Water is becoming
increasingly scarce as it is required to raise and prepare food,
make electricity, and support industry for an ever-increasing
population. The human population has increased by more than
50% in the last 50 years. Water ecosystems all around the
world have been transformed by fast growth, which has been
accompanied by economic development and industrialization.

India’s yearly rainfall is unevenly distributed throughout the
country and at various times of the year. As a result, despite
adequate yearly rainfall, certain river basins are classified as
water limited or water stressed. India is facing a catastrophic
water deficit as a result of government mishandling, pollution,
and groundwater depletion. India’s growing water
consumption, along with its economic expansion, is a big
concern [1].

Climate change is certainly a global problem, but it also has
serious domestic consequences that are sometimes neglected.
Climate change is having a significant impact on Iran’s social
and economic environment, especially given the country’s
existing dry geographic position in the Middle East [2]. Water
pollution has a significant influence in generating water
shortage in the river basin, as indicated by the large value of a
quality related water shortage index. As a result, concentrating
just on lowering water usage may not be sufficient to
considerably relieve the water scarcity problem [3].

The paper concludes the major causes of anticipated water
shortage in the future decades are India’s exponential
population growth and an unbalance in the recharging and use
of ground water. Renewable solar energy, wind, and tidal
waves, along with seawater desalination, are environmentally
benign and realistic solutions for overcoming this predicament
[4, 5]. The effects of climate change-induced variations in
irrigated and rainfed agricultural yields on water consumption
were investigated. Crop yields are affected differently by
climate change depending on the crop and ecological zone.
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It’s important to note that a lot of mathematical models are
deterministic. Random population fluctuations, individual
death rates, immigration rates, and other difficulties are not
considered. We can’t predict more accurately with the
deterministic model since the systems have few restrictions.
As aresult, using randomness in deterministic models leads to
stochastic differential equations, which provides another level
of realism to the real-world problem.

Many researchers have recently studied the impacts of
stochasticity on epidemic models in exploring the effects of
environmental noises on population dynamics. Stochastic
differential equations have been a popular topic in applied
science, mathematical biology, environmental science, and
ecology in recent years [6-8]. Many authors have researched
at the dynamics of epidemic models that include randomness
[9-11].

The environment elements change randomly over time and
should be treated as stochastic [12, 13]. The theory of
stochastic differential equations was used to study classic
epidemic models such as SIS [14, 15], SIR [16], SEIR [17],
[18] and SVIR [19]. Furthermore, Mishra and Tripathi
presented the stochastic version of artificial rain [20-22].

As mentioned above they all have analyzed and proved that
water scarcity is one of the major problems but they have
proved through statistically and theoretically. We are here
giving a new try to prove the same on using Mathematical
model.

We examine our model using the concept of ordinary
differential equation. In section 2 we extend our model to
stochastic differential equation model. We also demonstrated
the existence and uniqueness of global positive solutions, the
stochastic boundedness and permanence of the model (2). In
section 3 pth-moment exponential stability are analyzed. In
section 4, the persistent of the proposed stochastic model is
presented. In section 5 demonstrates the simulation results for
both deterministic and stochastic models. Finally, our results
are summarized in section 6 as conclusion.

In this paper, we will study the analysis of solution for the
stochastic model representing water scarcity in the society:
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dw
= A - O(IW - asz + 82Wr,

dt
dH WH — k,H
TR L) — kK4,
dt (1)
dw,
T = (XIW + BH - 81WS,
dw,
dt = 81WS - 82Wr.

where, k; = f + pu + py. A is the recruitment rate, @4 is the
water draining rate, @, is the rate of human consumption of
water, §; is the rate of water Recovery, §, is the rate of water
going to Normal water, S is the rate of human population
affected water scarcity, u is the natural death p; is the rate of
due to scarcity death and W(t), H(t), W, (t), W,.(t) denote total
usage of water, human, water scarcity, water recover
respectively.

2. STOCHASTIC MODEL

We assume that stochastic perturbations are of the white
noise type, with W(t), H(t), Ws(t), and Wr(t) are directly
proportional. Then the deterministic system (1) will bw
extended to the following system to stochastic differential
equations of the form:

dW = [A — ;W — a, WH + 8,W,]dt
+ 6, WdW, (¢)
dH = [o,WH — k, H]dt + o, HdW, (t)
dW, = [0, W + BH — 8, W,]dt + 05 W,dW; (),
dW, = 8, W, — 8,W,]dt + 5, W,dW, (t).

2

where, 01, 0,2, 03, 0, are the intensities of standard Gaussian
white noise and W, (t), W,(t), W5(t), W,(t) are independent
standard Brownian motions.

2.1 Preliminaries

We assume that (€0, F, P) be the complete probability space
with a filtration (F);»( satisfying the usual conditions. (i.e., it
is right continuous and increasing while F contains all P-null
sets).

X =W®),HD, W), W, (1))
= x1(8), %2 (¢), x3(2), x4(1))

And the form [X(®)| =
JWZ(t) + H2(t) + W2(t) + W2(t). And denote C*1(R* x
(0,00); R,) as the family of all non- negative functions V(X,t)
denote on R* x (0, o) such that they are twice differentiable
in X and once in t.

We consider the differential operator £ associated with four
dimensional SDE.

dX(6) = f(X, 0)dt + g(Z, t)dB(t)
as
R )
L = E+;fi(X,t)aXi

2

1
+5 ), GTEDIND) Fro

ij=1
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where,
A - a1W - a2WH + SZMZI”

F=1 ayw + pH - 5,w,

\slws — 5, W,

)

g = diag( (o, (W = W?), 0, (H — H"), 05(W;
= Ws), 04 (W:Wr))

If £ acts ona function V € C#1(R* X (0, 0)), then

LV(X,©) V(X £) + Ve (X, DX, )
+ % trace(gT (X, ) Vxx (X, Dg(X, t))

where, T means transposition. In view of Ito’s formula, if X(t)
e R*

dv(X, ) LV(X(D),t)
+ V(X (), ) g(X(t), )dB(b).

)

Theorem 2.1

Let [0,00] X D = U be the domain containing the line x =
x* and assume there exists a function V(t,X) twice
continuously differentiable in U which is a positive define in
Lyapunov function and satisfies LV < 0 for x # x*. Then the
solution X(t) = x* of SDE is stable in probability [23].

2.2 Analysis of solution

Theorem 2.2

System (2) is said to be stochastically ultimately bounded if
for any € € (0,1) there exists a positive constant H =
H(e)s uch that for any initial value
(W(0),H(0), Ws(0),W(0)) €EQ the solution X(t) =
(W(0),H(0), Ws(0),W.(0)) of (2) has the property
iiigosup p{X(@®)| <H(e)} =1—€[24].

In this section, we exhibit the existence of a unique positive
global solution, stochastic ultimate boundedness, and
stochastic permanence of the solution of the model 2. We will
use some ideas from [16, 25, 26] for our proof.

2.2.1 Positive and global solution

Theorem 2.3

If the initial value (W(0), H(0), W,(0), W,.(0)) € R% of the
solution of the stochastic model (2) is given there exits a
unique solution (W(t), H(t), W(t), W.(t)) in R% for t > 0
with probability one. Thatis (W, H, W (t), W.(t)) E R}, V t =
0 almost surely.

Proof. The given initial value is (W(0), H(0), W, (0), W,(0))
€ RY , there is a unique local solution
(W(), H(t), Ws(t), W .(t) ) on [0, T ), where T, is the
explosion time, because the stochastic epidemic model (2)
satisfies the locally Lipschitz continuous conditions. The
solution of the stochastic model (2) must be shown to be global.
We simply need to show that T, = oo almost surely.



Choose a sufficiently large positive constant k, such that
(W(0), H(0), Ws(0) and W,(0)) belong to [ki,ko]. For each
0
integer k > kg, define the stopping time Ty = inf{t € [0, T.]:
1 1 1 1
WD) € G, 10, HD € G, 10, Wy(®) & G, K), We(D) € G, K)}.
For the empty set 8, we set inf 6 = co. Since T is non-
decreasing as k — oo, we have

= limty

t—o0

Then T, < T, a.s. Now, we have to show that t,, = a.s.
If not, then there exist T > 0 and € & (0, 1) such that P [e,, <
T]>e.

There is an integer k; > k such that

Ple, < T] > eforall k > k;. 4

We denote a function V;: R - R, by

V, (W, H, W, W,) = (W — 1 — logW) + (H — 1 — logH)
+ (W; — 1 —logW) + (W — 1 — logWy).

by applying Ito’s formula, we get
1
+(1-3)
w

(-%)
(1-5)
( 1

S

1

(a,WH — BH — pH — p, H)dt

—+

1
,HdW, + 3 o3dt

(O(1W + BH - 81Ws)dt

+ o+
;—\
|

—+

1
o3 W, dW; + - 503 Z2dt

+(1-=) 6w, —8,W.)dt

1
o, ,W.dW, + - 504 2dt

;—\
e e e S —— Q

1
+(1-o
r
which can be simplified to
1 1
= [(1 — W) (A —oyW — a, WH + §,W,) + EG%

+ (1 - %) (0, WH — BH — pH — i, H)

1
+503 (1——)(0(1W+BH 5,W,)
1
+5od+ (1 )(alws 5,W.)
1
+50]
+ [0, (W = 1)dw,

+ o-z(H - 1)dW2+03(WS - 1)dW3
+ 0,(W;, — 1)dW,]

+ o3(Ws — 1)dWs + 0,(W;, — 1)dW,]

where,
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1 1
LV, = (1 _W> (A=W = aWH + 8;W,) + 5 0f
1
+ (1_E> (a;WH — BH — uH — u, H)
1 1

1 1 1
508+ (1 ——) (8, W, = 8,W,) + 5 0F

w,
LVl:A+(x1+a2H+B+H+H1+51+82
[ H+ auw
BH SW] 1 1
—+ + — 2 + = 2 +— 2
w, T w, | T2 T 02T %
1 2
+EO'4
1 1
Lvl5A+al+a2+B+u+u1+81+82+Eci+§c§
1 1
+EG§+EG‘2}:K

Then, we have

+ 03 (W, — 1)dW; + 0,4 (W, ®)

= Ddw,]

Now integrating both sides of (5) from 0 to t;, AT,

TRAT
f dv, (W, H. W, W,)
0

TRAT TRAT
< f Kdr + J- [o,(W
0 0

+ o3 (W, — 1)dW; + o, (W,
— 1)dW,].

(6)

Taking expectation on both sides of the above equation, we
get

EVi(W (t AT), H(Tp AT), Wy (T AT), Wy (T AT))
< V1(W(0), H(0), Ws(0), W;.(0))

o Kdr.
+ fo r
EVi(W(t AT), H(tp AT), We(Tpe AT), Wy (T AT))
< V1(W(0), H(0), Ws(0), W;.(0)) + KT.

Let Q = {t}, <T} forall k> k,; and from 4, we have P(Q;,)
> €, Note that for every w € €, there is atleast W (7, w) or

H(ty,w) or Wy(t},w) or W,.(t),w) equals either k or %, since k-

1 1_1
1-logk or % -l-log; = 1+logk.
Hence

W(Tkl (1)), H(Tk’a))’ VVS(Tk,(l)),VVr(Tk,(l))Z (k -1- 10gk) A
(%-Hlogk).

Then it follows as



V1 (W (0), H(0), W;(0), W;.(0)) + KT
> E(Iqx (w)Vy (W (T, AT), H(zy,
A T), VVS(Tk A T):
W, (zic AT))) = E(lgic(@)Vs (W (1 A T), H(z
AT), Wy(ti AT),
W, (T AT))
> E(Igx (w)(k — 1 — logk)
A (l —1+1lo k>
k gK |,
= (k — 1 —logk)
(% -1+ logk) E(lgx(w)),
e(k — 1 —logk)

1
A (E -1+ logk)

(7

A
<

where, [ (w) is the function of Q, (w). Letting k — oo, we get
oo <V, (W(0), H(0), W, (0), W,.(0)) + KT = o therefore, we
have the contradiction. The proof is completed.

2.2.2 Stochastic boundedness

Definition 2.4

The model (2) is said to be stochastically ultimately
bounded if X(t) = (W(0), H(0), Ws(0), Wr(0)). If for any €
€(0,1), there exists a positive constant 8 > 0 such that the
solution X(t) to the epidemic model has the property [27]

!im]P’(lX(t) >0])<e (8)
Theorem 2.5
Any positive initial value is (W (0), H(0), W,(0), W,.(0)) €
R% ., the solutions of stochastic epidemic model (2) are
stochastically ultimately bounded.

Proof. Define
UWw (@), H(t), Ws (), W, (1)) = WY + H” + W + W7

for U(W (), H(t), W, (t), W,.(t)) € R% and v >1. By using
Ito’s formula et U (W (t), H(t), W, (t), W,.(t)).

[efU(w@®), H®), We (), W, (D))]
= e"UW (t), H(t), W, (1), Wy (1))
+ etdU (W (t), H(t), Ws(2), W,.()) = et [WY + HY + WY
+ WP + vWP YA — a,W — a, WH + 5,W,)
+ vH""Y(a,WH — BH — uH — u H) + vW Y (a;W + BH

v(v—-1)
= & W) + vWrTH (8, Wy — 8, W) + T(Ulzwv

+ 0ZH" + oWy + oWP)]dt + etv[o,WVdW,

+ o, HVdW, + as WY dW5 + o, W, dW,],

< Metdt + etv[o,WVdW, + o, H dW, + ;W dW,
+ o, WP dW,].

where, M> 0 is a constant.
Taking expectation and integrating the above equality from
Otot

E[etU(W(t), H(t), W,(t), W.(1)]
< U(W(0), H(0), W,(0), W, (0))

+ MIEJ eSds
0
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e'EU(W (1), H(t), Ws(t), W, (1)
< U(W(0), H(0), W,(0), W, (0)) + M(e"
-1)

which implies

EUW (1), H(t), Ws(t), W;.())
< e ' UW(0), H(0), W;(0), W;-(0)) + M

Since
IX(O7 = (W2(E) + HE(E) + WE(E) + W2 ()2

v

< 4z max{W"(t), H"(t), W (£), W;" (£)}
v

< 42(W” + H + WY + WY)

©)

we get

EIX(0)]” < 42 (e~ UW (0), H(0), W;(0), W, (0)) + M).

which means
v
gimsup[ElX(t)l" < 42M < oo,
This implies that there is a constant 8, such that

tlimsupIE|,/X(t)| <80,.

2
Then, given any € >0, choose 6 =Z—;, applying
Chebyshev’s inequality, we have

ElyX(@®l

Pl1X() > 0[] < NG

Hence

0,
limsupP[|X(t) > 0|] <—.
limsupP[1X(0) > 0[] < %

= E.

This completes the proof.

2.2.3 Stochastically permanent

Definition 2.6

The solution X(t) = (W(t), H(t), Ws(t), W.(t)) of system 2
is said to be stochastically permanent. if any € €(0,1), there
exists a pair of positive constant 0 and x such that for any
initial value (W(0), H(0), W,(0), W.(0)) € R%, the solution
X(t) to model (2) has the properties [28].

tliminﬂP’(|X(t) <0))=1-€ (10)
tliminf]P’(|X(t) =x)=1-¢€ (11)

Theorem 2.7 Assume u+ uy <A and for any positive
initial value (W (0), H(0), W,(0), W,.(0)) € R% the solution
W), H(t), Wy (1), W, (1)) satisfies

limsupE(|X(1)|™) < Q (12)



where, p is a positive constant satisfying

p+1
Tmax[al,az,a3,a4] <A—(p+p)

2

where, > 0 is a positive constant satisfying

(13)

_4P(4nB, + B,)
B 4nB,
(2191 + B, +/BZ + 4B, B,
max |1,
2B,

(14)

+1
< A= (o i) - P max(e?, 03, 08, o)

+1 1
By = A= (utm) — o —max(ot, o3 30D —n (17

B, = (u+ uy) + max(o?, 03,03, 03) + 21

Proof. Let

1
W+H+W, +W,

V(W, H, W, W,) = (16)

for (W(t) + H(t) + W(t) + W.(t)) € R% , applying Ito’s
formula, we get

dV(W + H + W, + W,)
= —VZ[A — (n+ py)H]dt
+ V3[02W?, 63H?, 62W2, 05 W2]dt
— V2[5, WdW,, 5,HAW,, 65 W, dWs, 5,W.dW, ]

Choosing a positive constant p satisfy (13) and using Ito’s
formula, we obtain

L[(1+V)P] = p(1
+ V)PH=VZ[A — ( + p)H]+V3 [0 W2
+ 03H? + 03W2 + oZW2]}
~-1
p(p2 )V4(1 + V)P‘Z[G%WZ + G%HZ + Géwsz + O-AZIWTZ]
= p(1 + V)P 2{—V2[A — (u + u,)H]
— V3[A - (u+ py)H]
+ V3[03W? + 03H? + 03 W2 + 03 W7]

V*4[6?W?2 + 63H? + 63W2 + 03W?]}
=p(1+V)P72Q

-1
2

where

Q —V3[A = (u+ py)H]

-1
2

= —V?[A— (1 +w)H]

V3[0fW? + 0fH? + 02 W% + o7 W?] + w?

+ 0ZH? + oW + o} W]

——V*o?

1

Using the facts

V3[aiW? + 62H? + 02WZ + a2 W,?]

< max(o?, 02,02,62)V
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V*H0iW? + 6ZH? + 03 W% + a7 W?]
< max(a?, 02,02, 02)V?

<

(u+ w) + max (a7, 07,03, 00)V — [A -

+1
- meax(af, 03,0%,00)|V?

(u+ u)

Let n > 0 be sufficiently small positive such that it satisfies
(15) by Ito’s formula, we get

L[e"(1 + V)P] = 1e™ (1 + V)P + e L[(1 + V)P]
=e"(1+V)P?(1 +V)* + Q]
= e"(1 + V)P~2[n — B,V? + B,V]
< Qpe™

where

_ (4nB; + By)
4B,

L 2B, + B, + /B2 + 4B;B
’ 2B,

Bj, B, are already defined in the theorem, Thus,

Qot

E[e"'(1+ V)P] < [1+V(0)]P + N

Hence

hmsupIE[V(t)p] < hmsup]E[l +VPP < %

p

(W +H+ W, + W,)P < 4P[W? + H? + W2 + W,?]2
< 4PIX()IP

Consequently,

47Qo

l msup Eliroo3] = llmsup]E[V(t)p] < =0

|X ( )P
which completes the proof.

Theorem 2.8 Assume max[o?,02,62,0%] < 2(A— (u+
W), then the solutions of systems (2) are stochastically
permanent.

Proof. Theorem (2.4), we have

P{X(®)| > 0} <€,
P{X(t)| <6} =1—F¢,
This follows that

giminf]P’{|X(t)| <0}=1-—F¢,
using theorem (2.6), we get

limsupP[——

tooo

|X(t)|p] =Q

Forany e > 0, Let y = —, then



1 1
PIX(6) <x] =P[ > )—(] < xPE(X(OI™P)

1
X (Ol
hence,

1
tlimsup]P[X(t) <xy]<xPQ=¢€

which gives

}imsup]P’[X(t) >xl=1-¢€

The proof is complete.

3. P-TH MOMENT

Lemma 3.1 Set p=>2 and €, x, y > 0 then

_lyg(p—l)e by L

xP 5 ep_lyp
—2)e 2 (17)
xP~2y? < ® 5 ) X+ —=yP
pe 2

using the Lemma (17) to prove the following Theorem (3.2).

Theorem 3.2 Let p > 2. If the condition B+ g+ py —

%(p — 102 — et >0, §; —%(p —1)02 >0 and p§, —
2

p(p—1) 52_4 > 0 hold the equilibrium of stochastic model (2)

is pth-moment exponentially stable.

Proof.

1 1o
V3=(1—W)p+5Hp oW W (18)

By virtue of Ito’s formula, we have

LV, = —p(1 —W)P7HA — ;W — a,WH + 5,W,]
+ HP Y [a,WH — BH — uH — p;H]

+ WP W + BH — 5, W]
- 1
+ W (8 Ws = 8.1 + S [p(p — (1

1
— WYP26FW?] 4 [(p — DHP 207 H?]
1 P=2 21172 1
o[- DWe “osWs] +5 [p(p
N AEATS
After a little algebra, we have
LV =—p(A—=W)PIA+p(1—-W)P g, W + p(1
- W)Pra,WH — p(1 — W)P~15,W,

+ a,WHP — BHP — uHP — p HP
+a, WWP™ + BHWP ™ — 5, WP

p-1 14 1
+p& W W, — pb, W, + 3 [p(p—D(A
1
- W)P~2afW?] + 3 [(p — 1)HP 03]

1 p_2 1 P 2
+§[(p—1)Ws a5 ] +§[p(p— W oi]
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In D, we have max{W, H, W,, W,.} < 1, hence

LV < —p(1=W)PIA+p(1 —W)Pla, + p(1
—W)P ta,H —p(1
— WYP18,W, + a,HP — BHP
— PHP —  HP + a, W™
+ BHWS ™ — &, W

p-1 P 1
+poi W Ws — pé, W +§[p(p (19)
1
- DA -W)P2efW?] + 5@
1
- 1)HP03] + PG DW 3]

1 _1Wp2
+5 [ — DWW 0i]

Now, apply the Lemma (17) for any € > 0, we obtain

(1-W)P~1H < @%)6(1 —W)P + o HP
1-W)P 1w, < Ll)e(l —-W)P + #er
wrig < & _pl)ewsp p;_l HP
WPlw, < @ _pl)EWrp + pep_lwsp
(1 - W)P2W2 < (p%)e(l —W)P +— 5 WP

pe 2
substituting the above inequalities in (19), we have

LV; < —p(1 = W)PTIA + p(1 = W)P 1
[(p - 1)6(1 — Wy +
p

+ pa, pep1 Hp]

1 Wp]
per~t F
+ aHP — BHP — pHP — |, HP + o, WP ™"
(p—1)e 1
+ [3[ - WP+ v HP] - & WP

(p—De_ , 1 P
+p61[ b Wr+p€p_1ws]

- p52er

(p—1e
8, [T (1-W)P +

(p—2)e

1
+5p(p — Dok (1-wy

+

1 1
pz WP+ 3 [(p — DHPo3] + > [(p
pe 2

1
- HW.o3] + > [p(p - WP o3

Simplifying, we get



1
LV < (1 =W)Plaz(p — De = 8(p —De+5(p

- D(p ~ 2)eof](
— WP [—pA + pa] + (p

p-2
—1De 2z gZWP
1
— HP [—az+ﬁ+ﬂ+u1—§(p

—1)02 — a,el™? — Eel‘p]

(20)
1
W7 (8, -5 (0 - of — 1
(»— e
_ [g—]
p
D i
- W |pé, —p(p — 1)7

+ 5,e17P — 5161"’]

We choose € sufficiently small such that the co-efficient of
(1 —W)P be negative and as B+ p+ p — %(p —1)o% —

2
€ P >0, 8, —=(p—1)03 > 0 and p&, —p(p — 1) 2 >
0 the co-efficients of W, W and W, be negative.

4. PERSISTENCE

The endemic equilibrium E = (W*, H*, W, W) where
. Kk N A «  AdzB—agkqBrak? N
wr=-=2 H =— wp=—2—11"11 W
a ) ki—B ’ s 81az(k1—B) ’ r
AogB-ailaBrasld o the deterministic model (1) is globally
8z0a2 (ke —B)
stable but there is no endemic equilibrium is stochastic model
(2). In this part, we will demonstrate the persistence of the
stochastic model (2).

Theorem 4.1 let (W(t), H(t), Ws(t), W,(t)) € R be the
solution of stochastic model (2) with any initial value
(W(0), H(0), Ws(0), W.(0)). If 6, > 0,0, > 0,03 > 0,04 >
0, then the stochastic model (2) is globally asymptotically
stable at endemic equilibrium point if

t
{L(W(s) = W2 + L, (H(s) — H")?

+ L (We(s) — We)? + Lu(W,(s)
—W)?ds < L.

l1=[a1_<1+
2

B
L=|B+u+u)—|1+-5)o7
l3=(8,-03)>0,l,=(6,—0{)>0

im e [
m -
t—>002 0 (21)

where,

(a; +8,) 2
25, of| >0,

>0,
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(a; + 6)W™
] P
H2+ 2 =
s, 2

I (ay + )W Wy
W 4— 2 -
s 25,
B*H* W,

W*
2

2

l=|w*?+ of

o3

WS* 2
7] %
Wr*
+ _r 2
2 | %

w2 +

Proof. For our proof we will use some concepts from [23,
29, 30]. there is a unique endemic equilibrium point E =
(W™, H", Wg, W) of the model (1)

Fut
A=a,W* +a,W*H —8,W' a,= M
A
oW =6,Ws" = BH"; 8 = ——
W

Define the function V,q,Vy,, Vys, Vi, Vas, Vag and V,, are
defined for (W, H, W,,W,.) € R%

Vay = 5 [(W=W") + (W — W)

N -

1
V42 = E[W - W*]Z;

V4_3 = WS - WS* - Ws*log

S
*
S

Vas = 3 [(H = H) + (W, — W)L

1
Vis =5 [H - H*]?;

Vag = Wi = Wy — Wrlog g5
Vyr = (W W* — W~ W)
47 = ng*

* * WS
+(WS—W—S _WSIOgWS*)
+ (H H* — H'] H)

OgH*
* * Wr
+ (Wr - Wy — erogwr*>

By using Ito’s formula, we have

1
+ 8,W, + ayW + BH — §;W,] + > [c2W?
+ofWe] = [(W —W") + (W, — W5)]
[ayW* + a, W H* — §,W,* — ayW — a, WH + §,W,
SW;  BH I
- +,8H—61WS]+E[01W

wr w+
+ oWl = [(W — W) + (W, — W)




[a(W = W?) —ay(WH = W*H") = 5, (W,
= W) =86 (Ws —W) — B(H
1
—H)]+ 5[0t W? + o3 W]
= —a;(W —W*)? - & (W,
— W52 = 6, (Ws — WH (W5
- I{VT*) —a (W = WH(W — W™
+5 [0t W? + o3 W]
< —ay (W —W™)? = 6, (W

W2+ al(“g"‘ ;) w
1

1
=W 45 [of W? + o W]

(22)

LV, = [(W—=WIH][A — oW — a, WH + §,W,]

1

+5 [ofW?]

=[(W-=-W9)][uW* + a,W"H"

- (SZW: - 0(1W - asz + 82Wr
1

+5 [ofW?]

=[(W —W)][-a, (W - W7)

+8,(W, — W) — ay H(W — W™)

1
—a,W*(H—-H"] + > [62W?] (23)

= _al(W - W*)Z + 62(W

—WHW, = W) —a, HW

—WHE = a,W (W — W) (H
1

—H) + 5[0t W?)

S _al(W - W*)Z + 62(W

—WYWe = W) — W (W

1
—W)(H = H) + 5 [0?W?]

where the inequality in (23) is derived by —a,H(W —
w*?<o.

*
N

W, 1,
WS)][alW—ﬁH—&VVst[UsWs]
MIS*
=[1- WS)][ﬁH — 6, W
6 W' — BH 1,
+TW]+§[03WS*]
=B(H —H") — & Wy — W) + (6, Wy
— BH™)
w +i_%_w +1[0-32V|/s*]

w ot E W
<BH—-H") =8 (W — W) (24)
1
+§[032Ws*]

LV =[(1 -

The second Inequality is derived from the fact.
logx < x-1, V x =0 and last inequality implied by

1038

% —(1 s
46 = W

WoH W (0 —pHW
wrTH Wy (8 Wy — BHOWI T

LV,y = [(H = H) + (W, — W)][a,WH
— (B +u+ pu)H+6,W; — 5,W, ]
1
+5 [0 H? + 0 W]
=[(H—-H)+ W —W)H][(B +u
+u)H = (B +u+p)H + 5, W
— 5. Wh + 3 [0FHE + oF W)
=[H-H)+ W, —W)][-B +u
+ uq)

* * 1 2172 2 2
(H_H)_SZ(Wr_Wr)]+§[02H + o W]

=—(f+u+u)H-H)
— &, (W, — Wy)?
_(.3+M+H1+521)(W;
-W)H-H") + E[G%HZ
+ i W]
S —B+u+p)H—-H)?
— 8,(W, — Wy)?

BB+ p+py +6)
+

&

1
+5 o7 H? + 0 W]

(25)

(H—H")

LVys = [(H = H)][a;WH — (B + p + puy)H]

+%[O‘22H2]

= [(H —H)]I(B + M1+ p)H*
= (B + p+ m)H] + 5 [07H?]
=[(H - Hl*)][—(ﬂ +u+u)H
— H)] + 5[0 H?]

< 1—(3 +u+w)(H—H)?
+§[<722H2]

(26)

*
r

1
) (8.0, — 8,1 + 5 [0,
r
Wy A

=11~ )[5W— W]

( w, 1Ws wr T

1
+ 5 [0i W]
= 8,(W, — W) e
o [V v

o
+5[02W] = 6,00, — W)

1
+t3 [of W]



W*
Lv,, = (1 - W) (A= a,W — a;WH + 8,W,]
H*
+(1—ﬁ) [,WH — (B + u

*
N

+u)H] + (1 _ %) [a,W + BH

S
*

w;
=8, + (1= 70 .,

r
— 5, W] +%[012W2 + o,H?

+ WS + af W]

= (1 - WW) [aW* + a, W*H*

— & W, — W — a,WH + §,W,]

*

H
+ (1 —7) [a;WH — a,W*H]
Wi [0 W5 — BH™
1-—)|———Ww
+(1-3) [P
+ BH — 6, W,
+(1 W’*)[aw 51W;W] 2
VV,- 1¥s VV,«* r (8)

1
+5[ 0iW? + g,H? + o2 W?

+ o2 W? ]
—aw |2 w W
— % W W
+ W*H*[ i
+ (8, W
H* [2 H W
BH") TR
(8, W, — BH)W*
(8, W* — BH"W
+ 8, W [z We Wy  WeWr
) W WoW,
+5 [02W? + 0'2H2 + 03W2
S A

1
< +E[0§W2 + o,H? + 0% W?
+ o5 W7]

The arithmetic mean is greater than or equal to the

geometric mean, it follows that

w W H*
2————+<02-—-—-——<0,
w* W H H
W W WW o W W W
We We Wewr T W W WL T
From (23) and (24)
LV4,2 + W*LV43 S _al(W W )2 4= 2 0_12W2
) (29)
+ 20‘3W Wy

Taking (22) and (29), we have

a, +6
———2 LV + W'LV,3)
1
—ay (W —W")? = 6, (W,

a(a,+6
Wy 4 1(aq 2) w
o
1
-WwH?+ 3 [62W?2 + 62 W2]
+(a1+62)
81
1 1
+ S0P + oW W]
< Zay(W — W2 — §,(W,

1 1
— W2 +Ec712W2 + 505 Ws W2

a
+( 1t 2)[ OEW? + GZW W]

LV, +

[—a, (W — W)? (30)

From (26) and (27),

LVys + H'LVyg < —(B + p + ) (H — H*)?

1
2H2 H*W.*
2 +20 W

€2))

By (25) and (31),

2
LV,, + f;—z (LV,s + H*LV,,)
—(B+u+up)(H—H)?
— &, (W, — Wy)?
B*B+u+u)
+ _—
6,

+%[022H2+04W ]+ [ (B

(H—H*)

1
) (H — H)? + 5 0FH? (32)
1
+ +EGZH*W;]
—(B+p+u)(H— H)?
1
= 8,(W, — W)? + 5 o7 H?

2
1 p?
2 H2
+204W 262[
+ 0ZH*W;]

a; + 6,
LV4 = LV41 +

(LVyy + W*LV,3) + LV,

1
2

+§,—(LV45 + H*LV,g) + LV,
2
< _a1(W_W*)2 — 6, (W
1

— W2 +5012W2 +§U32Wsz

a;+ 96

M[o—fwuagw Al
—(B+p+u)(H—H)?

1
—52(Wr—Wr*)2+§022H2
ﬁz

—g2W2 +
+ 20’ We + 20,
+ 0ZH*W;]

(33)

[07H?



Using the inequality a? = 2(a — b)? + 2b%,V a,b € R. we
have
LV, < —ay(W = W*)? — §; (W — Wy")?
1
+ Eaf[Z(W —W*)? +2W*?]
505 [2(W, — Wy')? + 207

(a; +65) .
25, [of(2(W —W*)?

+ 2W*2) + a2W* W] — (B + 1
+ 1) (H — H")? = 8,(W, — W;")?

+ %GZZ[Z(H — H*)? + 2H*?]
1
+ —JE[Z(WT - W% + 2w
BZ
+—[02 (2(H — H*)? + 2H*?)
+ O'4H W]

< —lag
—<1+( 62)> ](W
_W*)Z

—[(B+u+u1)—(1

(34)

2
ﬂ)ﬁz](H H*)? = (6,

- 03)(W Wy )2 - (6,
— o) (W, — W)?
4 (ay + )W

w* *2

+
+W*-
2 4

B’ 2
25, + 0,
(a1 + 8,)W* W*

ol + [H*Z +

WS*
W*_
+ 5
o BPHW
wr?
T

+

2

2

+ 04

Wr*
2

Simplifying, we get

LVy < =L (W = W2 = L(H = H")? = ls(W; (35)
— W) = LW, — W% +

Integrating (35) from 0 to t and taking expectation, we get

0 < E[Vy(W (), H(®), Wy (£), W, (D)]
< E[V4(It/l/(0),H (0), W, (0), W;.(0))]

36
<—E [ (-l =W = L - Y - L, 36)
0
WY — (W, — W) + 1
Therefore,
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1
lim —E

t—ooo €

t
_f&MW—WT—bW—WY—MM
— WY — LW, — Wy)ds < 1

(37)

5. NUMERICAL SIMULATION

We provide some numerical results to shows the analytical
result of stochastic model (2). The Eq. (2) can be rewritten as
the following discretization equations

Wi+1)=W(@)+[A—a WD) — a,W({DH(®)

+ S (D]A + oW (DVAL (i)

+ —W(L)()((l)2 —DAtH(i + 1)

— H0) + [ W OH() — BHQ)
— RH(D) — i H ()]t
+ oy H (VALK ()

+ —H(L)()((L)z — DAt
(38)
WG + 1) = W, (D) + [eaW (@) + BH(D)

61W ()]At + o, W, (D) VALt (i)
+ —W (D) (D)2 — 1)At

W@ +1) = W (D) + [6:Ws (1) = 8, W,.(D]AL
+ 01W (OVALx (D)

+ —W (D (x(D)? — DAL

where, y (i), i=1,2,...n is the Gaussian random variable N(0,1).

We choose the intensities of the noise o; = 0.05, g, = 0.01,
o3 = 0.03, g, = 0.04 and the other parameter values of the
stochastic model (2) are chosen as: A=200, a; = 0.00067,
£=0.0199, p=0.0167,p, = 0.0143,4; = 0.085, 6, = 0.067
and the initial values are W=1.065, H=2.3478, W,=1.5652,
W,=1.067.

Note that,

(08
llz[a1—<1+( 1 ¥ 2)> ]_00072>0

l, = [(B+ pt+p) — (1 +%) oﬁ] =0.0531> 0,

I; = (8, — 62) = 0.0550 > 0,
I, = (8, — 62) = 0.0270 > 0,

Theorem 4.1 conditions are satisfied. The stochastic model
(2) solutions fluctuate for a long time around the positive
unique endemic equilibrium of the deterministic model 1 (see
Figures 1 - 4).

We show the variation between the deterministic and
stochastic simulation result for exhibiting the actual
fluctuation/noise effect on each compartment. In all these
Figures we observe that the scarcity level at each point of time
is fluctuating (increasing/decreasing) depending upon the
current time availability or source of the particular
compartment.
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Figure 1. Numerical simulations of the path W(t) for the
deterministic model 1 and stochastic model 2
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Figure 2. Numerical simulations of the path H(t) for the
deterministic model 1 and stochastic model 2
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Figure 3. Numerical simulations of the path W (t) for the
deterministic model 1 and stochastic model 2
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Figure 4. Numerical simulations of the path W,.(t) for the
deterministic model 1 and stochastic model 2

1041

6. CONCLUSION

The most real world problems are not deterministic. The
stochastic effects that take place in the deterministic model
give us a more practical way to create epidemic models. In this
paper, we have studied the stochastic model representing water
scarcity in the society. We have formulating Lyapunov
functions and applying Ito’s formula then proved some
fundamental qualitative properties, such as the existence of
global positive solutions, boundedness and permanence
solution of the proposed model (2). Persistence refers here
about the equilibrium position of the model. It says that our
stochastic model also exhibits the equilibrium points in and
around stable equilibrium position of deterministic model.
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